[go: up one dir, main page]

JPS61237404A - Manufacture of amorphous cut core - Google Patents

Manufacture of amorphous cut core

Info

Publication number
JPS61237404A
JPS61237404A JP60078740A JP7874085A JPS61237404A JP S61237404 A JPS61237404 A JP S61237404A JP 60078740 A JP60078740 A JP 60078740A JP 7874085 A JP7874085 A JP 7874085A JP S61237404 A JPS61237404 A JP S61237404A
Authority
JP
Japan
Prior art keywords
cut
core
amorphous
iron loss
cut surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60078740A
Other languages
Japanese (ja)
Inventor
Yukihiko Oota
幸彦 太田
Hidenori Kakehashi
英典 掛橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60078740A priority Critical patent/JPS61237404A/en
Publication of JPS61237404A publication Critical patent/JPS61237404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To form a highly efficient amorphous cut core with little iron loss, by whetting mechanically the cut face of a cut core after it is etched chemically. CONSTITUTION:An oval wound core is formed by winding a thin belt of an amorphous magnetic material. After this wound core is annealed and cut by conventional methods, the cut face thereof is etched chemically. The cut face etched chemically is whetted mechanically in a subsequent whetting process, so as to form an amorphous cut core. By whetting the cut face mechanically after it is etched chemically, in this way, iron loss is reduced sharply, the deterioration of a magnetic characteristic due to cutting is lessened, and thus a highly efficient amorphous cut core is obtained.

Description

【発明の詳細な説明】 [技術分野] 本発明は、低鉄損で高効率なトランスに用いられる非晶
質カットコアの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing an amorphous cut core used in a transformer with low iron loss and high efficiency.

[背景技術J 一般に、低鉄損で高効率なトランスに用いられるカット
コアは、大型機器用として方向性けい素鋼板が使用され
、小型機器用として無方向性電磁鋼板が使用されており
、このカットコアの製造方法は、第3図に示すようにな
っている。すなわち、一定幅の銅帯をトロイグル型ある
いは小判型に巻回して巻回コアを形成し、この巻回コア
を固定帯、固定用型あるいは樹脂モールドにて固定した
後カットして2分割することによりカットコアが形成さ
れるようになっており、このようにして形成されたカッ
トコアのカット面は、パリ取りや平滑化を行うために機
械研摩や化学エツチングが施される。
[Background Technology J Generally, cut cores used in transformers with low iron loss and high efficiency are made of grain-oriented silicon steel sheets for large equipment, and non-oriented electrical steel sheets are used for small equipment. The method for manufacturing the cut core is shown in FIG. That is, a coiled core is formed by winding a copper strip of a certain width into a Troigle shape or an oval shape, and this coiled core is fixed with a fixing strip, a fixing mold, or a resin mold, and then cut and divided into two parts. A cut core is formed by this process, and the cut surface of the cut core thus formed is subjected to mechanical polishing or chemical etching to remove burrs and smoothen the surface.

なお、巻回ファの歪みを取るための焼鈍は必要に応じて
行なわれる。第2図はカットフ7の作製工程と鉄損増加
率との関係を示す特性図であり、上記従来方法にあって
は、点#aCあるいはDに示すようになる。すなわち、
特性図におけるカットコアは、銅帯として一方向性けい
素鋼板(オリエントコア Zlo 厚さ0.311II
l)を用いて200VAのトランスを形成した場合の鉄
損変化を示しており、巻回コアの固定およびカットを行
った後の鉄損値は、焼鈍直後の鉄損値よりも大幅に増加
(約150%)している。この場合、巻回コアの固定は
小判型の巻回コアの各脚部を非磁性テープで緊縛した後
1、樹脂モールドすることにより行っているが、この樹
脂の硬化時に発生する収縮によるストレスにより正磁性
を持つけい素鋼板に圧縮応力が加わり、低周波鉄損を2
5%程度増加させて磁気特性を劣化させている。*た、
巻回コアのカットによりカット面に凹凸が生じるととも
に、パリが発生してレアシa−トが発生することになり
、凹凸によるエアギャップに起因する漏れ磁束の増大、
レアシヨートによる渦電流損の増大にで更に25%程度
の鉄損が増加している。この固定およびカットによる鉄
損の増加および漏れ磁束の増大を低減するためにカット
面の研摩またはエツチングが行なわれるわけであり、第
2図における点線Cはカット面を機械的に研摩した場合
、点#lDはカット面を化学エツチングした場合を示し
でおり、いずれの場合にあってもカット面を再び接合し
て鉄損を測定すると、はとんど焼鈍後の鉄損値まで回復
していることがわかる。なお、完全を求める場合には、
カット面を研摩した後に化学エツチングを行うことによ
り固定およびカットによる鉄損の増加がより確実に低減
されることになる。ここに、従来例にあっては、化学エ
ツチングは単独か、あるいは研摩の後工程として行なわ
れるようになっている。
Note that annealing is performed as necessary to remove distortion from the winding F. FIG. 2 is a characteristic diagram showing the relationship between the manufacturing process of the cutoff 7 and the iron loss increase rate, which is shown at point #aC or D in the above conventional method. That is,
The cut core in the characteristic diagram is a unidirectional silicon steel plate (Orient Core Zlo thickness 0.311II) as a copper strip.
The graph shows the change in iron loss when a 200 VA transformer is formed using 1), and the iron loss value after fixing and cutting the wound core increases significantly compared to the iron loss value immediately after annealing ( approximately 150%). In this case, the wound core is fixed by binding each leg of the oval shaped wound core with non-magnetic tape (1) and then molding it with resin. Compressive stress is applied to a positively magnetic silicon steel plate, reducing low frequency iron loss by 2.
The magnetic properties are degraded by an increase of about 5%. *Ta,
The cutting of the winding core causes unevenness on the cut surface, and also causes the generation of flash and rare sheet, which increases the leakage magnetic flux due to the air gap caused by the unevenness.
Due to the increase in eddy current loss due to the rear shot, the iron loss further increases by about 25%. In order to reduce the increase in iron loss and leakage magnetic flux caused by fixing and cutting, the cut surface is polished or etched. #ID indicates the case where the cut surface was chemically etched, and in any case, when the cut surface was rejoined and the iron loss was measured, the iron loss almost recovered to the value after annealing. I understand that. In addition, if you want completeness,
By performing chemical etching after polishing the cut surface, the increase in iron loss due to fixing and cutting can be more reliably reduced. In conventional examples, chemical etching is performed either alone or as a post-polishing process.

ところで、従来の磁性材(7エライト、けい素鋼板など
)に比べて磁気特性が良好な鉄系非晶質磁性材(例えば
、Fe@6B2o、FeysBtoSitzのようにF
eにB、Si、C,PtCrtMnなどを添加した合金
を超急冷して作製される)よりなる薄帯(厚さ10μ−
〜50μm)を使用して非晶質カットコアを形成する場
合において、鉄扇非晶質磁性材は7エライトに比べて高
周波の鉄損が少なく、飽和磁束密度が高く、角形性が良
好であり、また、けい素鋼板に比べて鉄損が少なく、励
磁電力(VA)が小さいなどの特徴を有している反面、
磁気歪みが大きい、薄くて硬いなどの加工上の問題を有
している。第2図の実線Bは、鉄系非晶質磁性材の薄帯
を用いて非晶質カットコアを形成した場合における鉄損
の変化を示すものであり、固定工程お上1カット工程に
おいて鉄損が大幅に(約300%)増加していることが
わかる。ここに、上記非晶質カラ゛  トコアの固定方
法は、小型トランスの固定方法として最適な樹脂モール
ド(特開昭59−4109号に最適条件が開示されてい
る)を用いており、固定工程における鉄損の増加は50
%程度となっている。一方、カット工程においては、前
記従来例と同じ原因で鉄損が増加することになるが、鉄
系非晶質磁性材はけい素鋼板に比べて磁気歪みが大きく
、鉄心占積率(スペース77クタ)が低(、薄帯が薄く
て脆いために鉄損の増加率は200%となっている。そ
こで、従来例と同様にカット面を研摩して磁気特性を改
善することが考えられるが、第2図の実線Bに示すよう
に鉄損は殆ど低減されない、また、研摩に変えて化学エ
ツチングを行った場合も同様であり、従来例と同様のカ
ット面処理によっては磁気特性の改善が行なわれず、鉄
損が少なく高効率な非晶質カットコアが得られないとい
う問題があった。
By the way, iron-based amorphous magnetic materials (for example, Fe@6B2o, FeysBtoSitz, etc.) have better magnetic properties than conventional magnetic materials (7-elite, silicon steel sheets, etc.).
A thin strip (thickness 10 μ-
~50 μm) to form an amorphous cut core, the iron fan amorphous magnetic material has less high-frequency iron loss, higher saturation magnetic flux density, and better squareness than 7-elite. In addition, while it has characteristics such as lower iron loss and lower excitation power (VA) than silicon steel sheets,
It has processing problems such as high magnetostriction and being thin and hard. The solid line B in Figure 2 shows the change in iron loss when an amorphous cut core is formed using a ribbon of iron-based amorphous magnetic material. It can be seen that the loss has increased significantly (approximately 300%). Here, the method for fixing the amorphous karate core described above uses a resin mold that is optimal as a method for fixing a small transformer (optimal conditions are disclosed in JP-A-59-4109), and the fixing process is The increase in iron loss is 50
It is about %. On the other hand, in the cutting process, iron loss increases due to the same reasons as in the conventional example, but iron-based amorphous magnetic materials have larger magnetostriction than silicon steel sheets, and the iron core space factor (space 77 Since the ribbon is thin and brittle, the increase in iron loss is 200%.Therefore, it may be possible to improve the magnetic properties by polishing the cut surface as in the conventional example. , as shown by the solid line B in Figure 2, the iron loss is hardly reduced, and the same is true when chemical etching is performed instead of polishing. Therefore, there was a problem that an amorphous cut core with low core loss and high efficiency could not be obtained.

〔発明の目的J 本発明は上記の点に鑑みて為されたものであり、その目
的とするところは、鉄損が少なく高効率な非晶質カット
コアの製造方法を提供することにある。
[Objective of the Invention J The present invention has been made in view of the above points, and its object is to provide a highly efficient method for manufacturing an amorphous cut core with low iron loss.

[発明の開示1 第1図は本発明方法の製造工程を示すものであり、まず
、鉄扇非晶質磁性材よりなる薄情を巻回した後に焼鈍し
て巻回コアを形成し、次に、この巻回コアを樹脂モール
ドにて固定した後にカットしてカットコアを形成し、上
記カットコアのカット面を化学エツチングした後に機械
的に研摩するようにしてあり、鉄損が少な(高効率な非
晶質カットコアが得られるようになっている。
[Disclosure of the Invention 1 Fig. 1 shows the manufacturing process of the method of the present invention. First, a thin film made of an iron fan amorphous magnetic material is wound and then annealed to form a wound core. Next, This wound core is fixed in a resin mold and then cut to form a cut core, and the cut surface of the cut core is chemically etched and then mechanically polished, resulting in low iron loss (high efficiency). Amorphous cut cores can be obtained.

(実施例) 鉄系非晶質磁性材としてFet、B+iS is(Me
Lglas 2605−S3)の薄帯(幅1011厚さ
30μ論)を使用し、この薄帯を巻回して小判型の巻回
コア(磁路断面積851II112、磁路長11411
11%重さ50g)を2個形成した。この巻回コアを通
常の方法で焼鈍およびカットした後、カット面の化学エ
ツチングは以下のようにして行りな。すなわち、化学エ
ツチングは、最初に、アルカリ脱脂を行い、次に、硝酸
・過酸化水素水溶液(35°C)にて食刻(6分で20
μ−)を行い、続いて水洗および乾燥を行うようになっ
ている。このようにして化学エツチングされたカット面
は次の研摩工、程で機械的に研摩されて非晶質カットコ
アが形成された。下表は試作カットコアS3、S2の各
工程における鉄損を示すもので、鉄損の測定は20 K
Hz、 3 KGaussで行ったものであり、この結
果は第2図の実線Aで示している。
(Example) Fet, B+iS is (Me
Using a thin strip (width: 1011 x thickness: 30 μm) of Lglas 2605-S3, wind this thin strip to create an oval-shaped wound core (magnetic path cross-sectional area: 851 II, 112 mm, magnetic path length: 11,411 mm).
11% (weight: 50 g) were formed into two pieces. After this wound core is annealed and cut in the usual manner, the cut surface is chemically etched as follows. That is, chemical etching first performs alkaline degreasing, and then etches with a nitric acid/hydrogen peroxide aqueous solution (35°C) (20 minutes in 6 minutes).
μ-), followed by washing with water and drying. The chemically etched cut surface was mechanically polished in the next polishing step to form an amorphous cut core. The table below shows the iron loss in each process of the prototype cut cores S3 and S2.The iron loss was measured at 20K.
Hz, 3 K Gauss, and the results are shown by solid line A in FIG.

上記測定結果から明らかなように、カット面を化学エツ
チングした後に、機械的な研摩を行うことにより、鉄損
が大幅に減少してカットによる磁気特性の劣化が少なく
なって高効率な非晶質カットコアが得られるようになっ
ている。このような結果に至る原因として以下のことが
考えられる。
As is clear from the above measurement results, by chemically etching the cut surface and then mechanically polishing it, the core loss is significantly reduced and the deterioration of magnetic properties due to cutting is reduced, resulting in a highly efficient amorphous material. Now you can get cut core. Possible reasons for this result are as follows.

すなわち、高速回転のロール上で合金溶湯を超急冷して
得られる鉄扇非晶質磁性材の薄帯は厚みが薄くなってお
り、化学エツチングによる食刻量が薄帯の厚みと同程度
であるので、化学エツチングにより各薄情のカット面が
それぞれ丸みをもち、垂直面が殆どなくなる。なお、け
い素鋼板では厚さが化学エツチングによる食刻量よりも
大幅に大きいので、カット面の角がとれてパリが除去さ
れるが、カット面の中央部の垂直面は保持される。
In other words, the thickness of the thin strip of iron fan amorphous magnetic material obtained by ultra-quenching the molten alloy on a roll rotating at high speed is small, and the amount of etching caused by chemical etching is about the same as the thickness of the thin strip. Therefore, due to chemical etching, the cut surfaces of each thin layer become rounded, and there are almost no vertical surfaces. Note that since the thickness of the silicon steel plate is much larger than the amount of etching by chemical etching, the corners of the cut surface are rounded and the burr is removed, but the vertical plane at the center of the cut surface is maintained.

また、薄帯の厚さのばらつきが甚だしくスペース7アク
タはけい素鋼板を用いた場合の95〜98%に対して、
60〜80%となっており、カット面には空隙が多く接
合時の磁気抵抗が大さくなって漏れ磁束が多くなる。こ
のような状態のカット面を機械的に研摩すると、各薄情
の丸みをもったカット面は中央部から両端角部に向かっ
て次第に垂直面が増加してカット面のスペース7アクタ
はカット前と同一の状態に回復し、磁気特性の改善が図
られるわけである。
In addition, the thickness of the thin strip is extremely variable, compared to 95 to 98% when using silicon steel plates for Space 7 actors.
The ratio is 60 to 80%, and there are many air gaps on the cut surface, which increases magnetic resistance during bonding and increases leakage magnetic flux. When the cut surface in such a state is mechanically polished, the vertical surface of each rounded cut surface gradually increases from the center toward both end corners, and the space 7 actor of the cut surface becomes different from before cutting. The state is restored to the same state and the magnetic properties are improved.

一方、カット面を従来例と同様に機械的に研摩しても鉄
損が低減されない理由として以下の理由が考えられる。
On the other hand, the following reasons can be considered as the reason why the iron loss is not reduced even if the cut surface is mechanically polished as in the conventional example.

8回コアのカットを高速回転するGC刃(グリーンカー
ボランダム刃)、ダイヤモンド刃で行った場合、カット
面にパリが発生してカット面が完全にレアショートした
状態になろ、この状態を取り除くためには、強度の研摩
を施す必要があるが、焼鈍後の鉄系非晶質磁性材は非常
に脆くて機械的衝撃に耐えられない、したがりで、樹脂
で巻回コアの外周をモールドしただけでは、従来例のよ
うにI11械的な研摩によってカット面のパリによるレ
アシs−)を除去し、且つ平坦性を得ることは困難であ
った。なお、各薄帯の間にU(脂を含浸させれば、強度
な研摩に耐えられる機械的剛性が得られることになるが
、tJ4脂の硬化収縮応力により磁気特性の劣化、特に
高周波鉄損が大幅に増大することになるので実施できな
い。
When cutting an 8-core core with a GC blade (green carborundum blade) or a diamond blade that rotates at high speed, the cut surface will be completely short-circuited due to the occurrence of cracks on the cut surface.To remove this condition. However, the iron-based amorphous magnetic material after annealing is extremely brittle and cannot withstand mechanical shock, so we molded the outer periphery of the wound core with resin. However, it was difficult to remove the rarity (s-) due to paris on the cut surface and obtain flatness by mechanical polishing as in the conventional example. Note that by impregnating U (glue) between each ribbon, mechanical rigidity that can withstand intense polishing can be obtained, but the hardening shrinkage stress of TJ4 lubricant causes deterioration of magnetic properties, especially high-frequency iron loss. cannot be implemented because it would result in a significant increase in

[発明の効果1 木登nl1士ト;木め上らL二、」1具習庸ゼikオ上
nな占薄帯を巻回して巻回ファを形成し、この巻回)7
を固定した後にカットしてカットコアを形成し、上記カ
ットコアのカット面を化学エツチングした後に機械的に
研摩するようにしたものであり、鉄損が少なく高効率な
非晶質カットコアを得ることができるという効果がある
[Effect of the invention 1 Wood climbing nl 1 Shito; Kimegami et al.
After fixing, the cut core is cut to form a cut core, and the cut surface of the cut core is chemically etched and then mechanically polished to obtain an amorphous cut core with low iron loss and high efficiency. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による非晶質コアの製造工程を示す
図、第2図は本発明方法および従来方法におけるカット
コアの各工程における鉄損変化を示す特性図、第3図は
従来方法によるカットコアの製造工程を示す図である。 代理人 弁理士 石 1)長 七 剣客′?8毫← 〆 第3図 ゆぜ牙
Fig. 1 is a diagram showing the manufacturing process of an amorphous core by the method of the present invention, Fig. 2 is a characteristic diagram showing changes in iron loss in each step of the cut core in the method of the present invention and the conventional method, and Fig. 3 is a diagram showing the conventional method. It is a figure showing the manufacturing process of the cut core by. Agent Patent Attorney Ishi 1) Chief Seven Swordsman'? 8 pages← 〆Figure 3 Yuzega

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質磁性材よりなる薄帯を巻回して巻回コアを
形成し、この巻回コアを固定した後にカットしてカット
コアを形成し、上記カットコアのカット面を化学エッチ
ングした後に機械的に研摩するようにしたことを特徴と
する非晶質カットコアの製造方法。
(1) A thin ribbon made of an amorphous magnetic material was wound to form a wound core, this wound core was fixed and then cut to form a cut core, and the cut surface of the cut core was chemically etched. A method for producing an amorphous cut core, characterized in that it is then mechanically polished.
JP60078740A 1985-04-13 1985-04-13 Manufacture of amorphous cut core Pending JPS61237404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078740A JPS61237404A (en) 1985-04-13 1985-04-13 Manufacture of amorphous cut core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078740A JPS61237404A (en) 1985-04-13 1985-04-13 Manufacture of amorphous cut core

Publications (1)

Publication Number Publication Date
JPS61237404A true JPS61237404A (en) 1986-10-22

Family

ID=13670282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078740A Pending JPS61237404A (en) 1985-04-13 1985-04-13 Manufacture of amorphous cut core

Country Status (1)

Country Link
JP (1) JPS61237404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148513A (en) * 2012-01-20 2013-08-01 Aisin Seiki Co Ltd Current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148513A (en) * 2012-01-20 2013-08-01 Aisin Seiki Co Ltd Current sensor

Similar Documents

Publication Publication Date Title
DE69929630T2 (en) AMORPHE MAGNETIC MASS METAL OBJECTS
US20040150285A1 (en) Low core loss amorphous metal magnetic components for electric motors
JP2003518903A (en) Bulk amorphous metal magnetic member for electric motor
EP0982977A2 (en) Magnetic core for rf accelerating cavity and the cavity
JPWO2015122527A1 (en) Magnetic core for high-frequency transformer and manufacturing method thereof
US20030201864A1 (en) High performance bulk metal magnetic component
JP2007221869A (en) Laminate
CN111183571A (en) Core board and method of making the same
JP6481996B2 (en) Magnetic core for high-frequency acceleration cavity and manufacturing method thereof
JP2001516506A (en) Electric chalk
JPS6056404B2 (en) Method and device for reducing iron loss in grain-oriented electrical steel sheets
US2519495A (en) Magnetostrictive core and method of making it
JPS61237404A (en) Manufacture of amorphous cut core
JPH0927412A (en) Cut core and manufacture thereof
JP2583357B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
CN210091883U (en) Iron-based nanocrystalline alloy magnetic core with ultralow magnetic permeability
JPH10256066A (en) Wound iron core excellent in iron loss characteristics and method of manufacturing the same
JP2790277B2 (en) Manufacturing method of ultra-thin amorphous alloy
JPS59210626A (en) High-frequency core
CN114823111B (en) Electromagnet core capable of inhibiting accelerator fast pulse eddy current and manufacturing method thereof
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JPH05304014A (en) Fe-co soft magnetic material with excellent soft magnetic property and soft magnetic electric part assembled body
US2658264A (en) Process for manufacturing laminated cores for electromagnets
JPS62286214A (en) Manufacture of amorphous magnetic core
JPS61295601A (en) Amorphous core for common mode choke