[go: up one dir, main page]

JPS6123753A - Method for making fine crystal grain of al-mg-si alloy - Google Patents

Method for making fine crystal grain of al-mg-si alloy

Info

Publication number
JPS6123753A
JPS6123753A JP14374684A JP14374684A JPS6123753A JP S6123753 A JPS6123753 A JP S6123753A JP 14374684 A JP14374684 A JP 14374684A JP 14374684 A JP14374684 A JP 14374684A JP S6123753 A JPS6123753 A JP S6123753A
Authority
JP
Japan
Prior art keywords
alloy
heating
ingot
temperature
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14374684A
Other languages
Japanese (ja)
Inventor
Masakazu Hirano
正和 平野
Yutaka Kaneda
豊 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14374684A priority Critical patent/JPS6123753A/en
Publication of JPS6123753A publication Critical patent/JPS6123753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obtain a fine-grained Al-Mg-Si alloy having much superior strength, elongation and fatigue strength by homogenizing an Al-Mg-Si alloy ingot by heating to a specified temp. at a prescribed heating rate and by plastically working the ingot. CONSTITUTION:An Al-Mg-Si alloy ingot is homogenized by heating to 350- 500 deg.C at <=40 deg.C/hr heating rate and holding at the temp. for 2-24hr. The ingot may be homogenized in two steps by heating and holding at 350-450 deg.C for 2- 12hr and at 450-520 deg.C for 2-12hr. The homogenized ingot is plastically worked to make the crystal grains of the Al-Mg-Si alloy fine. The plastically worked alloy is heat treated by softening at 300-450 deg.C, soln. heat treatment at 450- 550 deg.C and finally aging at 150-220 deg.C. Superior mechanical properties are provided to the alloy.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はAl−Mg−Si系合金の結晶粒微細化方法に
関し、さらに詳しくは、機械的性質および強度の優れた
Al−Mg−Si系合金を得るためのAl−Mg−Si
系合金の結晶粒微細化方法に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for refining the crystal grains of Al-Mg-Si alloys, and more particularly, Al-Mg-Si to obtain alloy
This invention relates to a method for grain refinement of alloys.

[従来技術] 一般に、Al−Mg−Si系合金は、優れた機械的性質
、耐蝕性および加工性を有しているため、自動車用部品
、陸運車輌、船舶、陸上構造物および建築等に多量に使
用されている熱処理型のアルミニウム合金である。
[Prior Art] In general, Al-Mg-Si alloys have excellent mechanical properties, corrosion resistance, and workability, so they are used in large quantities in automobile parts, land transportation vehicles, ships, land structures, architecture, etc. It is a heat-treated aluminum alloy used in

この製品の熱処理方法としては、溶体化・焼入れ後に時
効処理を行なったT6処理材が一般に使用されているが
、厳しい成形加工を行なう場合には、一旦軟質材として
成形加工を行なった後に溶体化・焼入れおよび時効処理
を行なって使用されることが多い。
As for the heat treatment method for this product, T6-treated material is generally used, which is solution-treated, hardened, and then aged.However, when performing severe forming processing, it is necessary to first perform forming processing as a soft material and then solution treatment. - Often used after quenching and aging treatment.

そして、このAlMg−Si系合金の優れた機械的性質
は、Mg2Siという金属間化合物を微細均一に析出さ
せることによって得られるものである。このため、従来
はMg2Siの析出処理に先立ちM、、Siをマトリッ
クス中に固溶させるため500℃以上の高温で鋳塊の均
質化処理および溶体化処理を行なっているのが一般的で
ある。
The excellent mechanical properties of this AlMg-Si alloy are obtained by finely and uniformly precipitating an intermetallic compound called Mg2Si. For this reason, conventionally, prior to the precipitation treatment of Mg2Si, it is common to perform homogenization treatment and solution treatment of the ingot at a high temperature of 500° C. or higher in order to dissolve M, Si in the matrix.

また、材料の機械的性質および成形加工性等に大きな影
響をおよぼす結晶粒度については、微細な程これらの緒
特性が優れるものであり、そして1、  この結晶粒度
を小さくするためには、Mn、Cr。
In addition, regarding the grain size, which has a large effect on the mechanical properties and moldability of the material, the finer the grain size, the better these properties are. Cr.

Zr、■等の、所謂、遷移激素を微細に析出させて結晶
粒の粗大化を防止することを一般に行なっているもので
あるが、上記に説明した高温における均質化処理を行な
うとMn、Cr、Zr、V等の析出物が粗大化し、結晶
粒粗大化防止効果が失なわれてしまう。
Generally, so-called transition radicals such as Zr, etc. are precipitated finely to prevent coarsening of crystal grains, but when the homogenization treatment at high temperature described above is carried out, Mn, Cr , Zr, V, etc., become coarse, and the effect of preventing crystal grain coarsening is lost.

そのため、Al−Mg−8i系合金は粗大な結晶粒組織
となり易く、T6調質における静的強度、伸びおよび疲
労強度が劣ったり、軟質材を加工すると肌荒れや割れが
発生し易くなる等の問題かあった。
Therefore, Al-Mg-8i alloys tend to have a coarse grain structure, resulting in problems such as poor static strength, elongation, and fatigue strength during T6 heat treatment, and roughness and cracking when processing soft materials. There was.

[発明が解決しようとする問題点] 本発明は上記に説明したように、ノ\1−Mg−81系
合金の従来における処理方法、例えば、T6処理による
機械的性質の疲労強度や伸びが劣化したり、また、軟質
材の加工によって生じる肌荒れや割れが発生するという
問題点を解決することができるAl−Mg−3i系合金
を得るために、Al−Mg−8i系合金の結晶粒を微細
化する方法を提供するものである。
[Problems to be Solved by the Invention] As explained above, the present invention solves the problem of deterioration of mechanical properties such as fatigue strength and elongation due to conventional processing methods of No\1-Mg-81 alloy, such as T6 treatment. In addition, in order to obtain an Al-Mg-3i alloy that can solve the problems of surface roughness and cracking caused by processing soft materials, the crystal grains of the Al-Mg-8i alloy are made finer. This provides a method for converting

[問題点を解決するための手段1 本発明に係るAl−Mg−8i系合金の結晶粒微細化方
法の特徴とするところは、AI  Mg  Si系合金
鋳塊を、350〜500℃の温度に40℃/Hr以下の
速度で加熱して2〜24Hr保持する均質化処理を行な
うか、或いは、350〜450℃の温度に2〜12Hr
加熱保持後、さらに、4、50〜520℃の温度に2〜
12Hr加熱保持Vる二段の加熱保持を行なう均質化処
理を行なった後に、塑性加工を行なうことにある。
[Means for Solving the Problems 1] The method for grain refining of Al-Mg-8i alloy according to the present invention is characterized by heating an AI Mg Si alloy ingot to a temperature of 350 to 500°C. Perform homogenization treatment by heating at a rate of 40°C/Hr or less and holding for 2-24Hr, or heat at a temperature of 350-450°C for 2-12Hr.
After heating and holding, it is further heated to a temperature of 4.50 to 520°C for 2 to 50 minutes.
The purpose is to perform plastic working after a homogenization process that involves two stages of heating and holding for 12 hours.

そして、本発明に係るAI  、Mg  Si系合金の
結晶粒微細化方法の二段の加熱保持を行なうことによっ
て、続く次工程における高温の溶体化処理を行なっても
結晶粒が粗大化しないので、結晶粒が微細な成形加工性
に優れた軟質材を得ることが            
  iでき、また、450〜550℃(480〜530
℃が望ましい。)の温度で溶体化・焼入れを行なうこと
によって結晶粒が微細な、静的強度、伸びおよび疲労強
度が優れたT6材を製造することがで外るものである。
By carrying out the two-step heating and holding method of the method for grain refining of AI, Mg-Si based alloys according to the present invention, the grains do not become coarse even in the subsequent high-temperature solution treatment in the next step. It is possible to obtain a soft material with fine grains and excellent formability.
It can also be heated to 450-550℃ (480-530℃).
℃ is preferable. ), it is possible to produce T6 material with fine grains and excellent static strength, elongation, and fatigue strength.

本発明に係るAI  Mg−3i系合金の結晶粒微細化
方法について以下詳細に説明する。
The method for refining the grains of an AI Mg-3i alloy according to the present invention will be described in detail below.

Al−Mg−3i系合金鋳塊の均質化処理について説明
する。
The homogenization treatment of an Al-Mg-3i alloy ingot will be explained.

(1)AI−Mg−3i系合金鋳塊を、350〜500
℃の温度に40℃/Hr以下の速度で加熱して2〜24
Hr保持する均質化処理について説明する。
(1) AI-Mg-3i alloy ingot, 350-500
Heating at a rate of 40°C/Hr or less to a temperature of 2 to 24°C
The homogenization process for maintaining Hr will be explained.

即ち、350℃未満の温度では結晶粒粗大化防止には効
果が小さく、また、500℃を越える高い温度では結晶
粒粗大化防止の効果は失なわれ、また、加熱速度が40
℃/Hrより速い加熱速度では結晶粒粗大化防止の効果
が失なわれる。そして、保持時間は2Hr未満では効果
が充分ではなく、24Hrを越えると効果が飽和してし
まいそれ以」二の保持は無駄である。
That is, at temperatures below 350°C, the effect of preventing crystal grain coarsening is small, and at high temperatures exceeding 500°C, the effect of preventing crystal grain coarsening is lost;
If the heating rate is faster than .degree. C./Hr, the effect of preventing crystal grain coarsening is lost. If the holding time is less than 2 hours, the effect will not be sufficient, and if it exceeds 24 hours, the effect will be saturated, and further holding is useless.

(2)350−450℃の温度に2−128r加熱保持
後、さらに、450〜520℃の温度に加熱保持する二
段の加熱保持を行なう均質化処理について説明する。
(2) A homogenization process will be described in which a two-stage heating and holding process is performed in which the material is heated and held at a temperature of 350 to 450°C for 2 to 128 r, and then heated and held at a temperature of 450 to 520°C.

即ち、一段および二段の加熱保持において、350℃未
満および450℃未満の温度では結晶粒粗大化防止効果
は小さく、また、450℃、520℃を夫々越える高い
温度では結晶粒粗大化防止効果が失なわれ、保持時間に
ついても、夫々2Hr未満では結晶粒粗大化防止効果が
小さく、また、夫々12Hrを越えると結晶粒粗大化防
止効果は飽和する。
That is, in one-stage and two-stage heating and holding, the effect of preventing crystal grain coarsening is small at temperatures below 350°C and below 450°C, and the effect of preventing crystal grain coarsening is small at temperatures exceeding 450°C and 520°C, respectively. Regarding the holding time, if the holding time is less than 2 hours, the effect of preventing crystal grain coarsening is small, and if it exceeds 12 hours, the effect of preventing crystal grain coarsening is saturated.

これら(1)(2)何れかの加熱保持を行なった後に塑
性加工を行なうのである。
Plastic working is performed after heating and holding either of these (1) or (2).

次いで、塑性加工後の熱処理について説明する。Next, heat treatment after plastic working will be explained.

軟質化処理は300〜450℃の温度において行ない、
300℃未満では充分に軟質化することがで外す、45
0℃を越えると飽和してしまい、次に、溶体化処理を4
50〜550℃の温度で行ない、45 (1’C未満で
は充分な強度が得られず、550℃を越えると結晶粒が
粗大化してしまい、さらに、時効処理は150〜220
℃の温度で行ない、150℃未満および220℃を越え
る温度では優れた機械的性質を得ることができない。
The softening treatment is carried out at a temperature of 300 to 450°C,
If it is below 300℃, it will be sufficiently softened and removed, 45
If the temperature exceeds 0°C, it will become saturated, and then solution treatment is carried out at 4°C.
The aging treatment is carried out at a temperature of 50 to 550°C, and if the temperature is less than 45°C, sufficient strength cannot be obtained, and if it exceeds 550°C, the crystal grains become coarse.
C. and temperatures below 150.degree. C. and above 220.degree. C. do not allow good mechanical properties to be obtained.

次に、発明の名称に係るAI−MB−3i系合金の結晶
粒微細化方法において使用するAl−Mg−8i系合金
の含有成分および成分割合について説明する。
Next, the components and component ratios of the Al-Mg-8i alloy used in the method for grain refining of the AI-MB-3i alloy according to the title of the invention will be explained.

Mg、SiはAl−Mg−8i系合金に高い掻度を付与
する元素であり、M8含有量は0.35・〜2.Owt
%、Si含有量は0.20〜1.5u+t%の範囲が良
好であり、夫々下映未満および上限を越える含有量では
優れた強度を得られず、成形加工性が劣化するようにな
る。
Mg and Si are elements that give high scratchiness to Al-Mg-8i alloy, and the M8 content is 0.35 to 2. Owt
%, the Si content is preferably in the range of 0.20 to 1.5 u+t%, and if the content is less than the lower limit or exceeds the upper limit, respectively, excellent strength cannot be obtained and moldability deteriorates.

また、強度を付与する元素としてCuを含有させること
もでき、含有量は0.05〜1.01%の範囲するのが
よく、含有量が0,05u+t%未満では強度が得られ
ず、また、1.Ou+t%を越える含有量では成形加工
性を害すぎようになる。
Further, Cu can be contained as an element that imparts strength, and the content is preferably in the range of 0.05 to 1.01%, and if the content is less than 0.05u+t%, no strength can be obtained; , 1. If the content exceeds Ou+t%, the molding processability will be affected too much.

さらに、組織を安定化させるために重要な元素として、
Mn、Cr、Zr、V、Ti、Bを含有させることがで
き、Mn含有量0.05〜0.40111t%、Cr含
有量0.05〜0.40u+L%、Zr含有量0.05
−0.2.OW[%、V O,02−0,15!Ilt
%、T i 01005−0.5+ut%、B O,0
005−0,05u+t%の範囲とするのがよく、これ
らの範囲の下限未満では組織安定化に効果が小さく、ま
た、上限を越えると効果が飽和し、がっ、巨大化合物が
発生し易くなる。
Furthermore, as an important element for stabilizing the tissue,
It can contain Mn, Cr, Zr, V, Ti, and B, with Mn content of 0.05 to 0.40111t%, Cr content of 0.05 to 0.40u+L%, and Zr content of 0.05.
-0.2. OW [%, VO, 02-0, 15! Ilt
%, T i 01005-0.5+ut%, B O,0
The range is preferably 0.05-0.05u+t%; below the lower limit of these ranges, the effect on tissue stabilization is small, and when the upper limit is exceeded, the effect is saturated and large compounds are likely to occur. .

[実施例1 本発明に係るAl−Mg−8i系合金の結晶粒微細化方
法の実施例を説明する。
[Example 1] An example of a method for grain refinement of an Al-Mg-8i alloy according to the present invention will be described.

実施例 第1表に示す含有成分および成分割合のAI−MFl−
8i系合金を通常の方法により溶製し、鋳造して315
m+njの鋳塊を作製し、下記の条件により材料の特性
について調査した。
Example AI-MFl- with the components and component ratios shown in Table 1
8i series alloy is melted and cast using the usual method to obtain 315
An ingot of m+nj was produced, and the characteristics of the material were investigated under the following conditions.

【 (1)本発明に係るAl−Mg  Si系合金の結晶粒
微細化方法 A ; 20℃/ I−1rの加熱速度で鋳塊番450
℃に加熱し12Hr保持後、450−350℃の温度で
熱間圧延を行ない51Illnjの板材を得た。
[(1) Grain refinement method A of Al-Mg Si alloy according to the present invention;
After heating to a temperature of 12 hours and holding for 12 hours, hot rolling was performed at a temperature of 450 to 350 degrees Celsius to obtain a plate material of 51Illnj.

B : 鋳塊を400℃の温度で128r加熱保持後、
500℃の温度で48r加熱保持し、450〜350’
Cの温度で熱間圧延を行ない5nu++tの板材を得た
B: After heating and holding the ingot at a temperature of 400°C for 128r,
Heat and hold for 48r at a temperature of 500℃, 450~350'
Hot rolling was carried out at a temperature of C to obtain a plate material of 5 nu++t.

(2)比較方法 C: 鋳塊を520℃の温度で12Hr加熱保持し、4
50〜350℃の温度で熱間圧延を行ない5關1.の板
材を得た。
(2) Comparative method C: The ingot was heated and held at a temperature of 520°C for 12 hours, and
Hot rolling is carried out at a temperature of 50 to 350°C. The board material was obtained.

F 第2表は軟質材、第3表はT6時効材の性能調査結果ル
呟本発明に係るAl−Mg−8i系合金の結晶粒微細化
方法により製造された材料は、比較方法による材料に比
して、軟質材は結晶粒が微細であり、伸び、エリクセン
値および90°曲げ性等が優れており、加工材の耐肌荒
れ性にも優れでおり、また、T6時効材においても、比
較方法に比して強度、伸びおよび疲労強度が優れている
ことがわかる。
F Table 2 shows the performance investigation results for soft materials, and Table 3 shows the performance investigation results for T6 aged materials. In comparison, soft materials have finer grains and are superior in elongation, Erichsen value, and 90° bendability, and are also superior in surface roughness resistance of processed materials. It can be seen that the strength, elongation, and fatigue strength are superior to those obtained using the method.

[発明の効果1 以上説明したように、本発明に係るAl−Mg−8i系
合金の結晶粒微細化方法は上記の構成を有しているもの
であるから、従来材に比して、強度、伸び、エリクセン
値、疲労強度に極めて優れており、さらに、肌荒れ、割
れ等の発生がない優れた効果を有しているものである。
[Effect of the invention 1 As explained above, since the method for grain refining of Al-Mg-8i alloy according to the present invention has the above-mentioned structure, the strength is improved compared to conventional materials. It has extremely excellent elongation, Erichsen value, and fatigue strength, and also has an excellent effect of not causing rough skin, cracking, etc.

一9武n−19 Take n-

Claims (1)

【特許請求の範囲】[Claims] Al−Mg−Si系合金鋳塊を、350〜500℃の温
度に40℃/Hr以下の速度で加熱して2〜24Hr保
持する均質化処理を行なうか、或いは、350〜450
℃の温度に2〜12Hr加熱保持後、さらに、450〜
520℃の温度に2〜12Hr加熱保持する二段の加熱
保持を行なう均質化処理を行なった後に、塑性加工を行
なうことを特徴とするAl−Mg−Si系合金の結晶粒
微細化方法。
The Al-Mg-Si alloy ingot is heated to a temperature of 350 to 500°C at a rate of 40°C/Hr or less and homogenized for 2 to 24Hr, or
After heating and maintaining at a temperature of ℃ for 2 to 12 hours, further heated to a temperature of 450 to
A method for refining grains of an Al-Mg-Si alloy, which comprises performing a homogenization treatment in which two stages of heating and holding are performed at a temperature of 520° C. for 2 to 12 hours, followed by plastic working.
JP14374684A 1984-07-11 1984-07-11 Method for making fine crystal grain of al-mg-si alloy Pending JPS6123753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14374684A JPS6123753A (en) 1984-07-11 1984-07-11 Method for making fine crystal grain of al-mg-si alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14374684A JPS6123753A (en) 1984-07-11 1984-07-11 Method for making fine crystal grain of al-mg-si alloy

Publications (1)

Publication Number Publication Date
JPS6123753A true JPS6123753A (en) 1986-02-01

Family

ID=15346048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14374684A Pending JPS6123753A (en) 1984-07-11 1984-07-11 Method for making fine crystal grain of al-mg-si alloy

Country Status (1)

Country Link
JP (1) JPS6123753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582659A (en) * 1993-10-12 1996-12-10 Nippon Light Metal Co., Ltd. Aluminum alloy for forging, process for casting the same and process for heat treating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582659A (en) * 1993-10-12 1996-12-10 Nippon Light Metal Co., Ltd. Aluminum alloy for forging, process for casting the same and process for heat treating the same

Similar Documents

Publication Publication Date Title
CN110983131B (en) 7-series aluminum alloy section and manufacturing method thereof
CN112626386A (en) High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JPH0261025A (en) Al-si alloy plate material having excellent formability and its manufacture
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH0547615B2 (en)
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPS59126761A (en) Production of heat treatment type aluminum alloy having excellent formability
JPS6123753A (en) Method for making fine crystal grain of al-mg-si alloy
JPH0480979B2 (en)
JPS58213850A (en) Manufacture of al-zn-mg-cu alloy material of superior formability
JPH0138866B2 (en)
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JPH05302154A (en) Heat treatment method for Al-Mg-Si based aluminum alloy plate
KR960007633B1 (en) High Formability High Strength Aluminum-Magnesium-Based Alloy and Manufacturing Method Thereof
JP2007239005A (en) Manufacturing method of 6000 series aluminum alloy plate excellent in room temperature non-aging property, formability and paint bake hardenability
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JPS5831054A (en) Aluminum alloy having superior strength and corrosion resistance and its manufacture