JPS6123718B2 - - Google Patents
Info
- Publication number
- JPS6123718B2 JPS6123718B2 JP8140679A JP8140679A JPS6123718B2 JP S6123718 B2 JPS6123718 B2 JP S6123718B2 JP 8140679 A JP8140679 A JP 8140679A JP 8140679 A JP8140679 A JP 8140679A JP S6123718 B2 JPS6123718 B2 JP S6123718B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- graphite powder
- diaphragm
- thermoplastic resin
- glass transition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 230000009477 glass transition Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229920005992 thermoplastic resin Polymers 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000007769 metal material Substances 0.000 description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 6
- 239000005033 polyvinylidene chloride Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007666 vacuum forming Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/12—Non-planar diaphragms or cones
- H04R7/122—Non-planar diaphragms or cones comprising a plurality of sections or layers
- H04R7/125—Non-planar diaphragms or cones comprising a plurality of sections or layers comprising a plurality of superposed layers in contact
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
Description
【発明の詳細な説明】
本発明は高弾性率、高内部損失を併せ持つたス
ピーカ、マイクロホン等の音響機器用振動板に関
するものである。
従来、高弾性で軽量なスピーカ等の音響機器用
振動板の材料としてアルミニウム、チタン、ベリ
リウムなどのような金属、CFRP、樹脂に鱗片状
黒鉛を混合した複合材料などがあるが、これらの
材料は内部損失が小さくスピーカの再生特性にお
いて高域の共振周波数付近での音圧が著しく増大
し、さらに立下がり特性も良くない。一方高内部
損失の材料として、紙、プラスチツク、及びそれ
らの複合材料があるが、弾性率が低、高い周波数
の再生が難かしく広い帯域に亘つて使用すること
ができない。
本発明は上述の如き点に鑑みてなされたもので
あり、その目的とするところはガラス転移点が常
温より低い熱可塑性樹脂と黒鉛粉との混練材料フ
イルムに高弾性のフイルムを積層して多層構造に
することにより軽量にして高弾性と高内部損失の
特性を有するスピーカ、マイクロホン等の振動板
を提供するにある。
以下、本発明の詳細を図面に従つて製造方法と
ともに説明する。
第1図において1はスピーカ、マイクロホン等
の振動板、2,3はそれぞれこの振動板を構成す
る二層構造のフイルムである。このうちフイルム
2は高内部損失の物性を示す混練材料フイルム
で、ポリ温化ビニリデンのようなガラス転移点が
常温より低温である熱可塑性樹脂2aとフレーク
状黒鉛粉2bとを混練し、ロール圧延によりシー
ト状に成形することにより黒鉛粉2bを表面に沿
つて配向させて得られたものである。一般に高分
子材料は、ガラス転移点を境にしてそれよりも高
温になると弾性率が低下する一方、内部損失が急
激に上昇する性質を有する。従つて、ポリ塩化ビ
ニリデン(PVDC)のようなガラス転移点が常温
より低温である熱可塑性樹脂を主成分とするフイ
ルムでは、常温で内部損失の高いものが得られ
る。またこのフイルム材料と黒鉛粉とを混練し、
黒鉛粉を表面に沿つて配向させるとフイルムの弾
性率は著しく向上する。ガラス転多点が常温より
低温である熱可塑性樹脂2aとしては、上記ポリ
塩化ビニリデン(PVDC)が主として用いられ、
PVDC単味、PVDCとポリ塩化ビニル(PVC)と
の共重合体、PVDCとポリアクリロニトリルとの
共重合体が好ましく、必要に応じて所要の可塑剤
(BPBG)や安定剤(ステアリン酸鉛)が添加さ
れる。黒鉛粉2bは平均粒径が約20μm以下のも
のが良く、特に5μm以下のものが適している。
またこの熱可塑性樹脂2aと黒鉛粉2bとの配合
比は、黒鉛粉末10〜90wt%、樹脂90〜10wt%の
範囲であれば黒鉛粉末による弾性率の向上が期待
でき、また混練材料の成形性を損わず、成形物の
脆弱化もほとんど起こさないが、特に黒鉛粉末50
〜75wt%、樹脂50〜25wt%であるときに成形物
の特性の向上が著しい。
高弾性を示すフイルム3には、アルミニウムや
ベリリウム、チタン等の軽量高弾性の金属材や、
第1図乃至第2図に示すようにガラス転移点が常
温より高温の熱可塑性樹脂3aと黒鉛粉3bとの
混練材料で黒鉛粉3bが表面に沿つて配向したも
の等が用いられる。ガラス転移点が常温より高温
の熱可塑性樹脂3aにはポリ塩化ビニル
(PVC)単味、PVCとポリアクリロニトリルとの
共重合体、PVCとポリ酢酸ビニルとの共重合体
等、PVCを主とする樹脂材料が用いられる。黒
鉛粉3bはフイルム2と同様のサイズのものが用
いられ、樹脂3aと黒鉛粉3bとの配合比もフイ
ルム2と同程度である。この樹脂フイルムの形成
は、ニーダやロールによる混練の後、ロール圧延
にて黒鉛粉を配向したフイルムを成形する方法が
用いられる。
上記振動板の製造にあたつては、まずフイルム
2及びフイルム3を形成し、次にこの両フイルム
2,3を第2図のように積層したのちドーム、コ
ーンなどの振動板形状に成形する。フイルム2と
フイルム3との積層は、フイルム3が金属材料で
ある場合にはフイルム2との間に接着剤を介在さ
せて接着する方法をとり、フイルム3が樹脂であ
るときにはフイルム2の上下面のうち任意の片面
又は両面にフイルム3を重ねて熱板上に載置する
か、上下から熱板で挾圧し、熱板を樹脂の十分な
メルテイング温度に加熱する方法をとる。また第
2図に示す積層フイルムを成形するには、フイル
ム2,3が共に樹脂のときには加圧成形法の他に
真空成形法や圧空成形法をとることができ、フイ
ルム3が金属材料のときには加圧成形法をとる。
またフイルム3が金属材料のとき、振動板を製造
するのにフイルム2を予め振動板の形状に成形し
ておき、このフイルム2に金属材料を蒸着するこ
とよりフイルム3を積層する方法もとることがで
きる。
本発明は上記のようにガラス転移点が常温より
低温の熱可塑性樹脂を主成分とするフイルムに高
弾性のフイルムを積層した構造にしているので、
低ガラス転移点の樹脂フイルムにより全体として
の内部損失の向上が図れるものであり、しかも低
ガラスス転移点の樹脂フイルムには黒鉛粉を混練
し配向させているので、このフイルム自体の弾性
率も高めることができて全体として高弾性を達成
することができ、さらにフイルムが樹脂と黒鉛粉
との軽量材料で構成されているので、低密度も達
成することができ、高弾性・低密度かつ高内部損
失といつた優れた特性を達成することができる。
次に本発明を実施例により具体的に説明する。
フイルム2の組成例
フレーク状黒鉛粉 200重量比
PVDC・ポリアクリロニトリル共重合体
100重量比
ステアリン酸鉛(安定剤) 2 〃
BPBG(可塑剤) 10 〃
フイルム3の組成例
フレーク状黒鉛粉 200重量比
PVC 100 〃
ステアリン酸鉛 2 〃
BPBG 10 〃
これら両フイルム2,3の組成物を夫々ロール
にて加熱混練し、次にフイルム状に圧延してまず
フイルム2,3を得た。こうして得たフイルム
2,3を第2図に示すように二層に熱圧着して積
層した。これらフイルム2、フイルム3、及び積
層物の物性値は次表のようになつた。次にこの積
層物を型に保持し加熱しながら真空成形して第1
図に示すようなコーン型振動板を得た。この振動
板の周波数特性を第3図に示した。まず、表から
明らかなように本発明の積層振動板では、弾性率
Eと密度ρとの比である比弾性率√が金属
アルミニウムやチタンに匹敵し、紙をはるかにし
のぐものであり、また内部損失が紙に匹敵し、金
属材料を2オーダ近くしのぐ優れた特性を有す
る。さらに第3図の特性図は、上記フイルム3と
同一組成の材料の従来別の振動板の周波数特性を
破線で示し、本発明積層構造の振動板の周波数特
性を実線で示しているが、図から明らかなように
本発明振動板では高音域における共振ピークが低
く平担な特性を有する。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diaphragm for audio equipment such as speakers and microphones that has both high elastic modulus and high internal loss. Conventionally, materials for highly elastic and lightweight diaphragms for audio equipment such as speakers include metals such as aluminum, titanium, and beryllium, CFRP, and composite materials made by mixing resin with flaky graphite. The internal loss is small, and the sound pressure near the high-frequency resonant frequency increases significantly in the reproduction characteristics of the speaker, and the fall characteristics are also poor. On the other hand, materials with high internal loss include paper, plastic, and composite materials thereof, but they have low elastic modulus, making it difficult to reproduce high frequencies, and cannot be used over a wide band. The present invention has been made in view of the above-mentioned points, and its purpose is to create a multilayer film by laminating a highly elastic film on a film made of a mixture of thermoplastic resin and graphite powder, the glass transition point of which is lower than room temperature. The object of the present invention is to provide a diaphragm for speakers, microphones, etc., which is lightweight and has characteristics of high elasticity and high internal loss. Hereinafter, the details of the present invention will be explained along with the manufacturing method according to the drawings. In FIG. 1, 1 is a diaphragm for a speaker, microphone, etc., and 2 and 3 are two-layered films constituting the diaphragm. Among these, the film 2 is a kneaded material film exhibiting physical properties of high internal loss, and is made by kneading a thermoplastic resin 2a whose glass transition point is lower than room temperature, such as polyvinylidene, and flaky graphite powder 2b, and rolling it. The graphite powder 2b was formed into a sheet shape by orienting the graphite powder 2b along the surface. In general, polymeric materials have the property that when the temperature reaches the glass transition point and rises above it, the elastic modulus decreases and the internal loss rapidly increases. Therefore, a film whose main component is a thermoplastic resin such as polyvinylidene chloride (PVDC) whose glass transition point is lower than room temperature can have a high internal loss at room temperature. Also, by kneading this film material and graphite powder,
Orienting the graphite powder along the surface significantly improves the elastic modulus of the film. As the thermoplastic resin 2a whose glass transition point is lower than room temperature, the above polyvinylidene chloride (PVDC) is mainly used,
PVDC alone, a copolymer of PVDC and polyvinyl chloride (PVC), and a copolymer of PVDC and polyacrylonitrile are preferred, and if necessary, a necessary plasticizer (BPBG) and stabilizer (lead stearate) are used. added. The graphite powder 2b preferably has an average particle size of about 20 μm or less, particularly 5 μm or less.
Furthermore, if the blending ratio of the thermoplastic resin 2a and the graphite powder 2b is in the range of 10 to 90 wt% of the graphite powder and 90 to 10 wt% of the resin, it is expected that the graphite powder will improve the elastic modulus and the moldability of the kneaded material. Graphite powder 50
~75 wt%, and when the resin content is 50 to 25 wt%, the properties of the molded product are significantly improved. The film 3 exhibiting high elasticity is made of lightweight and highly elastic metal materials such as aluminum, beryllium, titanium, etc.
As shown in FIGS. 1 and 2, a kneaded material of a thermoplastic resin 3a whose glass transition point is higher than room temperature and graphite powder 3b, in which the graphite powder 3b is oriented along the surface, is used. Thermoplastic resins 3a whose glass transition point is higher than room temperature include polyvinyl chloride (PVC) alone, copolymers of PVC and polyacrylonitrile, copolymers of PVC and polyvinyl acetate, etc., mainly PVC. A resin material is used. The graphite powder 3b used has the same size as the film 2, and the blending ratio of the resin 3a and the graphite powder 3b is also about the same as that of the film 2. The resin film is formed by kneading with a kneader or rolls, and then rolling with rolls to form a film in which graphite powder is oriented. In manufacturing the above-mentioned diaphragm, first, films 2 and 3 are formed, and then both films 2 and 3 are laminated as shown in Fig. 2, and then formed into a diaphragm shape such as a dome or a cone. . When the film 3 is made of a metal material, the film 2 and the film 3 are laminated by interposing an adhesive between the film 2 and the film 2, and when the film 3 is made of resin, the film 2 is laminated with the upper and lower surfaces of the film 2. Either the film 3 is stacked on any one or both sides and placed on a hot plate, or the hot plate is pressed from above and below to heat the hot plate to a sufficient melting temperature of the resin. In addition, to form the laminated film shown in FIG. 2, when both films 2 and 3 are made of resin, a vacuum forming method or a pressure forming method can be used in addition to the pressure forming method, and when the film 3 is made of a metal material, a vacuum forming method or a pressure forming method can be used. Use pressure molding method.
Further, when the film 3 is made of a metal material, a method may also be used in which the film 2 is formed into the shape of the diaphragm in advance in order to manufacture the diaphragm, and the film 3 is laminated by vapor-depositing the metal material onto the film 2. I can do it. As described above, the present invention has a structure in which a highly elastic film is laminated on a film whose main component is a thermoplastic resin whose glass transition point is lower than room temperature.
The overall internal loss can be improved by using a resin film with a low glass transition point, and since graphite powder is kneaded and oriented into the resin film with a low glass transition point, the elastic modulus of the film itself is also increased. It is possible to achieve high elasticity as a whole, and since the film is made of lightweight materials of resin and graphite powder, it can also achieve low density, and has high elasticity, low density and high internal Excellent properties such as loss and so on can be achieved. Next, the present invention will be specifically explained using examples. Composition example of film 2 Flake graphite powder 200 weight ratio PVDC/polyacrylonitrile copolymer
100 weight ratio Lead stearate (stabilizer) 2 〃 BPBG (plasticizer) 10 〃 Composition example of film 3 Flake graphite powder 200 weight ratio PVC 100 〃 Lead stearate 2 〃 BPBG 10 〃 Compositions of both films 2 and 3 The materials were heated and kneaded using rolls, and then rolled into films to obtain films 2 and 3. The films 2 and 3 thus obtained were laminated by thermocompression bonding into two layers as shown in FIG. The physical properties of Film 2, Film 3, and the laminate are as shown in the following table. Next, this laminate is held in a mold and vacuum formed while heating.
A cone-shaped diaphragm as shown in the figure was obtained. The frequency characteristics of this diaphragm are shown in FIG. First, as is clear from the table, in the laminated diaphragm of the present invention, the specific elastic modulus √, which is the ratio between the elastic modulus E and the density ρ, is comparable to metal aluminum and titanium, and far exceeds paper. It has an excellent internal loss comparable to paper and superior to metal materials by nearly two orders of magnitude. Further, in the characteristic diagram of FIG. 3, the frequency characteristics of a conventional diaphragm made of the same composition as the film 3 are shown by a broken line, and the frequency characteristics of the diaphragm of the laminated structure of the present invention are shown by a solid line. As is clear from the above, the diaphragm of the present invention has a characteristic that the resonance peak in the high frequency range is low and flat. 【table】
第1図は本発明の一実施例の断面図、第2図は
同上で使用する二層構造の積層フイルムの断面
図、第3図は本発明の一実施例と従来例との各音
圧周波数特性図である。
1…振動板、2…フイルム、3…フイルム。
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a cross-sectional view of a two-layer laminated film used in the above, and Fig. 3 is a cross-sectional view of an embodiment of the present invention and a conventional example. It is a frequency characteristic diagram. 1...Vibration plate, 2...Film, 3...Film.
Claims (1)
性樹脂と黒鉛粉とを主成分としかつ黒鉛粉が表面
に沿つて配向している混練材料フイルムに高弾性
フイルムを積層した多層構造の音響機器用振動
板。 2 上記ガラス転移点の低温である熱可塑性樹脂
がポリ温化ビニリデン又はポリ塩化ビニリデンと
他の熱可塑性樹脂との共重合体であることを特徴
とする特許請求の範囲第1項に記載の音響機器用
振動板。 3 上記高弾性フイルムが常温より高温のガラス
転移点を有する熱可塑性樹脂と黒鉛粉とを主成分
としかつ黒鉛粉が表面に沿つて配向している混練
材料フイルムであることを特徴とする特許請求の
範囲第1項又は第2項に記載の音響機器用振動
板。[Scope of Claims] 1. A highly elastic film is laminated on a kneaded material film mainly composed of a thermoplastic resin whose glass transition point is lower than room temperature and graphite powder, and in which the graphite powder is oriented along the surface. A multilayer structure diaphragm for audio equipment. 2. The acoustic device according to claim 1, wherein the thermoplastic resin having a low glass transition temperature is a copolymer of polyvinylidene warmed or polyvinylidene chloride and another thermoplastic resin. Diaphragm for equipment. 3. A patent claim characterized in that the above-mentioned high elasticity film is a kneaded material film mainly composed of a thermoplastic resin having a glass transition point higher than room temperature and graphite powder, and in which the graphite powder is oriented along the surface. A diaphragm for audio equipment according to item 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8140679A JPS566596A (en) | 1979-06-29 | 1979-06-29 | Diaphragm for acoustic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8140679A JPS566596A (en) | 1979-06-29 | 1979-06-29 | Diaphragm for acoustic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS566596A JPS566596A (en) | 1981-01-23 |
JPS6123718B2 true JPS6123718B2 (en) | 1986-06-06 |
Family
ID=13745439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8140679A Granted JPS566596A (en) | 1979-06-29 | 1979-06-29 | Diaphragm for acoustic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS566596A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6440915U (en) * | 1987-09-04 | 1989-03-10 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2674718A1 (en) * | 1991-03-28 | 1992-10-02 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING AN ELECTRODYNAMIC SPEAKER MEMBRANE WITH HIGH INTERNAL LOSSES AND HIGH RIGIDITY. |
-
1979
- 1979-06-29 JP JP8140679A patent/JPS566596A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6440915U (en) * | 1987-09-04 | 1989-03-10 |
Also Published As
Publication number | Publication date |
---|---|
JPS566596A (en) | 1981-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110677789A (en) | Composite vibration plate and loudspeaker using same | |
CN207321533U (en) | Binder course for the diaphragm of loudspeaker and the diaphragm of loudspeaker comprising the binder course | |
US4362772A (en) | Vibratory elements for audio equipment | |
JPS6123718B2 (en) | ||
US4343376A (en) | Vibratory elements for audio equipment | |
JPS5951199B2 (en) | electrostatic transducer | |
US4366205A (en) | Tone-arm elements | |
JPS631342B2 (en) | ||
JPS5921196A (en) | Diaphragm for electroacoustic transducer | |
JPS5857958B2 (en) | Diaphragm for audio equipment | |
JPS5912231B2 (en) | Speaker non-vibration system components | |
JPS5961297A (en) | Diaphragm for speaker | |
JP3915600B2 (en) | Speaker diaphragm | |
JPS59108499A (en) | Diaphragm for speaker | |
JPS6123562B2 (en) | ||
JPS6359639B2 (en) | ||
JPS5921195A (en) | Diaphragm for electroacoustic transducer | |
JPS5986994A (en) | Diaphragm for loudspeaker | |
JPH0732509B2 (en) | Vibration plate for electro-acoustic transducer | |
JPS5972896A (en) | Speaker diaphragm | |
JPS5928798A (en) | Speaker diaphragm | |
JPH0234520B2 (en) | ||
JPS5853559B2 (en) | acoustic vibrator | |
JPH023359B2 (en) | ||
JPH029517B2 (en) |