[go: up one dir, main page]

JPS61239230A - Electrochromic display device - Google Patents

Electrochromic display device

Info

Publication number
JPS61239230A
JPS61239230A JP8296285A JP8296285A JPS61239230A JP S61239230 A JPS61239230 A JP S61239230A JP 8296285 A JP8296285 A JP 8296285A JP 8296285 A JP8296285 A JP 8296285A JP S61239230 A JPS61239230 A JP S61239230A
Authority
JP
Japan
Prior art keywords
electrode
display
coloring
electrochromic
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8296285A
Other languages
Japanese (ja)
Inventor
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8296285A priority Critical patent/JPS61239230A/en
Publication of JPS61239230A publication Critical patent/JPS61239230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain an electrochromic display device operable with low voltage and good in repeated use characteristics by using a hydrogen adsorbing alloy for an opposite electrode capable of governing coloring and decoloring of the display electrode which execute display by the coloring and decoloring reaction of an electrochromic substance. CONSTITUTION:A transparent electrode 2 made of an ITO film is formed on a glass base 1, and the electrochromic substance of tungsten oxide (WO3) 3 is vapor deposited on the electrode 2, and the WO3 is formed into a necessary pattern, and constitutes the display electrode together with the electrode 2. The WO3 3 is coated with a thick film of antimony oxide and a small amt. of binder to form an electrolyte 4, and a thick film of the hydrogen adsorbing alloy TiNiHx and a small amt. of binder is formed on the electrolyte 4 to prepare the opposite electrode 5, and a stainless steel plate 6 for leading a current is attached to the electrode 5, and these laminates 2, 3, 4, 5, 6 are covered with a sealing resin case 7, thus permitting the obtained electrochromic display device to be colored and decolored repeatedly by applying positive and negative voltages to the electrode 2 and the plate 6, and this device to be operated with low voltage and enhanced in repetition characteristics.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、エレクトロクコミック表示装置c以下ECD
と称す)に関するものである。
[Detailed Description of the Invention] Technical Field> The present invention relates to an electrocomic display device C and an ECD
).

〈従来技術〉 ECDは電気化学的な着消色反応を可逆的に生起する表
示電極と、この電気化学反応の対となる対向電極とを有
し1両電極間に電解質を設けた構造により構成されてい
る。表示電極となる材料としては、酸化タングステン、
酸化チタン、酸化バナジウム等の遷移金属酸化物があり
、遷移金属酸化物への出入により着消色を行うカチオン
種としては、プロトン、リチウムイオン、ナトリウムイ
オン等が報告されている。又、上述の如きある種のカチ
オンの出入りlこよる着消色反応以外2こビオロゲン誘
導体等のような酸化還元反応により着消色反応を行うも
のも報告されて層る。対向電極用材料としては、一般的
にはカーボンが用いられるがその他に金、白金あるいは
表示電極と同一材料を用いたものかある。また、電解質
はECDに用匹るカチオンの導電体である液体又は固体
電解質か用いられる。
<Prior art> ECD has a structure that includes a display electrode that reversibly causes an electrochemical coloring/decoloring reaction, and a counter electrode that serves as a pair for this electrochemical reaction, with an electrolyte provided between the two electrodes. has been done. Materials for display electrodes include tungsten oxide,
There are transition metal oxides such as titanium oxide and vanadium oxide, and protons, lithium ions, sodium ions, etc. have been reported as cation species that change color and fade by moving in and out of the transition metal oxides. In addition to the above-mentioned coloring and decoloring reactions caused by the entry and exit of certain cations, there have also been reports of materials that carry out coloring and decoloring reactions by oxidation-reduction reactions such as viologen derivatives. Carbon is generally used as the material for the counter electrode, but gold, platinum, or the same material as the display electrode may also be used. Further, the electrolyte used may be a liquid or solid electrolyte that is a cationic conductor similar to ECD.

上述したECDの一般的な構成材料の中で、特ニフロト
ンを着色種としたものについて以下さらに詳細に説明す
る。プロトンを着色種としたものは表示電極に酸化タン
グステン、酸化バナジウム、酸化チタン等の金属酸化物
、電解液に硫酸水溶液、有機溶媒中にプロトン供給体を
加えたもの。
Among the general constituent materials of the ECD mentioned above, those using nifloton as the coloring species will be explained in more detail below. A display using protons as a coloring species has a metal oxide such as tungsten oxide, vanadium oxide, or titanium oxide in the display electrode, an aqueous sulfuric acid solution in the electrolyte, and a proton donor in an organic solvent.

酸化タンタル、酸化スズ、酸化アンチモン等のプロトン
固体電解質を用いている。対向電極には、一般にカーボ
ンを主体とするものが用いられるがこの場合、表示電極
で着色表示する場合には対向電極は正の電位に保持され
る。従って、カーボンのような電極自体が放出するプロ
トンを含まない場合、水と分解して酸素ガスが発生する
。逆に。
Proton solid electrolytes such as tantalum oxide, tin oxide, and antimony oxide are used. The counter electrode is generally made of carbon as a main component, and in this case, when the display electrode is used for color display, the counter electrode is held at a positive potential. Therefore, if the electrode itself, such as carbon, does not contain emitted protons, it will decompose with water and generate oxygen gas. vice versa.

消去時には対向電極は負の電位に保持されるためプロト
ンは還元され、水素ガスが発生する。このようなガス発
生の問題を解決するために、対向電極側に表示電極と同
一の材質を付加し1表示電極と逆の反応を利用して上記
問題を解決したものあるいは対向電極にプロトンを吸着
するため白金黒を用いたものがある。しかし長期使用中
には、電極界面にガスが蓄積され、ECDの長期信頼性
を損なう欠点がある。また、対向電極でのプロトンの酸
化、還元反応の過電圧が高いため、ECDの駆動には平
衡電位より73為なり高い電圧を必要とする。
During erasing, the counter electrode is held at a negative potential, so protons are reduced and hydrogen gas is generated. In order to solve this problem of gas generation, the same material as the display electrode is added to the counter electrode side, and the above problem is solved by utilizing the opposite reaction to that of the first display electrode, or protons are adsorbed to the counter electrode. There are some that use platinum black for this purpose. However, during long-term use, gas accumulates at the electrode interface, which impairs the long-term reliability of the ECD. Furthermore, since the overvoltage of proton oxidation and reduction reactions at the counter electrode is high, driving the ECD requires a voltage 73 times higher than the equilibrium potential.

〈発明の目的〉 本発明は、上記現状に鑑み、対向電極に水素吸蔵合金を
利用することにより、着消色反応に基く表示の繰り返し
特性が良く駆動に際しての印加電圧が低いECDを提供
することを目的とする。
<Object of the Invention> In view of the above-mentioned current situation, the present invention provides an ECD that uses a hydrogen-absorbing alloy for the counter electrode and has good display repeatability based on a coloring/decoloring reaction and a low applied voltage during driving. With the goal.

く構成及び効果の説明〉 水素を金属水素化物の状態で貯蔵する水素吸蔵合金は、
一般的に気体状態の水素をある条件の温度及び圧力下で
水素吸蔵合金を共存させることによって、水素吸蔵合金
に吸蔵させ又適当な条件の温度及び圧力に変えることに
よって水素吸蔵合金中の水素を気相中に放出するものと
して知られている。またこの水素吸蔵合金と水素の吸蔵
放出は電気化学的にも可能である。水素吸蔵合金と水素
との反応において標準生成エネルギー変化ΔG0と平衡
解離圧PH2の関係は ΔG  =RT!nPH2・・・・・・・・・・・・(
1)であられされる(R:気体定数、T:絶対温度)。
Explanation of composition and effects〉 Hydrogen storage alloys that store hydrogen in the form of metal hydrides are
Generally, gaseous hydrogen is stored in the hydrogen storage alloy by coexisting with a hydrogen storage alloy under certain temperature and pressure conditions, and hydrogen in the hydrogen storage alloy is stored by changing the temperature and pressure to appropriate conditions. It is known to be released into the gas phase. Further, absorption and desorption of hydrogen with this hydrogen storage alloy is also possible electrochemically. In the reaction between a hydrogen storage alloy and hydrogen, the relationship between standard formation energy change ΔG0 and equilibrium dissociation pressure PH2 is ΔG = RT! nPH2・・・・・・・・・・・・(
1) (R: gas constant, T: absolute temperature).

又電極の電気化学的な反応に伴う自由エネルギー変化−
ΔGOと電極電位Eとの関係は 一ΔG  −nFE  ・・・・・・・・・・・・・・
・・・・・・・・・・(2)で表わされる(F:ファラ
デ一定数)。
Also, the free energy change associated with the electrochemical reaction of the electrode.
The relationship between ΔGO and electrode potential E is -ΔG −nFE ・・・・・・・・・・・・・・・
It is expressed as (2) (F: Faraday constant number).

従って、平衡解離圧が1気圧より高い場合にはE<Oと
なり標準水素電極電位よりも卑となる。
Therefore, when the equilibrium dissociation pressure is higher than 1 atm, E<O, and the potential is less noble than the standard hydrogen electrode potential.

また平衡解離圧が1気圧より低い場合にIiE>0とな
り標準水素電極電位より責となる。即ち、平衡解離圧が
1気圧より低い水素吸蔵合金を対向電極に用いた場合対
向電極での反応、すなわちは標準水素電極電位よりも責
の電位で起こる。又水素吸蔵合金は水素過電圧が低いた
め分極も少ない。一方、対向極にカーボン、白金黒等を
用いた場合には対向電極の電極電位は標準水素電極電位
よりも責にはならず、結果として、水素吸蔵合金を対向
極に用いた場合には駆動電圧は低くなることになる。ま
た、消去時に対向電極に引き寄せられたプロトンは直ち
に水素吸蔵合金に吸蔵されるため、水素ガスの発生する
ことがない。以上の結果、従来のECDに比べて長期安
定性に優れ、メモリー効果も長いものが実現できること
になる。
Further, when the equilibrium dissociation pressure is lower than 1 atm, IiE>0, which is more negative than the standard hydrogen electrode potential. That is, when a hydrogen storage alloy whose equilibrium dissociation pressure is lower than 1 atm is used as the counter electrode, the reaction at the counter electrode occurs at a potential lower than the standard hydrogen electrode potential. In addition, hydrogen storage alloys have low hydrogen overvoltage and therefore have little polarization. On the other hand, when carbon, platinum black, etc. are used for the counter electrode, the electrode potential of the counter electrode is less negative than the standard hydrogen electrode potential, and as a result, when a hydrogen storage alloy is used for the counter electrode, driving The voltage will be lower. Furthermore, since the protons attracted to the counter electrode during erasing are immediately stored in the hydrogen storage alloy, no hydrogen gas is generated. As a result of the above, a device with superior long-term stability and a longer memory effect than conventional ECDs can be realized.

本発明に用いる水素吸蔵合金は材料、形状等いずれにも
限定されるものではないが、平衡解離圧が使用温度域で
一気圧以下でありかつ酸に対して耐蝕性のあるものが適
している。
The hydrogen storage alloy used in the present invention is not limited in material, shape, etc., but it is suitable that the equilibrium dissociation pressure is one atmosphere or less in the operating temperature range and that is resistant to acid corrosion. .

〈実施例〉 第1図は本発明の一実施例を示すECDの構成図である
。ガラス基板l上にITO膜から成る透明電極2を形成
し、その上にエレクトロクロミック物質の1つである酸
化タングステン(WO3)3を電子ビーム蒸着法により
堆積する。酸化タングステン3は必要な表示パターンに
加工成形され。
<Embodiment> FIG. 1 is a configuration diagram of an ECD showing an embodiment of the present invention. A transparent electrode 2 made of an ITO film is formed on a glass substrate 1, and tungsten oxide (WO3) 3, which is an electrochromic substance, is deposited thereon by electron beam evaporation. The tungsten oxide 3 is processed and formed into a required display pattern.

透明電極2とともに表示電極を構成する。酸化タングス
テン3には酸化アンチモンに少量のバインダーを加えた
ものを厚膜形成して被覆し、電解質4とする。更に、そ
の上に水素吸蔵合金であるTiN1Hxと少量のバイン
ダーを加えたものを厚膜形成し、対向電極5とする。尚
、水素吸蔵合金としてはI、aNis 、LaNi4F
e、等の希土類金属をベースとするものや、T1Co、
TiMn、CaNi5その他を利用することができる。
Together with the transparent electrode 2, it constitutes a display electrode. The tungsten oxide 3 is coated with antimony oxide and a small amount of binder to form a thick film to form an electrolyte 4. Further, a thick film of TiN1Hx, which is a hydrogen storage alloy, and a small amount of binder is formed thereon to form the counter electrode 5. The hydrogen storage alloys include I, aNis, and LaNi4F.
Those based on rare earth metals such as e, T1Co,
TiMn, CaNi5 and others can be used.

さらにその上に集電用としてステンレス板6を貼着し1
周囲を皿状の樹脂製外囲器7で封止することによりEC
Dセルを構成する。透明電極2及びステンレス板6には
リード線8が接続され、リード線8は正逆切換スイッチ
9を介して直流電源10に接続されている。正逆切換ス
イッチ9rfi電源10からECDへ流れる駆動電流の
オン、オフを制御するとともにその流れる方向を表示パ
ターンの着消色動作に応じて切換えるものである。
Furthermore, a stainless steel plate 6 is pasted on top of it for current collection.
EC by sealing the periphery with a dish-shaped resin envelope 7
Configure D cell. A lead wire 8 is connected to the transparent electrode 2 and the stainless steel plate 6, and the lead wire 8 is connected to a DC power source 10 via a forward/reverse switch 9. Forward/reverse changeover switch 9 is used to control ON/OFF of the drive current flowing from the RFI power source 10 to the ECD, and to switch the direction of the flow in accordance with the coloring/decoloring operation of the display pattern.

透明電極2及びステンレス板6を介して酸化タングステ
ン3と水素吸蔵合金から成る対向電極5間に通電すると
電解質4及び酸化タングステン3の間で電気化学的反応
が進行し、酸化タングステン3は着色される。この着色
パターンをガラス基板1の前面より観察することにより
表示情報が得られる。着色された酸化タングステン3は
通電を停止した後も一定期間着色状態が持続されるメモ
リー機能を有する。着色パターンは表示面の全面着色以
外にセグメント型表示パターン、図形9文字等任意の成
形パターンで形成することかできる。
When electricity is applied between the tungsten oxide 3 and the opposing electrode 5 made of a hydrogen storage alloy through the transparent electrode 2 and the stainless steel plate 6, an electrochemical reaction proceeds between the electrolyte 4 and the tungsten oxide 3, and the tungsten oxide 3 is colored. . Display information can be obtained by observing this colored pattern from the front side of the glass substrate 1. The colored tungsten oxide 3 has a memory function in which the colored state is maintained for a certain period of time even after the energization is stopped. In addition to coloring the entire display surface, the coloring pattern can be formed by any molding pattern such as a segment-type display pattern or a nine-character graphic pattern.

対向電極5は水素吸蔵合金によって標準水素電極電位よ
りも貴となり、また水素過電圧も低いため低電流で着色
反応を進行させる。着色された酸化タングステン3を消
色するには正逆切換スイッチ9を操作して通電方向を上
記と逆の向きにする。
The counter electrode 5 has a hydrogen storage alloy which makes it nobler than the standard hydrogen electrode potential, and the hydrogen overvoltage is also low, so that the coloring reaction proceeds with a low current. To decolor the colored tungsten oxide 3, operate the forward/reverse changeover switch 9 to reverse the current direction.

これによって酸化タングステン3と電解質4の間で着色
動作とは逆の電気化学的反応が進行し、酸化タングステ
ン3rfi消色されて元の状態へ復帰する。この場合、
対向電極5のプロトンは水素吸蔵合金中へ吸蔵される。
As a result, an electrochemical reaction opposite to the coloring operation proceeds between the tungsten oxide 3 and the electrolyte 4, and the tungsten oxide 3rfi is decolored and returns to its original state. in this case,
Protons at the counter electrode 5 are occluded into the hydrogen storage alloy.

以上の動作が繰り返されることによってエレクトロクロ
ミック表示が実行される。対向電極5として水素吸蔵合
金を用いることによりこの繰り返し特性も改善されるこ
とになる。
Electrochromic display is performed by repeating the above operations. By using a hydrogen storage alloy as the counter electrode 5, this repetition characteristic is also improved.

第2図は200μAの定電流でECDの着色及び消色を
行ったときの電圧変化を示す特性図である。ここで曲線
ノ□は上記実施例に係るECD。
FIG. 2 is a characteristic diagram showing voltage changes when coloring and decoloring the ECD with a constant current of 200 μA. Here, the curve □ is the ECD according to the above example.

曲線ノ2は第1図のECDにおいて対向電極5をアセチ
レンブラックに少量のバインダーを加えて厚膜形成した
従来のECDに相当するものである。
Curve No. 2 corresponds to the conventional ECD shown in FIG. 1, in which the counter electrode 5 is formed into a thick film by adding a small amount of binder to acetylene black.

上記実施例に係るものの駆動電圧は従来のものに比べて
約150 mV程度低い。また振幅±0.8vパルス幅
0.59(秒)の矩形波電圧によるサイクルテストを行
った結果1本実施例のECDdlOサイクル経過後も正
常に動作していることが確ふめられた。このように対向
電極に水素吸蔵合金を用いたECDは高い信頼性を有し
低電圧駆動を可能にする。又プロトン以外の着色種を用
いるECDにおいても副反応によって生じる水素ガスを
吸引する効果があり1本発明はこのような場合にも適用
することができる。
The driving voltage of the device according to the above embodiment is about 150 mV lower than that of the conventional device. Further, as a result of a cycle test using a rectangular wave voltage with an amplitude of ±0.8v and a pulse width of 0.59 seconds, it was confirmed that the ECD of this embodiment operates normally even after the ECDdlO cycle has elapsed. As described above, the ECD using a hydrogen storage alloy for the counter electrode has high reliability and enables low voltage driving. Further, ECD using colored species other than protons also has the effect of sucking hydrogen gas generated by side reactions, and the present invention can be applied to such cases as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示すECDの概略構成図で
ある。 第2図は第1図に示すECDと従来のECDの電圧変化
特性図である。 1・・・ガラス基板、2・・・透明電極、3・・・酸化
タングステン、4・・・電解質、5・・・対向電極、6
・・・ステンレス板、7・・・外囲器、8・・・リード
線、9・・・正逆切換スイッチ、10・・・電源。
FIG. 1 is a schematic configuration diagram of an ECD showing one embodiment of the present invention. FIG. 2 is a voltage change characteristic diagram of the ECD shown in FIG. 1 and a conventional ECD. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Transparent electrode, 3... Tungsten oxide, 4... Electrolyte, 5... Counter electrode, 6
... Stainless steel plate, 7... Envelope, 8... Lead wire, 9... Forward/reverse selector switch, 10... Power supply.

Claims (1)

【特許請求の範囲】[Claims] 1、エレクトロクロミック物質の着消色反応により表示
を行なう表示電極と該表示電極の対極として前記着消色
反応を律する対向電極とを具備して成るエレクトロクロ
ミック表示装置において、前記対向電極に水素吸蔵合金
を用いたことを特徴とするエレクトロクロミック表示装
置。
1. In an electrochromic display device comprising a display electrode that performs display by a coloring/decoloring reaction of an electrochromic substance, and a counter electrode that controls the coloring/decoloring reaction as a counter electrode to the display electrode, the counter electrode has hydrogen absorption. An electrochromic display device characterized by using an alloy.
JP8296285A 1985-04-16 1985-04-16 Electrochromic display device Pending JPS61239230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8296285A JPS61239230A (en) 1985-04-16 1985-04-16 Electrochromic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8296285A JPS61239230A (en) 1985-04-16 1985-04-16 Electrochromic display device

Publications (1)

Publication Number Publication Date
JPS61239230A true JPS61239230A (en) 1986-10-24

Family

ID=13788845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8296285A Pending JPS61239230A (en) 1985-04-16 1985-04-16 Electrochromic display device

Country Status (1)

Country Link
JP (1) JPS61239230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400839A1 (en) * 2002-09-20 2004-03-24 Kabushiki Kaisha Tokai Rika Denki Seisakusho Electrochromic mirror
US7052817B2 (en) 2003-02-18 2006-05-30 Fuji Xerox Co., Ltd. Information recording medium and method of producing the same
US7205046B2 (en) 2002-06-04 2007-04-17 Fuji Xerox Co., Ltd. Electrophotographic lamination film, a method of producing the same, and a method of forming an image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205046B2 (en) 2002-06-04 2007-04-17 Fuji Xerox Co., Ltd. Electrophotographic lamination film, a method of producing the same, and a method of forming an image
EP1400839A1 (en) * 2002-09-20 2004-03-24 Kabushiki Kaisha Tokai Rika Denki Seisakusho Electrochromic mirror
US7048392B2 (en) 2002-09-20 2006-05-23 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Reflecting mirror
US7052817B2 (en) 2003-02-18 2006-05-30 Fuji Xerox Co., Ltd. Information recording medium and method of producing the same

Similar Documents

Publication Publication Date Title
US5069535A (en) Electrochromic layer-set
US6608713B2 (en) Optical switching device
US4013343A (en) Electro-optical display arrangement with storage effect using a solid electrolyte
Baucke Electrochromic mirrors with variable reflectance
EP0859971B1 (en) Electro-optical switching device
US3961842A (en) Regenerating electrode for electrochromic display cell
Gutmann et al. Solid‐state electrochemical cells based on charge transfer complexes
US3950077A (en) Lead reference and counter electrode for an electrochromic display
Broyde Tungsten bronze fuel cell catalysts
JPH0140332B2 (en)
US3975086A (en) Electrochromic display element and process
CA1148638A (en) Electrochromic display device
US4012831A (en) Electrochromic display element and process
JPS61239230A (en) Electrochromic display device
Appleby Oxygen Reduction and Corrosion Kinetics on Phase‐Oxide‐Free Palladium and Silver Electrodes as a Function of Temperature in 85% Orthophosphoric Acid
JPH01161225A (en) Charging for electrochromic system by hydrogen
JP2503553B2 (en) Electrochromic display
JPS58115420A (en) Electrochromic display body
JP3306685B2 (en) Sealed type photo-oxygen secondary battery
JPS61238028A (en) electrochromic device
Lampert Durability of electrochromic switching devices for glazings
Baucke Electrochromic mirrors with variable reflectance
JPS6222137B2 (en)
JPH06250232A (en) Method for forming electrochromic device electrode
JPS589927B2 (en) electrochromic display device