[go: up one dir, main page]

JPS6124112B2 - - Google Patents

Info

Publication number
JPS6124112B2
JPS6124112B2 JP6976775A JP6976775A JPS6124112B2 JP S6124112 B2 JPS6124112 B2 JP S6124112B2 JP 6976775 A JP6976775 A JP 6976775A JP 6976775 A JP6976775 A JP 6976775A JP S6124112 B2 JPS6124112 B2 JP S6124112B2
Authority
JP
Japan
Prior art keywords
welding
workpiece
welded
leading
workpieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6976775A
Other languages
Japanese (ja)
Other versions
JPS5129345A (en
Inventor
Emiru Sushaaru Furetsudo
Tsuokii Anton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fael SA
Original Assignee
Fael SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fael SA filed Critical Fael SA
Publication of JPS5129345A publication Critical patent/JPS5129345A/en
Publication of JPS6124112B2 publication Critical patent/JPS6124112B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/253Monitoring devices using digital means the measured parameter being a displacement or a position

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Resistance Welding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は相続く加工片の抵抗シーム溶接に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to resistance seam welding of successive workpieces.

例えば事実上円筒状の外殻即ちジヤケツトと折
込まれた床部即ち底部とから成るブリキ鑵などの
ような円筒体その他の容器の製造において、気密
な継目を実現するために所謂抵抗ロール・シーム
溶接を採用することは知られている。抵抗ロー
ル・シーム溶接は、この目的のために使用される
交流の各半サイクルの間に溶接点が加えられよに
なる一連の溶接点の重ね合わせ溶接であることを
特徴とする。各溶接点は、溶接されるべき加工片
の移送方向即ち供給方向に関して考えた場合に予
め定められた長さ寸法を有し、その長さ寸法は交
流の予め定められた周波数に対して移送機構の速
度の結果として定まり、実際的な一例について考
えれば、毎分15mという移送速度と50Hzの交流の
場合にはその長さ寸法は約2.5ミリメートルにな
る。上述の長さを持つ溶接点は、溶接されるべき
加工片の重なり合つた縁端に沿つて互に隣接して
一線上に配列される。
In the manufacture of cylinders and other containers, such as tinplates, which consist of an essentially cylindrical outer shell or jacket and a folded floor or bottom, so-called resistance roll seam welding is used to achieve airtight seams. is known to be adopted. Resistance roll seam welding is characterized by an overlapping welding of a series of welding points such that a welding point is added during each half-cycle of the alternating current used for this purpose. Each welding point has a predetermined length dimension when considered with respect to the direction of transport or feed of the workpieces to be welded, which length dimension is determined by the transport mechanism relative to a predetermined frequency of the alternating current. Considering a practical example, for a transport speed of 15 m/min and an alternating current of 50 Hz, the length dimension is approximately 2.5 mm. The welding points with the abovementioned lengths are arranged in line adjacent to each other along the overlapping edges of the workpieces to be welded.

然しながら、従来慣用の抵抗シーム溶接技術の
場合には、溶接継目の始点若しくは溶接継目の終
点又はそれら両方の点において溶接点が丁度加工
片縁端に現われ、その結果としてこのような溶接
点の一部だけが溶接されるべき加工片に加えられ
て、それは他方でこのような加工片縁端の焼損を
生ずるという事が避けられなかつた。溶接される
べき加工片が例えば、このようにして製造される
べきブリキ鑵のジヤケツト即ち外殻表面を形成す
る所謂枠体であつて、その枠体が続いて折込み即
ち内向フランジ付け操作を行なうことによつて床
部即ち底部を設けられる場合には、製品に漏れ位
置を生ずるので、このような焼損したた縁端の欠
点は特にこのような床部の折込みの間に顕著にな
る。
However, in the case of conventional resistance seam welding techniques, a weld point appears exactly at one edge of the workpiece at the start of the weld seam and/or at the end of the weld seam, with the result that one such weld point of the workpieces to be welded, which on the other hand inevitably led to burnout of the edges of such workpieces. The workpiece to be welded is, for example, a so-called frame forming the jacket or outer shell surface of the tin iron to be produced in this way, which frame is subsequently subjected to a folding or inward flanging operation. The disadvantages of such burnt edges are particularly noticeable during the folding of such floors, as they create leakage points in the product.

本発明の第1の特色に依れば、相続く相続く加
工片を抵抗シーム溶接する方法であつて、各加工
片を予め定められた方向に一定の公称速度でロー
ル溶接部まで移送し、そのロール溶接部では一連
の溶接点を作るために交流の半サイクルの整数倍
から成る半サイクル群を加工片に印加することに
よつて加工片の溶接が行なわれ、その際各溶接点
はその交流半サイクル群の相続く各半サイクルの
間に作られ、加工片の移送方向に溶接部より前方
に配置された測定部を加工片の前縁及び後縁が前
記一定の公称速度で通過する時点を検出し、前記
時点におけるその交流の位相の値を判定し、一連
の溶接点の内の最初の溶接点の前端がその加工片
の前縁より内方に間隔をあけて位置しその一連の
溶接点の内の最後の溶接点の後端がその加工片の
後縁より内方に間隔をあけて位置するようにそれ
らの一連の溶接点が加工片に配置されることを保
証するため、前記判定された位相の値の対応する
基準位相値からの偏差に従つて加工片の移送速度
を変えることから成り、最初の溶接点の前端と加
工片の前縁との間の間隔及び最後の溶接点の後端
と加工片の後縁との間の間隔は調整可能である処
の方法が、提供される。
According to a first feature of the invention, there is provided a method for resistance seam welding successive workpieces, the method comprising: transporting each workpiece in a predetermined direction at a constant nominal speed to a roll weld; In the roll weld, the workpieces are welded by applying to the workpiece half-cycles consisting of an integral number of half-cycles of alternating current to create a series of welding points, each welding point being The leading and trailing edges of the workpiece pass at said constant nominal speed through a measuring section which is created during each successive half-cycle of the group of AC half-cycles and which is arranged forward of the weld in the direction of transport of the workpiece. detecting a point in time and determining the value of the phase of the alternating current at the point in time; to ensure that the series of weld points are arranged on the workpiece such that the trailing edge of the last of the weld points is spaced inwardly from the trailing edge of the workpiece. , consisting of varying the transport speed of the workpiece according to the deviation of said determined phase value from the corresponding reference phase value, the distance between the leading edge of the first welding point and the leading edge of the workpiece and the last A method is provided in which the spacing between the trailing edge of the weld point and the trailing edge of the workpiece is adjustable.

本発明の第2の特色に依れば、相続く加工片を
抵抗シーム溶接するための装置であつて、ロール
溶接部と、加工片を予め定められた方向に一定の
公称速度でロール溶接部まで移送する機構とを具
備し、そのロール溶接部は一連の溶接点を作るた
めに交流の半サイクルの整数倍から成る半サイク
ル群を加工片に印加することによつて加工片を溶
接するよう動作し、その際各溶接点はその交流半
サイクル群の相続く各半サイクルの間に作られ、
更に、加工片の移送方向に溶接部より前方に配置
されて加工片の前縁及び後縁がそれを通過する時
点を検出するようになつている測定部と、前記時
点におけるその交流の位相の値を判定し前記判定
された位相の値の対応する基準位相値からの偏差
に従つて加工片の移送速度を変えて、一連の溶接
点の内の最初の溶接の前端がその加工片の前縁よ
り内方に間隔をあけて位置しその一連の溶接点の
内の最後の溶接点の後端がその加工片の後縁より
内方に間隔をあけて位置するようにそれら一連の
溶接点が加工片上に配置されることを保証するよ
う動作する制御機構とを具備し、前記制御機構は
最初の溶接点の前端と加工片の前縁との間の間隔
及び最後の溶接点の後端と加工片の後縁との間の
間隔の調整を可能にする処の装置が、提供され
る。
According to a second feature of the invention, there is provided an apparatus for resistance seam welding successive workpieces, comprising a roll weld and a roll weld that moves the workpieces in a predetermined direction at a constant nominal speed. and a mechanism for welding the workpieces by applying to the workpieces half-cycles consisting of an integral number of half-cycles of alternating current to create a series of weld points. operatively, each weld point being made during each successive half-cycle of the group of AC half-cycles;
Furthermore, a measuring part is arranged in front of the welding part in the direction of transport of the work piece and is adapted to detect the time points when the leading and trailing edges of the work piece pass therethrough, and the phase of the alternating current at said time points. and varying the workpiece transport speed according to the deviation of the determined phase value from the corresponding reference phase value so that the leading edge of the first weld in the series of weld points is in front of the workpiece. a series of weld points spaced inwardly from the edges such that the trailing edge of the last weld point in the series is spaced inwardly from the trailing edge of the workpiece; and a control mechanism operative to ensure that a distance between the leading edge of the first weld point and the leading edge of the workpiece and the trailing edge of the last weld point is maintained on the workpiece. A device is provided which allows adjustment of the spacing between the workpiece and the trailing edge of the workpiece.

次に添付図面を参照しながら本発明をその一実
施例について更に詳細に説明しよう。
The present invention will now be described in more detail with reference to one embodiment thereof, with reference to the accompanying drawings.

第1図は、当該分野の技術において時により電
極ロールとも呼ばれている1対の溶接ローラ、即
ちロール1及び2を有する従来慣用のロール溶接
機を略図的に示している。溶接ローラ2は適当な
駆動電動機3によつて駆動される。加工片の進行
方向に関して溶接ローラ1及び2の前方に、即ち
上流に、配置された移送機構即ち供給機構4は、
2つのスプロケツト歯車5及び6を持つている。
スプロケツト歯車5は適当な駆動電動機7によつ
て駆動される。コンベア即ち移送用チエーン8及
び又は等価の構造体が、これらスプロケツト歯車
5及び6の両方のまわりに掛けられ、その長さに
沿つて間隔をあけた位置にコンベア素子9を支持
し、それらコンベア素子9は加工片10を予め定
められた進行方向に一定の公称速度で溶接ローラ
1及び2に向つて連続的に移送、即ち供給する。
溶接されるべき加工片10は、一例として、その
重なり合つた接触端が気密な継目を形成するため
にロール・シーム溶接動作によつて一緒に接合さ
れる板金帯片材料によつて構成されるものと仮定
する。一緒に溶接された板金帯片の各々は、例え
ば、鑵のジヤケツト即ち外殻を形成し、次の加工
段階の間に適当な折込み動作を行なうことによつ
て、このような鑵の床部即ち底部を形成すること
が出来る。溶接されるべき鑵の本体は便宜上、今
後は〓枠体〓と呼ぶことがある。
FIG. 1 schematically shows a conventional roll welding machine having a pair of welding rollers, rolls 1 and 2, sometimes also referred to in the art as electrode rolls. The welding roller 2 is driven by a suitable drive motor 3. A transport or feed mechanism 4 arranged in front of, ie upstream of, the welding rollers 1 and 2 with respect to the direction of progress of the workpieces,
It has two sprocket gears 5 and 6.
The sprocket gear 5 is driven by a suitable drive motor 7. A conveyor or transfer chain 8 and/or equivalent structure is draped around both of these sprocket gears 5 and 6 and supports conveyor elements 9 at spaced locations along their length. 9 continuously transports or feeds the work piece 10 towards the welding rollers 1 and 2 in a predetermined direction of travel at a constant nominal speed.
The workpieces 10 to be welded are, by way of example, constituted by sheet metal strip materials whose overlapping contact edges are joined together by a roll seam welding operation to form an airtight seam. Assume that Each of the sheet metal strips welded together forms, for example, the jacket or shell of the chisel and the floor or shell of such chisel is formed by carrying out suitable folding movements during the next processing step. The bottom can be formed. For convenience, the body of the chisel to be welded may be referred to as the frame from now on.

溶接ローラ2の駆動電動機3及び移送即ち供給
機構4の駆動電動機7は互に独立に制御すること
が出来る。溶接動作は、交流の半サイクルの整数
倍から成る半サイクル群を各加工片10に印加し
て第2図に示されたような一連の溶接点を作るこ
とによつて行なわれ、各溶接点は交流の半サイク
ル群の相続く各半サイクルの間に作られる。加工
片10の予め定められた移送速度に対して、各溶
接点の移送方向の寸法を計算することが可能であ
る。各半サイクル群中の溶接点の数は、長さの解
つている加工片10に対してその一連の溶接点が
第2図に示されたように加工片の前縁及び後縁の
間に含まれるように選ばれる。然しながら、個々
の加工片即ち枠体10の長さには或る許容誤差を
持つており、従つて一定の移送速度の場合にはそ
れらの溶接点が都合の悪い位置に置かれることが
起り得る。此処で説明する装置の目的は、溶接点
が板金帯片即ち帯片材料の縁端部において枠体の
前縁又は後縁に直接に加えられないように防止す
ることであり、そのように溶接点が前縁又は後縁
に直接に加えられると、そのような位置にその材
料の焼損を生ずることがある。
The drive motor 3 of the welding roller 2 and the drive motor 7 of the transport or feeding mechanism 4 can be controlled independently of each other. The welding operation is performed by applying half-cycles consisting of an integral number of half-cycles of alternating current to each workpiece 10 to create a series of weld points as shown in FIG. is produced during each successive half-cycle of the AC half-cycle group. For a predetermined transport speed of the workpiece 10, it is possible to calculate the dimensions of each weld point in the transport direction. The number of weld points in each half-cycle group is such that for workpieces 10 of varying lengths, the series of weld points is between the leading and trailing edges of the workpiece as shown in FIG. selected for inclusion. However, the lengths of the individual workpieces or frames 10 have certain tolerances, so that for a given transport speed it is possible that their welding points may be placed in unfavorable positions. . The purpose of the apparatus described here is to prevent welding points from being applied directly to the leading or trailing edges of the frame at the edge of the sheet metal strip or strip material, so that the welding If a dot is applied directly to the leading or trailing edge, it may cause burnout of the material at such location.

加工片即ち枠体10の供給即ち前進を制御する
ために、測定部11が溶接ローラ1及び2と移送
機構のスプロケツト歯車5との間に配置される。
この測定部11は通常の光源及び受光装置又は適
当な装置を具備するもので良く、各枠体10の前
縁及び後縁がそれらの装置を通過するようになつ
ている。枠体10が測定部11を通過する時、そ
の測定部はその枠体の前縁と後縁とがその測定部
を通過する時点を判定する。便宜上第1図には2
つの分離したブロツクとして図示されている計算
機12は一方では溶接交流波形を基準信号として
ブロツク16から受け、他方では測定部11から
その出力信号を受ける。計算機12は、測定部1
1から加工片10の前縁の通過を示す信号を受け
た時に、その時点における交流信号の位相の値を
判定するように動作する。一定の公称移送速度に
おいて、第2図に示されているように一連の溶接
点の内の最初の溶接点の前端がその加工片の前縁
から距離Aだけ内方に間隔をあけて位置するよ
う、加工片10が溶接ローラ1,2に到達すべき
場合には、このような判定された位相値は予め定
められた基準値を持つ。計算機12は判定された
位相値とその基準値とを比較し、それらの値の間
に何等かの偏差があればその偏差に応動して、加
工片10の一定の公称移送速度の補正のための変
化量を計算し、制御信号を移送機構4の駆動電動
機7の制御ユニツト14に送り、従つてその駆動
電動機7の速度は、その枠体即ち加工片10に加
えられる最初の溶接点の前端がその枠体の前縁か
ら距離Aの処に来るように変化される。このよう
な枠体10が溶接ローラ1及び2によつて捕捉さ
れるや否や、これらの溶接ローラが枠体のその後
の移送を行、移送機構4のコンベア素子9は最
早、枠体即ち加工片10と作動的係合状態にはな
つていない。
In order to control the feeding or advancement of the workpiece or frame 10, a measuring device 11 is arranged between the welding rollers 1 and 2 and the sprocket gear 5 of the transport mechanism.
This measuring section 11 may be equipped with a conventional light source and light receiving device or suitable devices, through which the leading and trailing edges of each frame 10 pass. When the frame 10 passes the measuring section 11, the measuring section determines when the leading and trailing edges of the frame pass through the measuring section. For convenience, 2 is shown in Figure 1.
Calculator 12, shown as two separate blocks, receives the welding AC waveform as a reference signal from block 16 on the one hand, and its output signal from measuring section 11 on the other hand. The calculator 12 is the measurement unit 1
When a signal indicating passage of the leading edge of the work piece 10 is received from 1 to 1, it operates to determine the value of the phase of the alternating current signal at that time. At a constant nominal transport speed, the leading edge of the first weld spot in the series is spaced a distance A inwardly from the leading edge of the workpiece as shown in FIG. Thus, when the workpiece 10 is to reach the welding rollers 1, 2, such a determined phase value has a predetermined reference value. The calculator 12 compares the determined phase value with its reference value and, in response to any deviation between those values, corrects the constant nominal transport speed of the workpiece 10. and sends a control signal to the control unit 14 of the drive motor 7 of the transfer mechanism 4, so that the speed of the drive motor 7 is equal to the front end of the first welding point applied to the frame or workpiece 10. is changed so that it is located at a distance A from the leading edge of the frame. As soon as such a frame 10 is captured by the welding rollers 1 and 2, these welding rollers carry out the subsequent transport of the frame and the conveyor element 9 of the transport mechanism 4 no longer transfers the frame or workpiece. 10 and is not in operative engagement.

枠体10の後縁が測定部11を通過する時に
は、計算機12の助けにより類似の動作が生ずる
が、この場合には、一連の溶接点の内の最後の溶
接点の後端が、第2図を参照すれば解るように、
このような枠体即ち加工片10の後縁からA′の
間隔をあけて位置するよう、溶接ローラ2の駆動
電動機3の速度が制御ユニツト15を通して調整
される。
A similar operation occurs with the aid of the computer 12 when the trailing edge of the frame 10 passes through the measuring section 11, but in this case the trailing edge of the last welding point in the series of welding points As you can see by referring to the figure,
The speed of the drive motor 3 of the welding roller 2 is adjusted through the control unit 15 so that it is located at a distance A' from the trailing edge of the frame or workpiece 10.

前述のような、枠体10の前縁又は後縁が測定
部11を通過した後の計算機12及び制御ユニツ
ト4又は15による駆動電動機7又は3の速度制
御の様式は、従来慣用の公知の適当な方法によ
り、例えば歩進電動機、計数機、マイクロ・プロ
セツサ等のような市販の普通の装置や部品を用い
て種々の形態で実現することが出来るから、本発
明はこのような実施態様の細部について何等限定
されるものではない。
The manner in which the speed of the drive motor 7 or 3 is controlled by the computer 12 and the control unit 4 or 15 after the leading or trailing edge of the frame body 10 has passed through the measuring section 11 as described above may be any conventionally known suitable method. Since the invention can be implemented in a variety of ways and in a variety of forms using conventional equipment and components available on the market, such as stepping motors, counters, microprocessors, etc. There is no limitation in any way.

但し、本発明の発明思想の理解を一層容易にす
るため、その実施態様の一例を以下に説明する。
即ち、先に説明したように、各加工片10の供給
は、溶接電流(50Hzの交流でその波形が基準信号
としてブロツク16の中に示されている)が正方
向零点(即ち負の振巾から正の振巾に移る点)を
通る瞬間に、第2図で加工片10の前縁bから距
離Aの点Bが第1図の溶接ローラ1及び2の間の
溶接位置Dに到達し、且つその瞬間にその溶接電
流が溶接ローラ1及び2に供給されるように制御
される。測定部11の例えば光ビームに感ずるよ
うな感知素子は溶接位置Dから一定の距離a(第
1図)だけ隔てられた位置に置かれている。それ
故、加工片10の前縁bがその感知素子を通過し
た瞬間から点Bが溶接位置Dに到達してその瞬間
に溶接電流が正方向零点から供給されるようにな
るまでに、加工片10はa+Aという距離だけ移
動されなければならず、加工片が公称供給速度v0
で移送されている時には、それだけの距離の移動
にはt0=(a+A)/v0という時間を必要とす
る。その時間内にN0=t0w(ここでwは例え
ば50Hzというような溶接電流の交流周波数であ
る)個の溶接電流の波数が溶接位置Dを通過す
る。ここで波数N0は完全な波の数を表わす整数
部分と、残りの小数部分とから成り、後者の小数
部分は「位置誤差」と呼ぶことが出来るものであ
る。その理由は、加工片10の前縁bが溶接電流
の正方向零点に相当する瞬間に測定部11の感知
素子を通過しその加工片10が上記の公称速度v0
で供給される時には、点Bが溶接位置Dに到達し
た瞬間に溶接電流はその〓位置誤差〓に相当する
位相角(360゜×〔位置誤差〕)を持つからであ
る。通常は、加工片10の前縁bを測定部11の
感知素子が検出する瞬間は溶接電流の正方向零点
とは一致せず、従つて感知素子によるその前縁b
の検出の瞬間における溶接電流の位相角から、そ
れを360゜で割つて〓位相誤差〓と呼ばれるもの
を生ずる。これらの〓位置誤差〓と〓位相誤差〓
とが加工片の供給速度を制御し、上記の公称供給
速度v0から変化するのである。詳しく言えば、加
工片10の前縁bが測定部11の感知素子を通過
した瞬間における溶接電流の位相角、従つて〓位
相誤差〓が判定されるならば、前述の距離a及び
Aが与えられているものとし、供給速度vを上記
公称供給速度v0から変化し、t=(a+A)/
v,N=t・wによつて定まる〓位置誤差〓
(Nの小数部分)が判定された〓位相誤差〓に対
して1の補数となるようにすれば、加工片10の
前縁bが溶接位置Dに到達する瞬間には、「位相
誤差」と「位置誤差」との和が丁度1になつて、
溶接電流は正方向零点を取ることになる。
However, in order to further facilitate understanding of the inventive idea of the present invention, an example of its embodiment will be described below.
That is, as previously explained, the feeding of each workpiece 10 is such that the welding current (50 Hz alternating current, the waveform of which is shown in block 16 as a reference signal) reaches its positive zero (i.e., negative amplitude). At the moment when the point B at a distance A from the front edge b of the workpiece 10 in FIG. 2 reaches the welding position D between the welding rollers 1 and 2 in FIG. , and the welding current is controlled to be supplied to the welding rollers 1 and 2 at that moment. A sensing element of the measuring part 11, which is sensitive to a light beam, for example, is placed at a position separated from the welding position D by a certain distance a (FIG. 1). Therefore, from the moment when the leading edge b of the workpiece 10 passes through its sensing element until the point B reaches the welding position D and at that moment the welding current is supplied from the zero point in the positive direction, the workpiece 10 has to be moved by a distance a+A and the workpiece has a nominal feed rate v 0
When the object is being transported at a speed of 1, it takes a time of t 0 =(a+A)/v 0 to move that distance. Within that time, N 0 =t 0 · w (where w is the alternating current frequency of the welding current, for example 50 Hz) wave numbers of the welding current pass through the welding position D. Here, the wave number N 0 consists of an integer part representing the number of complete waves and the remaining decimal part, and the latter decimal part can be called a "position error". The reason for this is that the leading edge b of the work piece 10 passes the sensing element of the measuring section 11 at the moment corresponding to the zero point in the positive direction of the welding current, and the work piece 10 moves at the above nominal speed v 0
This is because the welding current has a phase angle (360°×[position error]) corresponding to the position error at the moment point B reaches the welding position D. Normally, the moment when the sensing element of the measuring unit 11 detects the leading edge b of the workpiece 10 does not coincide with the zero point in the positive direction of the welding current, and therefore the sensing element detects the leading edge b of the workpiece 10.
From the phase angle of the welding current at the moment of detection, divide it by 360° to produce what is called the phase error. These 〓position error〓 and 〓phase error〓
controls the feed rate of the workpiece and varies from the nominal feed rate v 0 mentioned above. In detail, if the phase angle of the welding current at the moment when the leading edge b of the workpiece 10 passes the sensing element of the measuring part 11, and therefore the phase error, is determined, then the distances a and A mentioned above are given. , the supply speed v is changed from the above nominal supply speed v 0 , and t=(a+A)/
Position error determined by v, N = t・w
If (decimal part of N) is made to be one's complement to the determined phase error, then at the moment the leading edge b of the work piece 10 reaches the welding position D, the "phase error" The sum with the "position error" is exactly 1,
The welding current will take a zero point in the positive direction.

これらの必要とする供給速度の変更(加速又は
減速)の決定は一定の距離a、任意に調整し得る
可変の距離A、溶接電流の周波数w、選ばれた
公称供給速度v0、及び判定された〓位相誤差〓に
基いて計算機12によつて行われる。その際、計
算機12では、セツトさた値の供給、実測値とセ
ツト値との比較、例えばその振巾が電動機7の必
要とする回転速度の変化量に比例する直流信号な
どのような誤差信号の発生、というような簡単な
処理だけが行なわれ、その誤差信号は制御装置1
4の入力に加えられる。
The determination of these required feed rate changes (acceleration or deceleration) is based on a constant distance a, a variable distance A that can be adjusted arbitrarily, a frequency w of the welding current, a selected nominal feed rate v 0 , and a determined value. The calculation is performed by the computer 12 based on the phase error. At this time, the calculator 12 supplies the set value, compares the measured value with the set value, and generates an error signal such as a DC signal whose amplitude is proportional to the amount of change in rotational speed required by the electric motor 7. Only simple processing such as generation of
It is added to the input of 4.

このような制御の実施方法には多数の変更を行
い得るものであり、その詳細は周知である。例え
ば、〓位相誤差〓を判定するためには、計算機1
2が基準周波数源16によつて制御される計数器
を含み、その計数器は溶接電流の1サイクル毎に
0から1000までとか、0から10000まで計数する
ようになつており、溶接電流の正方向零点毎に0
にリセツトされる。測定部11から送られる検出
信号はその瞬間の計数器の計数値を読取り、その
読取られた計数値は〓位相誤差〓のデイジタル値
であり、そのデイジタル値は必要ならばアナログ
信号に変換される。このような装置は種々の型の
ものが市販されている。また歩進電動機(ステツ
ピング・モータ)の各歩進は移動される加工片の
一様な変位分に相当するから、駆動電動機7とし
て歩進電動機を使用することによつて制御装置が
極めて簡単な構成に成るという事は明らかであ
り、また加速及び減速は駆動パルス周波数の変更
によつて行われ、一方歩進の数が移動距離を決定
し、従つて処理のために計数器を使用すると都合
良い。電動機3に対する制御装置も同様な構成に
なつている。そして最後の溶接点の後端と加工片
10の後縁との間の距離を第2図に示されたよう
に調整可能な値A′にする方法及び装置の詳細も
前述の説明から類推できるので、その説明は省略
する。
Many variations in how such control is implemented are possible, the details of which are well known. For example, in order to determine the phase error, the computer 1
2 includes a counter controlled by a reference frequency source 16, the counter is adapted to count from 0 to 1000 or from 0 to 10000 for each cycle of the welding current, and the counter is adapted to count from 0 to 10000 for each cycle of the welding current. 0 for each direction zero point
will be reset to The detection signal sent from the measurement unit 11 reads the count value of the counter at that moment, and the read count value is a digital value of the phase error, and the digital value is converted into an analog signal if necessary. . Various types of such devices are commercially available. Furthermore, since each step of the stepping motor corresponds to a uniform displacement of the work piece being moved, the use of a stepping motor as the drive motor 7 makes the control device extremely simple. It is clear that acceleration and deceleration are carried out by changing the drive pulse frequency, while the number of steps determines the distance traveled, so it is convenient to use a counter for processing. good. The control device for the electric motor 3 also has a similar configuration. The details of the method and apparatus for making the distance between the rear end of the last weld point and the rear edge of the workpiece 10 an adjustable value A' as shown in FIG. 2 can also be inferred from the above description. Therefore, its explanation will be omitted.

更に第1図に図示された装置には、前述のよう
な本発明の要旨をなものではないが、本発明を実
施するに当つて併置すると好都合な別の制御装置
も備えられており、それは加工片の移送方向に関
して測定部11より更に前方に配置された第2の
同様な測定部13であり、この第2の測定部13
からの検出信号は計算器12の上方のブロツクに
供給される。この制御装置は、コンベア8の上の
多数のコンベア素子9によつて相続いて移送され
る加工片10を出来るだけ短く適正な間隔で次々
と溶接ロール1,2に引渡すように、供給機構4
の駆動電動機の速度を制御し、抵抗シーム溶接装
置全体の作業能率を向上させるために設けられた
ものである。前述の第2の測定部13は第1の測
定部11と同様に、加工片10の前縁がその測定
部を通過する瞬間を検出するものであつて、これ
により、一連の移送中の加工片10の間隔を検出
することが可能であり、その間隔が適正な値より
も大ぎる場合には、前方の加工片10が溶接ロー
ラ1,2によつて捕捉されてその移送速度が供給
機構4の移送速度と無関係になつた後に、供給機
構4の移送速度が加速されて、溶接ローラ1,2
により捕捉されている加工片10とその次の供給
機構4の上の加工片10との間隔を適正な値まで
せばめるようになつている。これらの動作も、第
2の測定部13の検出信号に基いて、計算機12
及び制御ブロツク14によつて制御される。
Furthermore, the apparatus shown in FIG. 1 is also equipped with another control device that is convenient to be placed in parallel when carrying out the present invention, although it does not reflect the gist of the present invention as described above. a second similar measuring section 13 arranged further forward of the measuring section 11 with respect to the transport direction of the work piece;
The detection signal from is fed to the block above the calculator 12. This control device controls the feed mechanism 4 in such a way that the workpieces 10, which are successively transferred by a number of conveyor elements 9 on the conveyor 8, are delivered one after another to the welding rolls 1, 2 at appropriate intervals as short as possible.
This is provided to control the speed of the drive motor and improve the working efficiency of the entire resistance seam welding device. The aforementioned second measuring section 13, like the first measuring section 11, detects the moment when the front edge of the workpiece 10 passes through the measuring section, and thereby detects the processing during a series of transfers. It is possible to detect the distance between the pieces 10, and if the distance is larger than the appropriate value, the workpiece 10 in front is captured by the welding rollers 1, 2 and its transport speed is reduced by the feeding mechanism. After the transfer speed of the supply mechanism 4 becomes independent of the transfer speed of the welding rollers 1 and 2, the transfer speed of the supply mechanism 4 is accelerated and the welding rollers 1 and 2 are
The distance between the work piece 10 captured by the feed mechanism 4 and the work piece 10 on the next feeding mechanism 4 is narrowed to an appropriate value. These operations are also performed by the computer 12 based on the detection signal of the second measuring section 13.
and control block 14.

上述の装置を用いれば、溶接周波数に対して同
期して制御される供給移動即ち前方移動を伴なう
抵抗ロール・シーム溶接を行なうことが可能であ
り、従つて最初の溶接点及び最後の溶接点の溶接
されるべき加工片の縁端からの正確な間隔が維持
出来る。この長所は、溶接操作に続く加工操作の
ために特に有利であり、そのような後続の加工操
作では、今までは、不正確な溶接によつて惹起さ
れる欠陥を避けることが不可能であつた。
With the device described above, it is possible to carry out resistance roll seam welding with a feed movement or forward movement controlled synchronously to the welding frequency, so that the first welding point and the last welding point can be The exact distance of the points from the edge of the workpiece to be welded can be maintained. This advantage is particularly advantageous for machining operations that follow welding operations, where it has hitherto been impossible to avoid defects caused by inaccurate welding. Ta.

溶接ローラ1,2に対する駆動機構と、移送機
構4に対する駆動機構をそれぞれ構成する駆動電
動機3及び7は、電子的に制御される歩進電動機
によつて構成することが出来る。
The drive motors 3 and 7, which respectively constitute the drive mechanism for the welding rollers 1 and 2 and the drive mechanism for the transfer mechanism 4, can be constructed by electronically controlled stepping motors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロール溶接機及び附属する制御素子の
ブロツク図であり、第2図は加工片の一部分の拡
大尺度での平面図であつてこのロール溶接機によ
つて抵抗ロール・シーム溶接が行なわれる様式を
示している。 1,2…溶接ローラ、3,7…駆動電動機、4
…供給機構、5,6…スプロケツト歯車、8…コ
ンベア、9…コンベア素子、10…加工片(枠枠
体)、11,13…測定部、12…計算機、1
4,15…制御ユニツト、16…基準周波数源
(溶接電流源)。
1 is a block diagram of a roll welding machine and associated control elements, and FIG. 2 is a plan view, on an enlarged scale, of a portion of a workpiece, with which resistance roll seam welding is performed by the roll welding machine. This shows the format that will be used. 1, 2... Welding roller, 3, 7... Drive motor, 4
... Supply mechanism, 5, 6... Sprocket gear, 8... Conveyor, 9... Conveyor element, 10... Processed piece (frame body), 11, 13... Measuring section, 12... Computer, 1
4, 15...Control unit, 16...Reference frequency source (welding current source).

Claims (1)

【特許請求の範囲】 1 ロール溶接機で交流により連続的に抵抗溶接
を行なう場合に溶接の始め及び溶接の終りを制御
する方法であつて、溶接部の少くとも1つの前方
にあつて溶接されるべき加工片が通過する測定部
において溶接されるべき加工片の前縁及び後縁の
時間的位置が溶接電流の周波数及び位相状態に関
して検出され、最初及び最後の溶接点が何時でも
溶接されるべき加工片の前縁及び後縁からそれぞ
れ調整可能な或る間隔をあけて位置するように、
その検出された値を処理する計算機の1つによつ
て溶接されるべき加工片の速度と溶接電流の周波
数及び位相状態とが互に適合せしめられることを
特徴とする処の、制御方法。 2 ロール溶接機において特許請求の範囲第1項
記載の方法を実施するための制御装置であつて、
溶接部の1つの前方にあつて溶接されるべき加工
片が通過する測定部において溶接されるべき加工
片の前縁及び後縁の時間的位置を溶接電流の周波
数及び位相状態に関して判定する機構11を具備
し、更に、最初及び最後の溶接点が何時でも溶接
されるべき加工片の前縁及び後縁からそれぞれ調
整可能な或る間隔をあけて位置するようにその計
算機によつて溶接されるべき加工片の速度と溶接
電流の周波数及び位相状態とが互適合せしめられ
る計算機12を具備することを特徴とする処の制
御装置。
[Claims] 1. A method for controlling the start and end of welding when continuously performing resistance welding using alternating current with a roll welding machine, the method comprising: The temporal positions of the leading and trailing edges of the workpieces to be welded in the measuring section through which the workpieces to be welded are detected with respect to the frequency and phase state of the welding current, and the first and last welding points are always welded. located at an adjustable distance from the leading and trailing edges of the workpiece to be processed, respectively;
A control method, characterized in that the speed of the workpiece to be welded and the frequency and phase state of the welding current are adapted to each other by one of the computers processing the detected values. 2. A control device for implementing the method recited in claim 1 in a roll welding machine, comprising:
A mechanism 11 for determining the temporal position of the leading and trailing edges of the workpiece to be welded with respect to the frequency and phase state of the welding current in a measuring section in front of one of the welding zones and through which the workpiece to be welded passes; and further welded by the computer such that the first and last welding points are located at a certain adjustable distance from the leading and trailing edges, respectively, of the workpieces to be welded at any given time. A control device characterized in that it comprises a computer 12 by which the speed of the workpiece to be processed and the frequency and phase state of the welding current are matched.
JP6976775A 1974-06-21 1975-06-11 Seigyohoho oyobi seigyosochi Granted JPS5129345A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH851074A CH572375A5 (en) 1974-06-21 1974-06-21

Publications (2)

Publication Number Publication Date
JPS5129345A JPS5129345A (en) 1976-03-12
JPS6124112B2 true JPS6124112B2 (en) 1986-06-09

Family

ID=4341369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6976775A Granted JPS5129345A (en) 1974-06-21 1975-06-11 Seigyohoho oyobi seigyosochi

Country Status (6)

Country Link
JP (1) JPS5129345A (en)
CH (1) CH572375A5 (en)
DE (1) DE2525502A1 (en)
FR (1) FR2275269A1 (en)
GB (1) GB1509416A (en)
NL (1) NL184353C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2642646C2 (en) * 1976-09-22 1985-01-03 Siemens AG, 1000 Berlin und 8000 München Device for resistance roll spot welding of stitched seams
DE3027960A1 (en) * 1980-07-24 1982-02-25 Institutul de Cercetari Stiintifica si Inginerie Tehnologica Pentru Industria Electrotehnica, Bucuresti Control switching for spark erosion machining gap - uses parameters of pulse applied between workpiece and tool electrodes for defining machining gap
DE202005021631U1 (en) * 2004-12-27 2009-01-08 Zens, Joachim Apparatus for seam welding a workpiece

Also Published As

Publication number Publication date
NL7507444A (en) 1975-12-23
DE2525502A1 (en) 1976-01-08
CH572375A5 (en) 1976-02-13
NL184353B (en) 1989-02-01
FR2275269A1 (en) 1976-01-16
GB1509416A (en) 1978-05-04
NL184353C (en) 1989-07-03
JPS5129345A (en) 1976-03-12
FR2275269B1 (en) 1979-04-13

Similar Documents

Publication Publication Date Title
JP2994393B2 (en) Method and apparatus for reshaping a flow of printed matter overlapping in a scale into a predetermined flow
GB2059630A (en) Machine drive systems
JPS6124112B2 (en)
CN110304289B (en) Continuous bag making and packaging machine
JP4203801B2 (en) Film feeding control device for packaging machine
JPH03275427A (en) Method and device for end seal positioning in pillow packaging machine
JPH0611446B2 (en) Method for improving the accuracy of constant-size cutting
JPS58191908A (en) Length measuring device of band-shaped material to be carried
JP3534466B2 (en) Product length cutting equipment for strip steel rolling equipment
CN101293314B (en) Single side welding device
JPH01145968A (en) Conveyance positioning device for beltform material
JPS62157715A (en) Rolled material cutting device of rotary type rolling machine
JPH07332960A (en) Apparatus for measuring size of plate material
JPH0133401B2 (en)
JPH0531458B2 (en)
JPS58205754A (en) Device for bending pasteboard
JPS5848921B2 (en) Sokobutsutainosentanawawaseseigiyosouchi
JP2606483B2 (en) Sheet size measuring device
JPH05180624A (en) Sheet-size measuring apparatus having variable belt conveyer
JPH11139643A (en) Band type material delivery device and delivery method
JPH0683855B2 (en) Transport table roller speed control method in hot rolling mill
JPS6363458B2 (en)
JPH04208445A (en) Transfer control device for automatic bag forming machine
JPS5828164Y2 (en) Material length measuring device
JP2650316B2 (en) Strip shape detector