[go: up one dir, main page]

JPS6124156A - Corrosion prevention coating for molten carbonate fuel cells - Google Patents

Corrosion prevention coating for molten carbonate fuel cells

Info

Publication number
JPS6124156A
JPS6124156A JP59144974A JP14497484A JPS6124156A JP S6124156 A JPS6124156 A JP S6124156A JP 59144974 A JP59144974 A JP 59144974A JP 14497484 A JP14497484 A JP 14497484A JP S6124156 A JPS6124156 A JP S6124156A
Authority
JP
Japan
Prior art keywords
molten carbonate
tungsten
molybdenum
nickel
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59144974A
Other languages
Japanese (ja)
Inventor
Hirozo Matsumoto
浩造 松本
Kenji Ozawa
小沢 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59144974A priority Critical patent/JPS6124156A/en
Publication of JPS6124156A publication Critical patent/JPS6124156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain the corrosion resistance against high-temperature fused carbonate by forming a film of tungsten or molybdenum on the surface of a component material containing at least one of nickel and iron as the main component. CONSTITUTION:Surfaces of gas chamber frames 4, 5 arranged on both side of an anode electrode 2 and a cathode electrode 3 and made of either one of nickel, carbon steel, austenite-series stainless steel in contact with the electrolyte tile 1 holding fused carbonate are coated respectively with tungsten or molybdenum at a thickness of 10-150mum to form films 20, 20a. The film of tungsten or molybdenum can be formed by chemical deposition, physical deposition, or vapor plating.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は溶融炭酸塩形燃料電池の溶融炭酸塩に接する構
成材料の腐食防止に関する。
The present invention relates to corrosion prevention of components of molten carbonate fuel cells that are in contact with molten carbonate.

【従来技術とその問題点】[Prior art and its problems]

溶融炭酸塩形燃料電池は、電解質として溶融炭酸塩を保
持した電解質タイルを挟持してアノード電極とカソード
電極を配して単位電池を構成し、その外側に反応ガスと
しての燃料ガスをアノード電極に、酸化剤ガスをカソー
ド電極に供給するプレートをそれぞれ配設してなるもの
を多数積層してセルスタックを形成し、反応ガスを配管
を通してセルスタック内の各電極に供給して電気化学反
応を起こして電気を発生する。しかしながら、この種の
燃料電池では、その作動温度を高温にするので溶融炭酸
塩に接する構成材料の腐食を防止する必要がある。以下
図面に基づいて従来技術について説明する。 第2図は溶融炭酸塩形燃料電池のセルスタックを構成す
る単位電池の断面説明図である。第2図において符号1
はアルカリ炭酸塩1例えば炭酸リチウム、炭酸ナトリウ
ム、炭酸カリウム、炭酸カルシウム等を含有した電解質
タイルであり、この電解質タイル1を挟持してアノード
電極2およびカソード電極3が配設され、これらは一般
に多孔質のニッケルまたはニッケル合金からなっている
。 さらに両電極の外側にはそれぞれ反応ガス通路を形成す
るガス室枠4.5が配設されている。ガス室枠4.5に
はそれぞれの電極に反応ガスを供給する室15.16が
形成され、発生する電気をガス室枠4,5に伝える波形
状のコレクタ10.11が設けられている。そしてガス
室15に燃料ガスを給排する燃料ガス供給管6および排
出管6aがガス室枠4の対向する側面に、またガス室1
6には酸化剤ガスを給排する酸化剤ガス供給管7および
排出管7aがガス室枠5の対向する側面に設けられてい
る。そして電気絶縁板13をガス室枠4,5と上下の押
さえ板17との間にそれぞれ介装してスタッド12によ
り電解質タイル1やガス室枠4.5等の電池構成部を締
付けている。また単位電池に発生する電気を取り出すた
めのリード線14がガス室枠に取り付けられている。 この種の燃料電池の運転は運転温度を500℃以上とし
て行われ、燃料ガスと酸化剤ガスとをそれぞれ供給管6
.7を介してガス室15.1−6に流し、アノード電極
2およびカソード電極3に供給して、排出管6a、 7
aよりそれぞれ排出させて電解質タイル1内の溶融炭酸
塩と電気化学反応を起こさせて電気を発生し、リード線
14より電気を取り出す。 上記のようなアルカリ金属炭酸塩を電解質とする高温形
(500〜800℃)の溶融炭酸塩形燃料電池では電気
化学反応は下記の(1)、 +21式のように進行し、
イオン伝導は炭酸イオン(Cod” )  によって行
われる。 アノード: Hz + COs”−+HgO+COt+
2e    (1)カソードj 1/20.十COt 
+28−* co、z−(21この種の電池は作動温度
が500℃以上と高いため、反応速度が大となり、常温
形燃料電池のように高価な白金属の触媒を必要とせず、
また常温で反応し難い安価な燃料でも高い電流密度が得
られる特長がある。しかし高温で作動するため溶融炭酸
塩に接する構成材料は耐食性を有する必要がある。 しかしながら、従来電極や電解質タイルを挟持するガス
室枠等の溶融炭酸塩に接する構成材料にはニッケル、炭
素鋼、ステンレス鋼などの金属材料が用いられるが、溶
融炭酸塩による腐食に対して問題があり、腐食を防止で
きる材料が要望されている。
In a molten carbonate fuel cell, a unit cell is constructed by disposing an anode electrode and a cathode electrode with an electrolyte tile holding molten carbonate as an electrolyte sandwiched between them, and a fuel gas as a reactant gas is placed on the outside of the anode electrode. A cell stack is formed by stacking a large number of plates, each of which has a plate that supplies oxidant gas to the cathode electrode, and reactant gas is supplied to each electrode in the cell stack through piping to cause an electrochemical reaction. to generate electricity. However, since this type of fuel cell operates at a high temperature, it is necessary to prevent corrosion of the constituent materials that come into contact with the molten carbonate. The prior art will be explained below based on the drawings. FIG. 2 is an explanatory cross-sectional view of a unit cell constituting a cell stack of a molten carbonate fuel cell. In Figure 2, number 1
is an electrolyte tile containing an alkali carbonate 1 such as lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, etc., and an anode electrode 2 and a cathode electrode 3 are disposed with this electrolyte tile 1 sandwiched therebetween, and these are generally porous. Made of quality nickel or nickel alloy. Furthermore, a gas chamber frame 4.5 is arranged on the outside of the two electrodes, each forming a reaction gas channel. A chamber 15.16 is formed in the gas chamber frame 4.5 for supplying a reaction gas to each electrode, and a corrugated collector 10.11 is provided for transmitting the generated electricity to the gas chamber frame 4,5. A fuel gas supply pipe 6 and a discharge pipe 6a for supplying and discharging fuel gas to and from the gas chamber 15 are provided on opposite sides of the gas chamber frame 4.
At 6, an oxidizing gas supply pipe 7 and a discharge pipe 7a for supplying and discharging oxidizing gas are provided on opposite sides of the gas chamber frame 5. Electrical insulating plates 13 are interposed between the gas chamber frames 4 and 5 and the upper and lower pressing plates 17, respectively, and battery components such as the electrolyte tile 1 and the gas chamber frame 4.5 are fastened by studs 12. Further, a lead wire 14 for taking out electricity generated in the unit battery is attached to the gas chamber frame. This type of fuel cell is operated at an operating temperature of 500°C or higher, and fuel gas and oxidant gas are supplied through supply pipes 6 to 6.
.. 7 to the gas chamber 15.1-6, which supplies the anode electrode 2 and the cathode electrode 3 to the discharge pipes 6a, 7.
a, and an electrochemical reaction occurs with the molten carbonate in the electrolyte tile 1 to generate electricity, which is taken out from the lead wire 14. In a high-temperature (500-800°C) molten carbonate fuel cell using an alkali metal carbonate as an electrolyte, the electrochemical reaction proceeds as shown in equation (1) and +21 below.
Ion conduction is carried out by carbonate ions (Cod”). Anode: Hz + COs”-+HgO+COt+
2e (1) Cathode j 1/20. 10 COt
+28-* co, z-(21 This type of battery has a high operating temperature of 500°C or higher, so the reaction rate is high, and unlike room-temperature fuel cells, it does not require an expensive platinum metal catalyst.
Another advantage is that high current density can be obtained even with inexpensive fuel that does not easily react at room temperature. However, since it operates at high temperatures, the constituent materials that come into contact with the molten carbonate must be corrosion resistant. However, conventionally, metal materials such as nickel, carbon steel, and stainless steel are used for the constituent materials that come into contact with molten carbonate, such as the gas chamber frame that sandwiches electrodes and electrolyte tiles, but they have problems with corrosion due to molten carbonate. There is a demand for materials that can prevent corrosion.

【発明の目的] 本発明は、上述のような点に鑑み溶融炭酸塩形燃料電池の構成材料に溶融炭酸塩に対して十分な耐食性を持たせることを目的とする。 【発明の要点】[Purpose of the invention] In view of the above-mentioned points, an object of the present invention is to provide constituent materials of a molten carbonate fuel cell with sufficient corrosion resistance against molten carbonate. [Key points of the invention]

上記の目的は、本発明によればニッケルと鉄とのうち少
なくとも一つを主成分として含む溶融炭酸塩に接する構
成材料にタングステンとモリブデンとのうちいづれか一
方により10〜150 μmの厚さを有する被膜を形成
することにより達成される。
According to the present invention, the above object is to have a thickness of 10 to 150 μm made of either tungsten or molybdenum in the constituent material in contact with the molten carbonate containing at least one of nickel and iron as a main component. This is achieved by forming a film.

【発明の実施例】[Embodiments of the invention]

。下図面に基づいて本発明の詳細な説明する。 第1図は本発明の実施例による燃料電池の構成材料に腐
食防止被膜を施した断面説明図である。なお第1図にお
いて第2図と同一部分には同じ符号を付し″ている。第
1図において、電解質タイル1゜アノード電極2.カソ
ード電極3からなる単位電池に反応ガスを給排するガス
室枠4.5等からなる燃料電池の構成9作用は従来技術
のものと同じであるので説明を省略する。第1図におし
1てアノード電極2とカソード電極3の両側に配された
ニッケル、炭素鋼、オーステナイト系ステンレス鋼のい
づれかからなるガス室枠4.5が溶融炭酸塩を保持する
電解質タイル1に接するそれぞれの面にタングステンま
たはモリブデンを10〜150μ−の厚さに被覆して被
膜20.20aを形成してしする。 タングステンやモリブデンの被膜は化学蒸着法(CVD
)、物理蒸着法(PVD)あるいは気相メッキ法などで
形成することができる。 上述のようなタングステンやモリブデンを基材料として
の純ニッケル、炭素鋼およびオーステナイト系ステンレ
ス鋼に被覆して腐食試験を行った。 被覆の方法は、まず上記三種の材料を脱脂、酸洗いの後
、純ニッケルを除く材料については電気メツキ法で厚さ
5μ−のニッケルメッキを施した。 そしてこの後、化学蒸着法(CV D)でそれぞれ厚さ
約85μ−のタングステンおよびモリブデンの層をそれ
ぞれ形成した。このような試料の溶融炭酸塩による浸漬
腐食試験を下記の条件により行った。 溶融炭酸塩組成  炭酸カリウム 38a+o1%炭酸
リチウム 62mo1% 温度       650℃ 浸漬時間     100時間 浸漬方法     直径0.5m−の金線でつるした試
料を静的に浸漬 雰囲気      液面上部への炭酸ガスの吹き付け この試験結果は第1表の通りである。 第1表 第1表に示すようにタングステン、モリブデンの被膜の
ないものは大幅な減量であるが、被膜のあるものはその
減量は非常に少ないことが理解される。なおこの減量率
で被膜の厚さ10μmでも燃料電池として長期の運転時
間に耐えられる。また被膜の形成方法の点から被膜の厚
さは150μ蛸以下としている。なおタングステンやモ
リブデンを被層しない材料表面では部分的に激しい浸食
が認められたが、タングステンやモリブデンを一膜した
材料表面では前述のような浸食は認められなかった。
. The present invention will be explained in detail based on the drawings below. FIG. 1 is an explanatory cross-sectional view showing a structure material of a fuel cell according to an embodiment of the present invention provided with a corrosion-preventing coating. In Fig. 1, the same parts as in Fig. 2 are given the same reference numerals. The structure 9 of the fuel cell consisting of a chamber frame 4, 5, etc. is the same as that of the prior art, so the explanation will be omitted. A gas chamber frame 4.5 made of nickel, carbon steel, or austenitic stainless steel is coated with tungsten or molybdenum to a thickness of 10 to 150 μ- on each side in contact with the electrolyte tile 1 holding molten carbonate. A coating 20.20a is formed. Tungsten and molybdenum coatings are formed by chemical vapor deposition (CVD).
), physical vapor deposition (PVD), vapor phase plating, or the like. Corrosion tests were conducted by coating pure nickel, carbon steel, and austenitic stainless steel as base materials with tungsten and molybdenum as described above. The coating method was as follows: First, the three materials mentioned above were degreased and pickled, and then the materials other than pure nickel were plated with nickel to a thickness of 5 .mu.m by electroplating. This was followed by chemical vapor deposition (CVD) deposition of tungsten and molybdenum layers, each approximately 85 microns thick. An immersion corrosion test using molten carbonate on such a sample was conducted under the following conditions. Molten carbonate composition Potassium carbonate 38a+o1% Lithium carbonate 62mo1% Temperature 650°C Immersion time 100 hours Immersion method Static immersion of a sample suspended from a gold wire with a diameter of 0.5 m Atmosphere Spraying carbon dioxide gas above the liquid level This test The results are shown in Table 1. As shown in Table 1, it is understood that the weight loss is significant in the case without the tungsten or molybdenum coating, but the weight loss is very small in the case with the coating. At this weight loss rate, even with a film thickness of 10 μm, the fuel cell can withstand long-term operation. Further, from the viewpoint of the method of forming the film, the thickness of the film is set to be 150 μm or less. Severe erosion was observed in some areas on the surface of the material that was not coated with tungsten or molybdenum, but no such erosion was observed on the surface of the material that was coated with tungsten or molybdenum.

【発明の効果】【Effect of the invention】

以上の説明から明らかなように、本発明によればニッケ
ルと鉄とのうち少なくとも一つを主成分として含む構成
材料の表面にタングステンとモリブデンとのうちいづれ
か一つにより10〜150μmの厚さの被膜を形成する
ことにより、高温の溶融炭酸塩に対する十分な耐食性を
与えることができるとともに燃料電池の構成材料に耐食
性の点より安価な材料が使用できるという効果がある。
As is clear from the above description, according to the present invention, the surface of the constituent material containing at least one of nickel and iron as a main component is coated with either tungsten or molybdenum to a thickness of 10 to 150 μm. By forming the film, sufficient corrosion resistance against high-temperature molten carbonate can be provided, and a material that is less expensive in terms of corrosion resistance can be used as the constituent material of the fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による溶融炭酸塩形燃料電池の
断面図、第2図は従来の溶融炭酸塩形燃料電池の断面図
である。 1:電解質タイル、4.5:ガス室枠、20,20a:
被膜。 第1図
FIG. 1 is a sectional view of a molten carbonate fuel cell according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional molten carbonate fuel cell. 1: Electrolyte tile, 4.5: Gas chamber frame, 20, 20a:
Coating. Figure 1

Claims (1)

【特許請求の範囲】 1)ニッケルと鉄とのうち少なくとも一つを主成分とし
て含む溶融炭酸塩に接する構成材料にタングステンとモ
リブデンとのうちいづれか一方により1.0〜150μ
mの厚さを有する被膜を形成したことを特徴とする溶融
炭酸塩形燃料電池の腐食防止被膜。 2)特許請求の範囲第1項記載の腐食防止被膜において
、構成材料はオーステナイト系ステンレス鋼としたこと
を特徴とする溶融炭酸塩形燃料電池の腐食防止被膜。
[Scope of Claims] 1) The constituent material in contact with the molten carbonate containing at least one of nickel and iron as a main component is coated with 1.0 to 150 μm of either tungsten or molybdenum.
1. A corrosion-preventing coating for a molten carbonate fuel cell, characterized in that the coating has a thickness of m. 2) A corrosion-inhibiting coating for a molten carbonate fuel cell according to claim 1, wherein the constituent material is austenitic stainless steel.
JP59144974A 1984-07-12 1984-07-12 Corrosion prevention coating for molten carbonate fuel cells Pending JPS6124156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59144974A JPS6124156A (en) 1984-07-12 1984-07-12 Corrosion prevention coating for molten carbonate fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144974A JPS6124156A (en) 1984-07-12 1984-07-12 Corrosion prevention coating for molten carbonate fuel cells

Publications (1)

Publication Number Publication Date
JPS6124156A true JPS6124156A (en) 1986-02-01

Family

ID=15374526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144974A Pending JPS6124156A (en) 1984-07-12 1984-07-12 Corrosion prevention coating for molten carbonate fuel cells

Country Status (1)

Country Link
JP (1) JPS6124156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645657B2 (en) 2001-05-03 2003-11-11 Fuelcell Energy, Inc. Sol-gel coated cathode side hardware for carbonate fuel cells
JP2010058265A (en) * 2009-12-07 2010-03-18 Bando Kiko Co Ltd Grinding method for sheet glass and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645657B2 (en) 2001-05-03 2003-11-11 Fuelcell Energy, Inc. Sol-gel coated cathode side hardware for carbonate fuel cells
JP2010058265A (en) * 2009-12-07 2010-03-18 Bando Kiko Co Ltd Grinding method for sheet glass and its device

Similar Documents

Publication Publication Date Title
USRE37284E1 (en) Corrosion resistant PEM fuel cell
TW513824B (en) Bipolar plate for fuel cells
US4160067A (en) Molten carbonate fuel cell corrosion inhibition
US4548874A (en) Short protection device for stack of electrolytic cells
JPH11162478A (en) Separator for fuel cell
JP3423574B2 (en) Corrosion resistant treatment method for separator of molten carbonate fuel cell
US3464861A (en) Fuel cells with solid state electrolytes
JP2002329507A (en) Electrochemical cell
JP2012119126A (en) Solid oxide fuel battery
US3471338A (en) Method of making a fuel cell electrode
WO1984002429A1 (en) Chemo-electric cell with at least one gas electrode
JPS6124156A (en) Corrosion prevention coating for molten carbonate fuel cells
US3332806A (en) Palladium-silver alloy membrane and method of constructing the membrane
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JPH06267550A (en) Separator for molten carbonate type fuel cell and its anticorrosive processing method
JP2023026218A (en) Electrochemical stack metal member and electrochemical stack
Pigeaud et al. Coating applications for the molten carbonate fuel cell
RU2444095C1 (en) Electrochemical device
JPS62262376A (en) Melted carbonate type fuel cell
JPS6151770A (en) Molten carbonate fuel cell
KR100394777B1 (en) Surface treatment of molten carbonate fuel cell separator
JPS61277170A (en) Formation of corrosion-preventive film in molten carbonate fuel cell
US3389017A (en) Sealing member and combination thereof and method of producing said sealing member
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
JPH02100270A (en) Molten carbonate fuel cell