JPS61240625A - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitorInfo
- Publication number
- JPS61240625A JPS61240625A JP8284385A JP8284385A JPS61240625A JP S61240625 A JPS61240625 A JP S61240625A JP 8284385 A JP8284385 A JP 8284385A JP 8284385 A JP8284385 A JP 8284385A JP S61240625 A JPS61240625 A JP S61240625A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- capacitors
- solid electrolytic
- electrolyte
- conductive polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Glass Compositions (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は固体電解質を有する固体電解コンデンサに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid electrolytic capacitor having a solid electrolyte.
従来の技術
最近、電気機器のディジタル化にともなって、そこに使
用されるコンデンサも高周波領域においてインピーダン
スが低く、小型大容量化への要求が高捷っている。従来
、高周波領域用のコンデンサとしてはプラスチックフィ
ルムコンデンザ、マイカコンデンザ、積層セラミックコ
ンデンザなどが用いられている。またその他にアルミニ
ウム乾式電解コンデンサやアルミニウムまたはタンタル
固体電解コンデンサなどり!ある。アルミニウム乾式i
t解コンデンサでは、エツチングを施した陽・陰極アル
ミニウム箔を紙のセパレータを介して巻き取り、液状の
電解質を用いている。又、アルミニウムやタンタル固体
電解コンデンサでは前記アルミニウム電解コンデンサの
特性改良のため電解質の固体化がなされている。この固
体電解質形成には硝酸マンガン液に陽極箔を浸漬し、3
50℃前後の高温炉中にて熱分解し、二酸化マンガン層
をつくる。このコンデンサの場合、電解質が固体のため
に高温における電解質の流出、低温域での凝固から生ず
る機能低下などの欠点がなく。液状電解質と比べて良好
な周波数特性、温度特性を示す、また、アルミニウム電
解コンデンサはタンクルミ解コンデンザと同様誘電体と
なる酸化皮膜をひじょうに薄くできるために大容量を実
現できる。2. Description of the Related Art Recently, with the digitization of electrical equipment, the capacitors used therein have low impedance in the high frequency range, and there is a growing demand for smaller capacitors with larger capacitance. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, and the like have been used as capacitors for high frequency regions. In addition, there are aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors! be. aluminum dry type i
In a T-solution capacitor, etched anode and cathode aluminum foils are wound up with a paper separator in between, and a liquid electrolyte is used. Further, in aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified in order to improve the characteristics of the aluminum electrolytic capacitor. To form this solid electrolyte, the anode foil is immersed in a manganese nitrate solution, and
It is thermally decomposed in a high-temperature furnace at around 50°C to create a manganese dioxide layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or functional deterioration caused by coagulation at low temperatures. Aluminum electrolytic capacitors exhibit better frequency and temperature characteristics than liquid electrolytes, and, like tank lumen decomposition capacitors, the oxide film that serves as the dielectric can be made very thin, making it possible to achieve large capacitance.
発明が解決しようとする問題点
しかしながらこのように種々のコンデンサが使用されて
いるが、フィルムコンデンサおよヒマイカコンデンサで
は形状が大きくなってしまうために大容量化がむずかし
く、捷だ積層セラミックコンデンサは、小型大容量の要
望から生まれたものであるが、価格が非常に高くなるこ
とと、温度特性が悪いことなどの欠点を有している。ア
ルミニウム電解コンデンサは酸化皮膜の損傷が起き易い
ために酸化皮膜と陰極間に電解質を施し随時損傷を修復
する必要がある。このため電解質に液状のものを使用し
ているものは、電解質の液もれやイオン電導性などの理
由から経時的に静電容量の減少や損失の増大をもたらす
ことと高周波特性、低温領域での損失が大きいことなど
の欠点を有している。また固体電解質のものについても
、高温で数回熱分解することによる酸化皮膜の損傷及び
二酸化マンガンの比抵抗が高いことなどの理由から高周
波域での損失は十分に小さいとは言えない。Problems to be Solved by the Invention However, although a variety of capacitors are used in this way, film capacitors and Himica capacitors have a large shape, making it difficult to increase the capacity. , which was born from the demand for small size and large capacity, has drawbacks such as extremely high price and poor temperature characteristics. Since the oxide film of aluminum electrolytic capacitors is easily damaged, it is necessary to apply an electrolyte between the oxide film and the cathode to repair the damage as needed. For this reason, products that use a liquid electrolyte tend to suffer from a decrease in capacitance and an increase in loss over time due to electrolyte leakage and ionic conductivity, and due to high frequency characteristics and low temperature range. It has disadvantages such as high loss. Furthermore, even with solid electrolytes, the loss in the high frequency range cannot be said to be sufficiently small due to damage to the oxide film caused by thermal decomposition several times at high temperatures and the high resistivity of manganese dioxide.
さらに、TCNQ塩などの有機半導体を用いた固体電解
コンデンサは、二酸化マンガンを用いたものに比して優
れた高周波特性を示すが、有機半導体を塗布する際の比
抵抗の上昇、陽極箔への接着性が弱いことなどが原因で
理想的な特性を示すとは言えない。Furthermore, solid electrolytic capacitors using organic semiconductors such as TCNQ salt exhibit superior high-frequency characteristics compared to those using manganese dioxide, but the resistivity increases when the organic semiconductor is applied and the anode foil It cannot be said that it exhibits ideal characteristics because of its weak adhesive properties.
本発明は上記従来の欠点を解消し、小形で高周波特性の
良好な固体電解コンデンサを提供することを目的とする
ものである。An object of the present invention is to eliminate the above-mentioned conventional drawbacks and provide a solid electrolytic capacitor that is small and has good high frequency characteristics.
・ 問題点を解決するだめの手段
本発明は上記目的を達成するもので、その基本構成は、
電極間に電解重合で得られる導電性高分子を固体電解質
として有するものである。・Means for solving the problem The present invention achieves the above object, and its basic structure is as follows:
It has a conductive polymer obtained by electrolytic polymerization between the electrodes as a solid electrolyte.
作 用
本発明は上記構成のように、電解重合により得た導電性
高分子を固体電解質として電極に付着形成させることに
より従来のコンデンサの問題点である高周波領域の特性
劣化、大容量大型化などの欠点を改善することができる
。Function: As described above, the present invention uses a conductive polymer obtained by electrolytic polymerization to adhere to an electrode as a solid electrolyte, thereby solving the problems of conventional capacitors such as deterioration of characteristics in the high frequency range and increase in capacity. The shortcomings of can be improved.
6 ・・−。6...-.
本発明で開示する固体電解コンデンサに使用される導電
性高分子としてはポリピロールあるいはポリフランが好
適である。上記固体電解コンデンサの固体電解質として
用いる導電性高分子の合成法として電解重合を行なうが
、本発明では水溶液中の電解重合であることが望ましい
。導電性高分子のモノマー(ピロールC4H4NH、フ
ランC4H40)を溶媒(H2O)に溶かすため、親油
性と新水性をもつ有機酸(アジピン酸など)を支持電解
質として使用する。上記水溶液中にコンデンサの陽極を
浸漬し、0.1 mA/ ci〜10 mA/ 614
の定電流を10分〜60分くらい流し続けると陽極に電
解重合で得られる皮膜が形成される。更に、この重合膜
を付着させた陽極をホウ酸水溶液中で化成すると、重合
膜の下に陽極酸化皮膜が形成されることが判明した。こ
の場合陽極酸化を行なうのは導電性高分子を付着した前
でも後でも良いが、陽極酸化皮膜の的性質は後から化成
した方がより望ましい。Polypyrrole or polyfuran is suitable as the conductive polymer used in the solid electrolytic capacitor disclosed in the present invention. Electrolytic polymerization is performed as a method for synthesizing the conductive polymer used as the solid electrolyte of the solid electrolytic capacitor, and in the present invention, electrolytic polymerization in an aqueous solution is preferable. In order to dissolve conductive polymer monomers (pyrrole C4H4NH, furan C4H40) in a solvent (H2O), an organic acid (such as adipic acid) with lipophilicity and hydrophilicity is used as a supporting electrolyte. The anode of the capacitor was immersed in the above aqueous solution, and the voltage was 0.1 mA/ci to 10 mA/614.
When the constant current is continued to flow for about 10 to 60 minutes, a film obtained by electrolytic polymerization is formed on the anode. Furthermore, it has been found that when the anode to which this polymer film is attached is chemically formed in an aqueous boric acid solution, an anodic oxide film is formed under the polymer film. In this case, anodic oxidation may be carried out before or after the conductive polymer is attached, but it is more desirable to chemically form the anodic oxide film afterwards.
実施例 以下に実施例を示す。Example Examples are shown below.
〔実施例1〕 重合性モノマー(ピロールC4H4NH)1M/l。[Example 1] Polymerizable monomer (pyrrole C4H4NH) 1M/l.
7ジピン酸(HOOC(CH)4COOH)o、1M/
g。7 Dipic acid (HOOC(CH)4COOH)o, 1M/
g.
溶媒(H2O)11の水溶液に表面をエツチングしだア
ルミニウム箔を浸漬し、陽極面積に対し1mA/C/!
の電流を30分間流した。この際水溶液の温度は室温で
ある。そして次に水11にアジピン酸30gを加えた水
溶液に前記電解重合を終えた巻取りユニットの陽陰極箔
を浸漬し、1mA/fflの定電流で10oVまで昇圧
し、100Vにて30分〜60分間に電流を1μA/f
fl以下にしばった。An aluminum foil whose surface has been etched is immersed in an aqueous solution of 11 solvents (H2O), and a current of 1 mA/C/! is applied to the anode area.
A current was applied for 30 minutes. At this time, the temperature of the aqueous solution is room temperature. Next, the anode and cathode foils of the winding unit that have undergone the electrolytic polymerization are immersed in an aqueous solution of water 11 and 30 g of adipic acid, and the voltage is increased to 10 oV with a constant current of 1 mA/ffl, and then at 100 V for 30 minutes to 60 minutes. Current 1μA/f per minute
Tighten below fl.
なお、この時の水溶液の温度は70°Cとした。このア
ジピン酸水溶液による化或は電解重合膜が存在しない場
合と全く同様に行なうことができた。Note that the temperature of the aqueous solution at this time was 70°C. It was possible to conduct the reaction in exactly the same manner as in the case where the adipic acid aqueous solution was used or the electrolytically polymerized film was not present.
更にこの陽極箔にアクアダフグ及び銀ペーストを用いて
対極リードを取り出し、エポキシ樹脂により外装し、コ
ンデンサ素子を完成させた。Furthermore, a counter electrode lead was taken out from this anode foil using Aquada Fugu and silver paste, and it was covered with epoxy resin to complete a capacitor element.
得られたコンテンツは120Hzにおいて3.6μFの
静電容量と、1.0%の損失を示した。同じ条件で化成
された陽極箔の液中容量は3.7μFであったので95
%の容量達成率となる。また1M Hz におけるイ
ンピーダンス−は0.080であった。更に、ビロール
電解重合する支持電解質として、o、2M/lのシュウ
酸を用いた場合、得られたコンデンサの損失は0.6%
と減少し、改良が認められた。The resulting content exhibited a capacitance of 3.6 μF at 120 Hz and a loss of 1.0%. The liquid capacitance of the anode foil chemically formed under the same conditions was 3.7 μF, so 95
% capacity achievement rate. Moreover, the impedance at 1 MHz was 0.080. Furthermore, when o, 2M/l oxalic acid is used as the supporting electrolyte for virol electrolytic polymerization, the loss of the obtained capacitor is 0.6%.
and decreased, indicating an improvement.
〔実施例2〕
重合性モノマーとしてフラン(C4H40)を用いo、
1M/l)のシュウ酸水溶液を用いアルミニウム表面に
厚さ15ミクロンの重合膜を形成させた。[Example 2] Using furan (C4H40) as a polymerizable monomer,
A polymeric film with a thickness of 15 microns was formed on the aluminum surface using an oxalic acid aqueous solution (1M/l).
次にホウ酸水溶液(o、1M/#)の中で、1 mA/
c、7の定電流で150Vまで昇圧し、更に160■の
電圧を1時間、電流が0.1μA/CrIとなる捷で保
持した。実施例1と同様の方法でリード付け、外装を施
し、コンデンサを試作し、初期特性を測定した。Next, in a boric acid aqueous solution (o, 1M/#), 1 mA/
The voltage was increased to 150 V with a constant current of 7.c and 7. The voltage of 160 .mu. was further maintained for 1 hour with a switch such that the current was 0.1 μA/CrI. Leads were attached and an exterior was applied in the same manner as in Example 1, a prototype capacitor was produced, and its initial characteristics were measured.
120Hzにおける容量は3.1μF、損失は1.5%
であり、IMHz におけるインピーダンスは0.10
であった。また、85°Cでの負荷試験を1o○○時間
行った結果、容量は2%減少し、損失は1.8%となっ
た。Capacitance at 120Hz is 3.1μF, loss is 1.5%
and the impedance at IMHz is 0.10
Met. Further, as a result of carrying out a load test at 85°C for 1 o○○ hours, the capacity decreased by 2% and the loss was 1.8%.
発明の効果
以上のように本発明は、電解コンデンサの電解質として
電解重合によって得られる導電性高分子を用いることに
より、初期容量が犬きく、かつ容量経時変化が著しく小
さくなり、寸だ液体電解質と比べてtanδ、高周波イ
ンピーダンス、L(4どが小さくなる。更に温度変化に
よる容量などの各特性の変化も少なくなりその効果は大
きい。Effects of the Invention As described above, the present invention uses a conductive polymer obtained by electrolytic polymerization as the electrolyte of an electrolytic capacitor, which increases the initial capacity and significantly reduces the change in capacity over time, making it comparable to a liquid electrolyte. In comparison, tan δ, high frequency impedance, and L(4) are smaller.Furthermore, changes in various characteristics such as capacitance due to temperature changes are also reduced, and the effect is large.
Claims (3)
して有する固体電解コンデンサ。(1) A solid electrolytic capacitor having a conductive polymer obtained by electrolytic polymerization as a solid electrolyte.
である特許請求の範囲第1項記載の固体電解コンデンサ
。(2) The solid electrolytic capacitor according to claim 1, wherein the conductive polymer is polypyrrole or polyfuran.
際し、シュウ酸、アジピン酸等の有機酸を支持電解質と
することを特徴とする特許請求の範囲第1項記載の固体
電解コンデンサ。(3) The solid electrolytic capacitor according to claim 1, wherein an organic acid such as oxalic acid or adipic acid is used as a supporting electrolyte when a conductive polymer is electrolytically polymerized and attached to the anode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8284385A JPS61240625A (en) | 1985-04-18 | 1985-04-18 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8284385A JPS61240625A (en) | 1985-04-18 | 1985-04-18 | Solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61240625A true JPS61240625A (en) | 1986-10-25 |
Family
ID=13785668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8284385A Pending JPS61240625A (en) | 1985-04-18 | 1985-04-18 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61240625A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01137619A (en) * | 1987-11-25 | 1989-05-30 | Nitsuko Corp | Solid electrolytic capacitor and manufacture of the same |
US6344966B1 (en) | 1998-09-08 | 2002-02-05 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6351370B1 (en) | 1998-03-19 | 2002-02-26 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6381121B1 (en) | 1999-05-24 | 2002-04-30 | Showa Denko Kabushiki Kaisha | Solid electrolytic capacitor |
US6421227B2 (en) | 1999-12-10 | 2002-07-16 | Showa Denko K.K. | Solid electrolytic multilayer capacitor |
US6430032B2 (en) | 2000-07-06 | 2002-08-06 | Showa Denko K. K. | Solid electrolytic capacitor and method for producing the same |
US6466421B1 (en) | 1998-05-21 | 2002-10-15 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6517892B1 (en) | 1999-05-24 | 2003-02-11 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6660188B1 (en) | 1999-04-13 | 2003-12-09 | Showa Denko K.K. | Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof |
US6663796B1 (en) | 1998-12-25 | 2003-12-16 | Showa Denko K.K. | Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof |
-
1985
- 1985-04-18 JP JP8284385A patent/JPS61240625A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01137619A (en) * | 1987-11-25 | 1989-05-30 | Nitsuko Corp | Solid electrolytic capacitor and manufacture of the same |
US6351370B1 (en) | 1998-03-19 | 2002-02-26 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US7175781B2 (en) | 1998-03-19 | 2007-02-13 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6807049B2 (en) | 1998-03-19 | 2004-10-19 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6790384B2 (en) | 1998-03-19 | 2004-09-14 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6466421B1 (en) | 1998-05-21 | 2002-10-15 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6344966B1 (en) | 1998-09-08 | 2002-02-05 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6663796B1 (en) | 1998-12-25 | 2003-12-16 | Showa Denko K.K. | Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof |
US6660188B1 (en) | 1999-04-13 | 2003-12-09 | Showa Denko K.K. | Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof |
US6783703B2 (en) | 1999-05-24 | 2004-08-31 | Showa Denko Kabushiki Kaisha | Solid electrolytic capacitor and method for producing the same |
US6696138B2 (en) | 1999-05-24 | 2004-02-24 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6517892B1 (en) | 1999-05-24 | 2003-02-11 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US7060205B2 (en) | 1999-05-24 | 2006-06-13 | Showa Denko Kabushiki Kaisha | Solid electrolytic capacitor and method for producing the same |
US7087292B2 (en) | 1999-05-24 | 2006-08-08 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
US6381121B1 (en) | 1999-05-24 | 2002-04-30 | Showa Denko Kabushiki Kaisha | Solid electrolytic capacitor |
US6706078B2 (en) | 1999-12-10 | 2004-03-16 | Showa Denko Kabushiki Kaisha | Solid electrolytic multilayer capacitor |
US6421227B2 (en) | 1999-12-10 | 2002-07-16 | Showa Denko K.K. | Solid electrolytic multilayer capacitor |
US6430032B2 (en) | 2000-07-06 | 2002-08-06 | Showa Denko K. K. | Solid electrolytic capacitor and method for producing the same |
US6867088B2 (en) | 2000-07-06 | 2005-03-15 | Showa Denko K.K. | Solid electrolytic capacitor and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04307914A (en) | Manufacture of solid electrolytic capacitor | |
JPS61240625A (en) | Solid electrolytic capacitor | |
JPH0473924A (en) | Solid-state electrolytic capacitor and its manufacture | |
JP2668975B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2764938B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2696982B2 (en) | Solid electrolytic capacitors | |
JPH02224316A (en) | Manufacture of solid electrolytic capacitor | |
JP2730345B2 (en) | Manufacturing method of capacitor | |
JP3104241B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH02219211A (en) | Manufacture of solid electrolytic capacitor | |
JPH02186617A (en) | Solid electrolytic capacitor and manufacture thereof | |
JPH0487316A (en) | Capacitor | |
JP2776113B2 (en) | Manufacturing method of capacitor | |
JP2775762B2 (en) | Solid electrolytic capacitors | |
JPH0393214A (en) | Manufacture of solid-state electrolytic capacitor | |
JPH02132815A (en) | Solid electrolytic capacitor and manufacture thereof | |
JPH0274020A (en) | Manufacture of solid electrolytic condenser | |
JP2924251B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPS63127524A (en) | Solid electrolytic capacitor | |
JPH0430409A (en) | Manufacture of solid electrolytic capacitor | |
JPH0274016A (en) | Solid electrolytic condenser | |
JPH0393218A (en) | Solid-state electrolytic capacitor and its manufacture | |
JPH02260516A (en) | Solid electrolytic capacitor and manufacture thereof | |
JPH0550125B2 (en) | ||
JPH03285322A (en) | Solid electrolytic capacitor |