[go: up one dir, main page]

JPS61237045A - Defect detector - Google Patents

Defect detector

Info

Publication number
JPS61237045A
JPS61237045A JP7830485A JP7830485A JPS61237045A JP S61237045 A JPS61237045 A JP S61237045A JP 7830485 A JP7830485 A JP 7830485A JP 7830485 A JP7830485 A JP 7830485A JP S61237045 A JPS61237045 A JP S61237045A
Authority
JP
Japan
Prior art keywords
potential difference
defect
distribution
crack
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7830485A
Other languages
Japanese (ja)
Other versions
JPH049470B2 (en
Inventor
Makoto Hayashi
真琴 林
Shinji Sakata
信二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7830485A priority Critical patent/JPS61237045A/en
Priority to DE19863612651 priority patent/DE3612651A1/en
Priority to US06/852,313 priority patent/US4764970A/en
Publication of JPS61237045A publication Critical patent/JPS61237045A/en
Publication of JPH049470B2 publication Critical patent/JPH049470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は金属構造部材に発生したき裂を検出するき裂検
出技術に係シ、特に表面き裂の形状を精度よく検出する
のに好適な方法および装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a crack detection technique for detecting cracks generated in metal structural members, and in particular, a method suitable for detecting the shape of surface cracks with high accuracy. METHODS AND APPARATUS.

〔発明の背景〕[Background of the invention]

従来のポテンシャル法(例えば特開昭58−41341
 )によるき裂検出方法としてはいわゆる4端子法と呼
ばれるものがある。それは一対の給電端子とそめ内側に
一対の測定端子を一列に配列した探触子を構造部材の表
面を走査して、電位差分布の変化からき裂を検出するも
のである。き裂の判定はき裂がないと思われる領域にお
ける。電位差を基準電位差とし、それよシも大きい電位
差となったところにき裂があるとするものである。従っ
て4端子法においてはき裂の有無及びき裂のある程度の
形状は判定できても、き裂の形状を精度よく求めるとい
うできないという欠点があった。
Conventional potential method (for example, Japanese Patent Application Laid-Open No. 58-41341)
) is known as the so-called four-terminal method. This method scans the surface of a structural member with a probe that has a pair of power supply terminals and a pair of measurement terminals arranged in a row on the inside of the probe, and detects cracks from changes in the potential difference distribution. Cracks are determined in areas where no cracks are expected. The potential difference is used as a reference potential difference, and a crack is determined to exist where the potential difference is larger than the reference potential difference. Therefore, although the four-probe method can determine the presence or absence of a crack and the shape of the crack to some extent, it has the disadvantage that it is not possible to accurately determine the shape of the crack.

〔発明の目的〕[Purpose of the invention]

本発明の目的は構造部材に生じた欠陥または表面き裂の
形状を精度よく検出可能な方法および装置管提供するこ
とにある。
An object of the present invention is to provide a method and apparatus capable of accurately detecting the shape of defects or surface cracks occurring in structural members.

〔発明の概要〕[Summary of the invention]

種々のアスペクト比の表面欠陥を有する試験片を用いて
、欠陥に直交する方向に直流電流を印加し、欠陥周辺の
電位分布或いは電位差分布を測定した結果、表面欠陥近
傍での欠陥をはさんだ位置での電位差は欠陥の先端で大
きく変化し、欠陥の最深点で最大値を示した。表面欠陥
の各位置での欠陥深さと電位差との間には一価的な関係
があったが、両者の関係は欠陥のアスペクト比によって
異なった。但し、アスペクト比が0.25よシも小さく
なると両者の関係はアスペクト比には依存しなくなる傾
向にあることが分かった。また有限要素法を用いて表面
欠陥を有する部材の電場を解析し、試験片でめ測定結果
と比較した結果、両者はよく一致することが分かった。
Using test pieces with surface defects of various aspect ratios, we applied a direct current in a direction perpendicular to the defects and measured the potential distribution or potential difference distribution around the defects. The potential difference at the tip of the defect changed significantly and reached its maximum value at the deepest point of the defect. There was a monovalent relationship between the defect depth and potential difference at each location of the surface defect, but the relationship between the two varied depending on the aspect ratio of the defect. However, it has been found that when the aspect ratio becomes smaller than 0.25, the relationship between the two tends to become independent of the aspect ratio. We also analyzed the electric field of a member with surface defects using the finite element method and compared it with the results measured using a test piece, and found that the two agreed well.

従って、数攬類のアスペクト比、深さを有する欠陥の要
素を作成しておき、部材表面の欠陥周辺での電位差分布
を測定して、電位差分布によく対応するアスペクト比の
要素を抽出して電位差分布を比較し、電位差分布に相違
があれば要素の節点位置を部分的に修正して電場を解析
し、一致したときの欠陥形状を実際の欠陥形状とすれば
精度よく欠陥形状を求められることが分かった。
Therefore, create defect elements with several aspect ratios and depths, measure the potential difference distribution around the defect on the surface of the part, and extract elements with aspect ratios that closely correspond to the potential difference distribution. Compare the potential difference distribution, and if there is a difference in the potential difference distribution, partially modify the node position of the element, analyze the electric field, and use the defect shape when they match as the actual defect shape to accurately determine the defect shape. That's what I found out.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。第2図は表面き裂
近傍での電位分布を示す等電位線図である。これは厚さ
20mの平板に表面長さ30m。
An embodiment of the present invention will be described below. FIG. 2 is an equipotential diagram showing the potential distribution near the surface crack. This is a 20m thick flat plate with a surface length of 30m.

深さ15■の半円き裂がある場合について有限要素法に
より解析して求めた結果である。き裂面の電位分布に注
目すると、等電位線はき裂面にもぐシ込む。き裂面にも
ぐり込む等電位線の数はき裂深さに応じて変化する。ま
た電位分布はき裂面に対して対象な分布を示すことが分
かる。即ち、き裂をはさんで電位は逆の分布を示すこと
から、き袋位置を判定することは容易である。勿論、き
裂をはさんで電位差を測定するとき裂のあるところでは
電位差は大きくなるため検出できる。
These are the results obtained by analyzing a case where there is a semicircular crack with a depth of 15 cm using the finite element method. If we pay attention to the potential distribution on the crack surface, the equipotential lines sink into the crack surface. The number of equipotential lines that penetrate into the crack surface changes depending on the crack depth. It can also be seen that the potential distribution shows a symmetrical distribution with respect to the crack surface. That is, since the potential shows an opposite distribution across the crack, it is easy to determine the position of the crack. Of course, when measuring the potential difference across a crack, the potential difference becomes larger where there is a crack, so it can be detected.

次に、き裂周辺の電位分布を計算した結果を第3図に示
す。これは第2図に示したき裂について求めたもので、
き裂から1.2,3,4,5゜10電離れた位置におけ
る電位分布である。第3図から分かるようにき裂から1
0m離れた位置でもき裂形状はある程度判定することが
可能である。
Next, FIG. 3 shows the results of calculating the potential distribution around the crack. This was obtained for the crack shown in Figure 2.
These are the potential distributions at positions 1.2, 3, 4, and 5 degrees and 10 electrons away from the crack. As can be seen from Figure 3, from the crack 1
It is possible to determine the crack shape to some extent even at a distance of 0 m.

しかし、き裂形状の精度よい検出は困難である。However, accurate detection of the crack shape is difficult.

特に表面のき裂先端を特定するのは困難である。In particular, it is difficult to identify the crack tip on the surface.

ところが測定位置をき裂に近付けると表面のき裂先端に
おいて特異点が現れるので、表面のき裂先端を決定する
ことは容易となる。また電位はき裂深さに比例すること
が分かる。従って、き裂に沿ってき裂の極近傍でき裂先
端の前方から電位分布を測定するか、き裂をはさんで電
位差を測定すればき裂形状を決定できる。ところがき裂
のアスペクト比a/C(a:最大き裂深さ 2C二表面
におけるき裂長さ)を種々変えてき裂深さと電位差との
関係を詳細に調べた結果、き裂深さと電位差との関係は
アスペクト比の影響を受けて、それぞれ異なることが分
かった。そこで有限要素法による電場の解析と測定値の
比較演算により精度よくき裂形状または欠陥形状を判定
する方法及び装置を考案した。
However, when the measurement position is brought closer to the crack, a singular point appears at the tip of the crack on the surface, making it easier to determine the tip of the crack on the surface. It can also be seen that the potential is proportional to the crack depth. Therefore, the crack shape can be determined by measuring the potential distribution along the crack in the very vicinity of the crack and from in front of the crack tip, or by measuring the potential difference across the crack. However, as a result of a detailed investigation of the relationship between crack depth and potential difference by varying the crack aspect ratio a/C (a: maximum crack depth, 2C crack length at two surfaces), we found that the relationship between crack depth and potential difference was It was found that the relationships were influenced by the aspect ratio and differed from each other. Therefore, we devised a method and device that accurately determines the shape of cracks or defects by analyzing electric fields using the finite element method and comparing measured values.

第1図は欠陥検出装置を示す図である。第1図では探傷
ヘッドの駆動装置1はほぼ平板に近い構造物表面のき裂
または欠陥を検出できる構造となっている。直流ポテン
シャル法による探傷ヘッド20には潮流電流供給用の給
電端子5と電位差測定用の測定端子10が設けである。
FIG. 1 is a diagram showing a defect detection device. In FIG. 1, a flaw detection head driving device 1 has a structure capable of detecting cracks or defects on the surface of a nearly flat structure. A flaw detection head 20 using the DC potential method is provided with a power supply terminal 5 for supplying a tidal current and a measurement terminal 10 for measuring a potential difference.

探傷ヘッド20はステッピングモータ25により表面に
垂直な軸(2軸)まわシに回転可能とし、測定及び給電
端子を部材表面に押し付けるための空気シリンダー30
を具備している。更に、探傷ヘッド20を2次元子面上
を移動可能とするため、X軸51及びY軸56の駆動機
構を持ち、おのおのの座標軸はステッピングモータ52
.57及び減速機53.58によって駆動される。Y軸
56は側板60に固定され、側板60にはコンプレッサ
61から供給される圧縮空気で作動する吸盤62が取シ
付けてあシ、部材表面に駆動装置1を固定する機能を持
つ。従って壁面状の欠陥のみならず天井面の欠陥の検出
も可能である。座標軸駆動用モータ52,57は駆動制
御装置65に接続されており、駆動制御装置65はコン
ピュータ100によって制御される。
The flaw detection head 20 is rotatable around axes (two axes) perpendicular to the surface by a stepping motor 25, and has an air cylinder 30 for pressing measurement and power supply terminals against the surface of the member.
Equipped with: Furthermore, in order to enable the flaw detection head 20 to move on a two-dimensional surface, it has drive mechanisms for an X-axis 51 and a Y-axis 56, and each coordinate axis is driven by a stepping motor 52.
.. 57 and speed reducers 53 and 58. The Y-axis 56 is fixed to a side plate 60, and a suction cup 62 operated by compressed air supplied from a compressor 61 is attached to the side plate 60, and has the function of fixing the drive device 1 to the surface of the member. Therefore, it is possible to detect not only wall-like defects but also ceiling-like defects. The coordinate axis drive motors 52 and 57 are connected to a drive control device 65, and the drive control device 65 is controlled by the computer 100.

第4図に電位差測定用の探傷ヘッド20の構造を示す。FIG. 4 shows the structure of a flaw detection head 20 for potential difference measurement.

探傷ヘッド20の基板21はベークライトまたはアクリ
ルのような不導体で作られている。
The substrate 21 of the flaw detection head 20 is made of a nonconductor such as Bakelite or acrylic.

直流電流供給用の給電端子5は等間隔に多数配列したも
のを2列平行に、且つ、端子同士が向かいあうように配
置する。測定端子10は2列の給電端子5の中央に、且
つそれぞれが隣シあう給電端子の中央にくるように1列
に等間隔で設ける。また、それぞれの給電端子対に独立
して直流電源66を設けると共に、スイッチング装置6
7を設ける。スイッチング装置67は構造物に印加する
直流電流の極性を一定時間毎に切シ換えることにより測
定端子10と構造物との間に生じる熱起電力を相殺する
ためのものである。この場合電位差の測定は直流電流が
安定した後でなければならず、極性を切り換える直前が
最適である。
A large number of power supply terminals 5 for supplying direct current are arranged at equal intervals in two rows in parallel, with the terminals facing each other. The measurement terminals 10 are provided in one row at equal intervals so that they are located in the center of the two rows of power supply terminals 5 and in the center of the adjacent power supply terminals. Further, a DC power supply 66 is provided independently for each pair of power supply terminals, and a switching device 6
7 will be provided. The switching device 67 is for canceling the thermoelectromotive force generated between the measurement terminal 10 and the structure by switching the polarity of the direct current applied to the structure at regular intervals. In this case, the potential difference must be measured after the DC current has stabilized, and the best time is just before switching the polarity.

次に、第5図に給電端子5と測定端子10の基板21へ
の取付は構造を示す。第5図では端子の数を6個とした
場合の1列の端子のみについて示した。測定端子10及
び給′電端子5は構造物との間に接触抵抗が生じない程
度まで押し付けることが必要であるし、構造物に多少の
凹凸や湾曲があっても全部が同じように接触していなけ
ればならない。また欠陥形状を精度よく求めようとすれ
ば第2図に示したように欠陥から1〜2m以内のところ
で電位分布を測定しなければならない。そのため測定端
子10の先端は円錐形とし、その後方に7ランジを設け
、7ランジと基板21との間にコイルバネを入れ、探傷
ヘッド2oを構造物に押し付けたとき、六ネにより端子
が均一に構造物に押し付けられるようにし、また、測定
端子距離は正確であることが重要であるから、基板21
における穴は長くシ、また案内面としての仕上げを施さ
なければならない。また、き裂をはさんでの電位差分布
を測定する場合には第4図で電位差測定端子10をその
中央が給電端子5の中央と一致するように2列配置して
やれば良い。
Next, FIG. 5 shows the structure for attaching the power supply terminal 5 and the measurement terminal 10 to the substrate 21. FIG. 5 shows only one row of terminals when the number of terminals is six. It is necessary to press the measurement terminal 10 and the power supply terminal 5 to the structure to the extent that contact resistance does not occur between them, and even if the structure has some unevenness or curvature, it is necessary to press the measurement terminal 10 and the power supply terminal 5 to the structure in the same way. must be maintained. Furthermore, in order to accurately determine the shape of a defect, it is necessary to measure the potential distribution within 1 to 2 meters from the defect, as shown in FIG. For this reason, the tip of the measurement terminal 10 is made into a conical shape, 7 langes are provided behind it, and a coil spring is inserted between the 7 langes and the board 21. When the flaw detection head 2o is pressed against the structure, the terminal is evenly distributed by the 6 flange. Since it is important that the measurement terminal distance be accurate so that it can be pressed against the structure, the substrate 21
The hole in the hole must be long and finished to serve as a guide surface. Furthermore, when measuring the potential difference distribution across a crack, two rows of potential difference measuring terminals 10 may be arranged so that their centers coincide with the centers of the power supply terminals 5 as shown in FIG.

以下、電位分布測定方法及び欠陥形状の決定法について
述べる。第1v!Jにおいて複数の直流電源66からス
イッチング装置67t−介して探傷ヘッド20に設けた
給電端子5に直流電流を印加して、構造部材に電場を形
成する。多数の測定端子1゜の間に生じる電位差はスキ
ャナー70を介して微小電位差計71に取シ込んで測定
され、インターフェース72f:通してコンピュータ1
00に入力され、駆動装置制御装置65からの位置情報
と合わせて電位分布としてコンピュータ100に接続さ
れた記憶装置103に記憶される。記憶された電位分布
からコンピュータ100によりき裂位置を判定し、き裂
周辺の詳細な電位分布を測定して、電場の解析による電
位分布との比較演算からき裂形状を決定するものである
Below, a method for measuring potential distribution and a method for determining defect shape will be described. 1st v! At J, a DC current is applied from the plurality of DC power supplies 66 to the power supply terminal 5 provided on the flaw detection head 20 via the switching device 67t to form an electric field in the structural member. The potential difference generated between a large number of measurement terminals 1° is inputted to a minute potentiometer 71 via a scanner 70 and measured.
00 and stored in the storage device 103 connected to the computer 100 as a potential distribution together with the position information from the drive device control device 65. The computer 100 determines the crack position from the stored potential distribution, measures the detailed potential distribution around the crack, and determines the crack shape from a comparison operation with the potential distribution obtained by analyzing the electric field.

第6図に直流ポテンシャル法によるき製形状判定の流れ
図を示す。初めに第1図に示した駆動装置1で探傷ヘッ
ド20f:駆動装置内の全域を粗く走査して電位分布を
調べる。このときき裂の発生する方向は構造部材で大体
決っているので、き装面に直交して直流電流が流れるよ
うに探傷ヘッド20の向きをステッピングモータ25で
設定する。
FIG. 6 shows a flowchart for determining the forged shape using the DC potential method. First, using the drive device 1 shown in FIG. 1, the flaw detection head 20f roughly scans the entire area inside the drive device to examine the potential distribution. At this time, since the direction in which cracks occur is roughly determined by the structural member, the direction of the flaw detection head 20 is set by the stepping motor 25 so that a direct current flows orthogonally to the surface to be cracked.

もしき裂があれば第3図に示したような電位分布が生じ
るので容易に検出できる。き裂から10mm離れていて
も十分検出可能であるが、浅埴き裂の場合は見落とす恐
れもある。5簡離れた位置で測定するのが安全であるの
で、測定間隔は10IllIとすれば十分である。この
ように粗い測定間隔で電位分布を測定してき裂の大体の
位置、言い換えれば、存在領域を判定する。第2図に示
したようにき裂の前後で電位分布は反転するので、反転
した位置にあると判断することができる。或いはき裂を
はさんで電位差分布を測定する場合はき裂がない場合の
基準電位差よりも大きい電位差が測定された付近にある
と判定される。き裂形状を精度よく出すためには測定位
置のき裂からの距離をある程度正確に設定しなければな
らないので、反転した測定位置内で例えば11111間
隔で電位分布を測定し、き装面の正確な位置を設定する
。更に正確にするためには反転した電位分布が等しくな
る位置を探傷ヘッド20を細かく走査して見出してやれ
ば良い。電位差分布測定の場合は電位差が最大となる位
置にき裂はある。次にき裂の前後INRまたは2簡の位
置でき装面に平行な電位分布またはき裂をはさんで電位
差分布を詳細に測定する。ここで電位分布の場合は基準
の電位差をき裂のないところで求めてそれで基準化して
評価することになシ、結局は電位差分布の場合と同じ方
法によってき裂形状を判定するので、以下では電位差分
布についての方法を述べる。
If there is a crack, a potential distribution as shown in FIG. 3 will occur, so it can be easily detected. Although it is sufficiently detectable even at a distance of 10 mm from the crack, there is a risk that it may be overlooked if it is a shallow crack. Since it is safe to measure at a position 5 minutes apart, it is sufficient to set the measurement interval to 10 IllI. By measuring the potential distribution at coarse measurement intervals in this manner, the approximate location of the crack, in other words, the region where it exists is determined. As shown in FIG. 2, the potential distribution is reversed before and after the crack, so it can be determined that the crack is in a reversed position. Alternatively, when measuring the potential difference distribution across a crack, it is determined that the potential difference is in the vicinity of the measured potential difference that is larger than the reference potential difference when there is no crack. In order to accurately determine the crack shape, it is necessary to set the distance of the measurement position from the crack accurately, so the potential distribution is measured at intervals of, for example, 11111 within the reversed measurement position, and the accuracy of the cracked surface is determined. Set the position. For further accuracy, the flaw detection head 20 may be scanned finely to find a position where the reversed potential distributions are equal. In the case of potential difference distribution measurement, the crack is located at the position where the potential difference is maximum. Next, the potential distribution parallel to the armored surface or the potential difference distribution across the crack is measured in detail at INR or two positions before and after the crack. In the case of potential distribution, it is necessary to find the reference potential difference in a place where there is no crack and standardize it for evaluation.In the end, the crack shape is determined using the same method as in the case of potential difference distribution, so below we will explain the potential difference. We will describe the method for distribution.

き裂周辺の詳細な電位差分布から表面におけるき裂長さ
2Cを決定し、最大の電位差比V/veからき裂の概略
の形状、言い換えればき裂のアスペクト比a / c 
f第1図に示した電位差分布記憶装置102に記憶され
ている各種マスターカーブとの比較演算により決定する
。次に、メツシュ形状記憶装置101に記憶されている
各種アスペクト比の節点要素データの中から前記測定結
果から推定されたアスペクト比に最も近いアスペクト比
の節点要素データを選びだし、前記マスターカーブから
推定されたき裂深さに合わせてき裂先端の節点要素を移
動修正して、電位分布を解析する。
The crack length 2C at the surface is determined from the detailed potential difference distribution around the crack, and the approximate shape of the crack, in other words, the aspect ratio a/c of the crack is determined from the maximum potential difference ratio V/ve.
f is determined by comparison calculation with various master curves stored in the potential difference distribution storage device 102 shown in FIG. Next, from among the nodal element data of various aspect ratios stored in the mesh shape memory device 101, the nodal element data with the aspect ratio closest to the aspect ratio estimated from the measurement result is selected, and the nodal element data is estimated from the master curve. The nodal element at the crack tip is moved and modified according to the determined crack depth, and the potential distribution is analyzed.

解析された電位分布から、き裂周辺の電位差分布を求め
、測定結果と比較して不一致の部分についてはき裂形状
の修正、言い換えればき裂先端の節点要素を不一致の分
だけ修正することを繰シ返して、最終的に測定結果と一
致したときの解析に用いたき裂形状を実際のき裂形状と
判定するものである。
The potential difference distribution around the crack is calculated from the analyzed potential distribution, and compared with the measurement results, the crack shape is corrected for areas that do not match. In other words, the nodal elements at the crack tip are corrected by the amount of the mismatch. The crack shape used in the analysis is determined to be the actual crack shape when it is repeated repeatedly and finally matches the measurement result.

以下、第6図のき製形状判定の詳細を述べる。The details of the forging shape determination shown in FIG. 6 will be described below.

一般的に構造部材に発生するき裂は半楕円状あるいは半
円弧状に近い形である。構造部材の電位分布解析のため
の節点要素としては、例えば第7図に示すような半円の
ものを作成しておき、測定された電位差分布に合わせて
節点を移動して任意のアスペクト比の節点要素データを
作成すれば良い。
Cracks that occur in structural members generally have a semi-elliptical or semicircular arc shape. For example, create a semicircle as shown in Figure 7 as a nodal element for analyzing the potential distribution of a structural member, and move the nodes according to the measured potential difference distribution to create an arbitrary aspect ratio. All you need to do is create node element data.

但し、実用上は手間がかかるので、例えばアスペクト比
a/cが0゜5の要素分割図を第8図に示すが、種々の
アスペクト比の節点要素データを予め作成して記憶装置
101に記憶させておき、電位分布測定結果により推定
されるアスペクト比に最も近いアスペクト比の節点要素
データを抽出し、それを微修正する方が効率的である。
However, since it is time-consuming in practice, for example, an element division diagram with an aspect ratio a/c of 0°5 is shown in FIG. It is more efficient to extract the nodal element data with the aspect ratio closest to the aspect ratio estimated from the potential distribution measurement results, and then slightly modify it.

予め記憶装置101に記憶させておく節点要素データの
アスペクト比a / cとしては1゜0,0.75,0
.5゜0.2および0.1、き裂深さとしては部材の板
厚の5%から100%までの間を5%毎に分割するよう
にしておけば十分である。
The aspect ratio a/c of the node element data stored in advance in the storage device 101 is 1°0, 0.75, 0.
.. 5°0.2 and 0.1, it is sufficient to divide the crack depth into 5% increments between 5% and 100% of the plate thickness of the member.

具体的な方法について以下に述べる。第9図は表面き裂
をはさんで測定端子間距離を5Bに設定して求めた電位
差分布である。横軸はき裂中央を原点とした表面方向の
測定位置xw1、縦軸は電位差比V / V oである
。ここでVoはき裂がないところでの電位差であり、第
9図で分かるようにき裂がないところではVoはほぼ一
定である。き裂があるところでは第3図と同様に電位差
は大きくなる。第3図と同様に表面でのき裂の先端で電
位差分布に特異点が現われるので、表面のき裂長さ2C
は容易に決定される。第9図では2 c=17■である
。次に、き裂のアスペクト比a / Cの推定である。
The specific method will be described below. FIG. 9 shows the potential difference distribution obtained by setting the distance between the measurement terminals to 5B across the surface crack. The horizontal axis is the measurement position xw1 in the surface direction with the crack center as the origin, and the vertical axis is the potential difference ratio V/Vo. Here, Vo is the potential difference where there is no crack, and as seen in FIG. 9, Vo is approximately constant where there is no crack. Where there is a crack, the potential difference increases as in FIG. 3. Similar to Figure 3, a singular point appears in the potential difference distribution at the tip of the crack on the surface, so the crack length on the surface is 2C.
is easily determined. In FIG. 9, 2c=17■. Next is the estimation of the crack aspect ratio a/C.

電位差比が最大となるところがき裂の最深点に対応する
。最深点の電位差比をV/VOmaxとする。第1図の
電位差分布記憶装置102の中には第10図に示すよう
に種々のアスペクト比を有するき裂の中央部、言い換え
れば最深点におけ゛る電位差比V / V oとき裂深
さaとの関係が予め記憶されている。ここでき裂は一般
的には測定される構造物の板厚tで基準化されたものを
用いる。
The point where the potential difference ratio is maximum corresponds to the deepest point of the crack. Let the potential difference ratio at the deepest point be V/VOmax. In the potential difference distribution storage device 102 of FIG. 1, as shown in FIG. 10, the potential difference ratio V/Vo and the crack depth at the central part of the crack having various aspect ratios, in other words, at the deepest point are stored. The relationship with a is stored in advance. Here, the crack is generally standardized by the plate thickness t of the structure to be measured.

また、電位差比V / V J)とき裂深さの関係は簡
単のため V/Vo=1+Aa+Ba”+Ca”+Da’+Ea’
のようにn次式で近似しておいても良い。き裂最深点で
得られたv/vomaxt−第10図に示したように記
憶装置102に記憶された電位差比V/Voとき裂深さ
aとの関係を用いてき裂深さを求めると、アスペクト比
a / c ;O−1e O−2+ 0.5 eO,7
5,および1.0のそれぞれに対して、aI。
Also, since the relationship between the potential difference ratio V/VJ) and the crack depth is simple, V/Vo=1+Aa+Ba"+Ca"+Da'+Ea'
It may also be approximated by an n-dimensional equation as shown in FIG. When the crack depth is determined using the relationship between v/vomaxt obtained at the deepest point of the crack and the potential difference ratio V/Vo stored in the storage device 102 and the crack depth a as shown in FIG. Aspect ratio a/c; O-1e O-2+ 0.5 eO, 7
5, and 1.0, respectively, aI.

al +  al *  a4 +  al と求まる
。求まったき裂深さal t al +  al e 
a4 + aSを用いてアスペクト比a / cを求め
ると、al /c、al /c。
It is found as al + al * a4 + al. Determined crack depth al t al + al e
When finding the aspect ratio a/c using a4 + aS, we get al/c, al/c.

al /c、a4 /c、al /cが得られる。そこ
でa 1 / c−a 5 / cと使用したマスター
カーブのアスペクト比a / Cとの比を求めて、1に
最も近いマスターカーブのアスペクト比が実際のき裂の
アスペクト比に近いのであるから、それを仮にき裂のア
スペクト比とする。ここではアスペクト比a / cが
0.5と仮定する。次に、電位分布の計算である。初め
に仮決定されたアスペクト比a/C=0.5の節点要素
データをメツシュ形状記憶装置101からコンピュータ
100に呼び出す。まず、第11図に示すように表面の
き裂長さ2c=17閣に最も近い節点を選ぶ。深さ方向
は一応5%毎に節点が設定してあり、ここでは板厚が2
0閣のものについて例示しであるので、表面で20=1
7順に最も近い節点はき裂中央から±10圏、深さで5
■のものとなる。実線で示された2C=20Mのき裂先
端を結ぶ節点を2C=17rmになるように、表面方向
(X方向)、深さ方向(y方向)とも破線のように移動
させる。次に、第12図に示すように第10図のアスペ
クト比a / c =0.5のマスターカーブを用いて
得られた最深点のき裂深さalと一致するように、第1
1図で修正された節点の移動を行う。ここではき裂先端
の形は半楕円となるように移動する。第12図の破線で
示された修正された節点要素データを用いてコンピュー
タ100で電場を解析する。電場の解析法は、例えば公
知例1日本材料学会 第18回X線材料強度に関するシ
ンポジウム 前刷 pp。
al /c, a4 /c, al /c are obtained. Therefore, find the ratio between a 1 / c - a 5 / c and the aspect ratio a / C of the master curve used, and find that the aspect ratio of the master curve that is closest to 1 is close to the aspect ratio of the actual crack. , let this be the aspect ratio of the crack. Here, it is assumed that the aspect ratio a/c is 0.5. Next is the calculation of potential distribution. First, nodal element data with a tentatively determined aspect ratio a/C=0.5 is read from the mesh shape storage device 101 to the computer 100. First, as shown in Figure 11, select the node closest to the surface crack length 2c=17. In the depth direction, nodes are set every 5%, and here the plate thickness is 2.
Since this is an example of 0 cabinets, 20 = 1 on the surface
The closest nodes in order of 7 are within ±10 range from the crack center and 5 in depth.
It becomes the thing of ■. The nodes connecting the crack tips of 2C=20M shown by solid lines are moved as shown by broken lines in both the surface direction (X direction) and the depth direction (y direction) so that 2C=17rm. Next, as shown in FIG. 12, the first
Move the nodes corrected in Figure 1. Here, the shape of the crack tip moves to become a semi-ellipse. The electric field is analyzed by the computer 100 using the corrected nodal element data indicated by the broken line in FIG. The electric field analysis method is described in, for example, Publication Example 1, Materials Society of Japan, 18th Symposium on X-ray Material Strength, Preprint, pp.

125〜131”に記載されているような方法による。125-131''.

解析された電位分布に基づき、実際の測定位置に対応す
るき裂周辺の電位差分布を第13図に示す。実線で示し
た測定値との間に差があれば、測定された電位差比の解
析された電位差比に対する化分だけ、き裂先端の節点座
標を深さ方向き移動する。それを第14図に示す。第1
4図で表面から2本目の実線が解析したときのき裂先端
を示し、破線は測定値と解析値との化分だけ修正したき
裂先端である。次に、再び第14図の破線の節点要素デ
ータを用いてコンピュータ100で電場を解析し、実測
値と比較する。両者が一致するまでき裂先端の節点の移
動修正を行う。最終的に両者が一致したときの解析に使
用したき裂形状を実際のき裂形状と判定する。この方法
によれば、き裂形状を大体±0.1 mの精度で決定す
ることが可能である。勿論、そのためにはき裂周辺の電
位差分布を精度よく測定しておかねばならないが、通常
、1μV程度の分解能を有する微小電圧計を用いて数回
測定して平均すれば十分である。また、第11図から第
14図ではメツシュ形状記憶装置101に記憶された節
点要素を移動修正したが、第11図の破線で示すような
新しい節点要素を追加して電場を解析しても良い。
Based on the analyzed potential distribution, the potential difference distribution around the crack corresponding to the actual measurement position is shown in FIG. If there is a difference from the measured value shown by the solid line, the nodal coordinates at the crack tip are moved in the depth direction by the difference between the measured potential difference ratio and the analyzed potential difference ratio. This is shown in FIG. 1st
In Figure 4, the second solid line from the surface shows the crack tip when analyzed, and the broken line is the crack tip corrected by the difference between the measured value and the analytical value. Next, the computer 100 analyzes the electric field again using the nodal element data indicated by the broken line in FIG. 14, and compares it with the actual measured value. The movement of the node at the crack tip is corrected until the two match. When the two finally match, the crack shape used in the analysis is determined to be the actual crack shape. According to this method, it is possible to determine the crack shape with an accuracy of approximately ±0.1 m. Of course, for this purpose, it is necessary to accurately measure the potential difference distribution around the crack, but it is usually sufficient to measure it several times using a microvoltmeter with a resolution of about 1 μV and average it. In addition, in FIGS. 11 to 14, the nodal elements stored in the mesh shape memory device 101 are moved and modified, but the electric field may be analyzed by adding new nodal elements as shown by the broken lines in FIG. .

第15図以下には他の実施例を示す。第15図は要素形
状を矩形にした場合である。この矩形要素を用いた方法
を述べる。第9図に示したような電位差分布が構造物で
得られたとすると、第16図に示すようにメツシュ形状
記憶装置101から呼び出した節点の移動を行う。即ち
、第10図と第11図に示した方法と同じ方法にょシ、
まず、表面のき裂長さ2 C=17■に最も近い節点を
選ぶ。第16図ではX方向の節点間隔を2..5■とじ
たので、き裂中央から7.5■の節点が最もそれに近い
ので、その節点のX方向の座標を深さ方向の節点と一緒
にC=&5■となるように移動する。
Other embodiments are shown in FIG. 15 and below. FIG. 15 shows a case where the element shape is rectangular. A method using this rectangular element will be described. Assuming that a potential difference distribution as shown in FIG. 9 is obtained in the structure, the nodes read from the mesh shape memory device 101 are moved as shown in FIG. That is, the same method as shown in FIGS. 10 and 11,
First, select the node closest to the surface crack length 2C=17■. In Fig. 16, the node spacing in the X direction is set to 2. .. Since 5■ is closed, the node 7.5■ from the center of the crack is closest to it, so the coordinate of that node in the X direction is moved together with the node in the depth direction so that C=&5■.

次に、第10図のように各種のアスペクト比に対する電
位差比V / V (lとき裂深さaとの関係のマスタ
ーカーブを用いて得られた81〜aIとき裂長さC=&
5■との比の中で最も使用したマスターカーブのアスペ
クト比a / Cに近いマスターカーブを用いて得られ
たき裂深さ、例えばa3を求める。a3に最も近いx 
= Owm (Y軸上)の節点を仮のき裂最深点とする
。その節点をき裂深さa3と一致するように移動すると
共に、表面のき裂先端から最深点までの間はき裂形状が
仮に半楕円となるように移動する。
Next, as shown in Fig. 10, the potential difference ratio V / V (81~aI and crack length C = &
The crack depth, for example a3, obtained by using the master curve that is closest to the aspect ratio a/C of the master curve used most among the ratios of 5 and 5 is determined. x closest to a3
= Owm The node (on the Y-axis) is the tentative deepest point of the crack. The node is moved so that it matches the crack depth a3, and the crack is moved so that the shape of the crack becomes a semi-ellipse from the tip of the surface crack to the deepest point.

第11図、第12図、纂和祠ト第14図、第16図、第
17図においては便宜上2次元で表示しであるが、実際
にはき装面に垂直な方向にも節点要素はある3次元要素
である。また要素を隋成する節点数はき裂形状が曲線的
であるので、21節点要素として中間節点を設けること
により曲線となるようにする。但し、第16図のように
矩形状要素を使う場合は前記楕円状要素とは異なシ、節
点及び中間節点を一致させてやる必要がある。
11, 12, and 14, 16, and 17 are shown in two dimensions for convenience, but in reality, nodal elements also exist in the direction perpendicular to the wearing surface. It is a certain three-dimensional element. Further, since the crack shape is curved in terms of the number of nodes forming the element, a middle node is provided as a 21-node element to make it curved. However, when using a rectangular element as shown in FIG. 16, it is necessary to match nodes, nodes, and intermediate nodes different from those of the elliptical element.

第16図の節点要素データを用いてき装面の電位は零と
して、コンピュータ1ooで電場を解析すればき裂周辺
の電位分布、ひいては電位差分布が求められる。それが
第13図のようになった場合には第14図と同じように
構造物で測定された電位差比の解析された電位差比に対
する分だけ第17図の実線で示されたき裂先端の節点座
標を深さ方向に移動して破線で示すような形とする。こ
の新しいき裂形状の要素について電場を解析し、実測値
と再び比較する。解析値と実測値が一致するまでき裂先
端の節点の微修正を繰返して、一致したときの解析に使
用したき裂形状を実際のき裂形状とする。この方法は前
記の種々のアスペクト比のき裂形状の節点要素データを
使用する場合とほぼ同じ精度でき裂形状を決定できるが
、メツシュ記憶装置101に記憶させておく節点要素デ
ータが1組と少ないこと、及びそのデータは節点が規則
正しい配列であるので、作成し易いし、また、実際上は
自動増分でデータを作成するのでデータとしては非常に
少なくて済む利点がある。
By using the nodal element data in FIG. 16 and assuming that the potential on the armored surface is zero, the electric field is analyzed on the computer 1oo, and the electric potential distribution around the crack, and thus the electric potential difference distribution, can be determined. If it becomes as shown in Fig. 13, the node at the crack tip shown by the solid line in Fig. 17 will be the same as Fig. 14, by the amount of the potential difference ratio measured in the structure relative to the analyzed potential difference ratio. The coordinates are moved in the depth direction to form the shape shown by the broken line. We will analyze the electric field for this new crack shape element and compare it again with the measured values. Repeat fine corrections to the nodes at the crack tip until the analytical value and the measured value match, and when they match, the crack shape used in the analysis is defined as the actual crack shape. Although this method can determine the crack shape with almost the same accuracy as the case of using the nodal element data of crack shapes with various aspect ratios described above, only one set of nodal element data is stored in the mesh storage device 101. Moreover, since the nodes are arranged in a regular manner, the data is easy to create, and since the data is actually created by automatic increment, there is an advantage that the amount of data is very small.

第18図は他の実施例を示す。種々のアスペクト比の楕
円形の節点要素データや矩形の節点要素データを作成し
ておき、き裂形状に合うように節点データを変更するの
は手間がかかる。以下に述べる方法は節点データを変更
しないで概略のき裂形状を求める簡易的な方法である。
FIG. 18 shows another embodiment. It is time-consuming to create elliptical nodal element data and rectangular nodal element data with various aspect ratios and then change the nodal element data to match the crack shape. The method described below is a simple method for determining the approximate crack shape without changing the node data.

初めに、構造物の、特にき裂周辺を第18図のように比
較的細かい要素に分割する。ここでは1辺の長さがII
IIIIの要素を採用した。第9図のような測定結果が
得られた場合、表面のき裂長さは2C=17mとなる。
First, the structure, especially the area around the crack, is divided into relatively small elements as shown in FIG. Here, the length of one side is II
The elements of III were adopted. When the measurement results shown in FIG. 9 are obtained, the surface crack length is 2C=17 m.

つぎに、き裂は左右対象としてC= 8 mとする。第
10図に示した方法によ#)a3が求まれば、最深点の
深さ、言い換えれば半楕円き裂の短軸の長さがant表
面の長さ、即ち半楕円き裂の長軸・の長さがCとなるよ
うな半楕円の中に収まるような要素をき裂面として電場
を計算する。例えば第18図では左ハツチングを施した
要素をき裂面として、言い換えれば電位を零として電位
分布を計算し、第13図のよりに差がある場合には更に
黒塗シの要素をき裂面に追加して電場を解析して、電位
差分布を測定値と比較し、最もよく一致するときの要素
がき裂形状と判定するものである。第14図と第17図
に示した最終き裂形状を第18では破線で示したが、こ
のような方法で求めたき裂形状でも精度の良いことが分
かる。
Next, the crack is assumed to be symmetrical and C=8 m. If #) a3 is determined by the method shown in Figure 10, the depth of the deepest point, in other words, the length of the short axis of the semielliptic crack is the length of the ant surface, that is, the long axis of the semielliptic crack. - Calculate the electric field using an element that fits inside a semi-ellipse with length C as a crack surface. For example, in Figure 18, the element hatched on the left is used as the crack plane, in other words, the potential distribution is calculated with the potential as zero, and if there is a difference in twist in Figure 13, the element shaded in black is used as the crack surface. The electric field added to the surface is analyzed, the potential difference distribution is compared with the measured value, and the element with the best match is determined to be the crack shape. Although the final crack shape shown in FIGS. 14 and 17 is shown by a broken line in FIG. 18, it can be seen that even the crack shape obtained by this method has good accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば構造部材の表面での電位分布または電位
差分布を測定することにより、予めコンピュータに入力
しておいた種々の要素の形状を測定値に合わせて修正し
て電場を解析することを繰シ返すことによりき裂の形状
を精度よく検出できるという効果がある。
According to the present invention, by measuring the potential distribution or potential difference distribution on the surface of a structural member, it is possible to analyze the electric field by modifying the shapes of various elements that have been input into a computer in advance according to the measured values. By repeating this process, the shape of the crack can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は欠陥検出装置、第2図は解析によって求めた表
面き裂周辺の電位分布で、中央の実線がき裂で破線が等
電位線である。第3同は第2図に示した電位分布のき裂
近傍でのき裂に平行な電位分布、第4図は電位分布測定
用の探傷ヘッドの構造を示す図、第5図は端子の形状及
び基板への取付は状況、第6図はき製形状判定の流れ図
、第7図はアスペクト比が1.0の要素分割図、第8図
はアスペクト比が0.5の要素分割図、第9図は実測さ
れたき裂周辺の電位差分布、第10図は電位差比とき裂
深さの関係、第11図、第12図、第14図は節点要素
データの修正方法を示す図、第13図は電位差分布の測
定値と解析値の比較を示す図、第15図は矩形状の要素
分割図、第16図。 第17図は節点要素データの修正方法を示す図、第18
図は矩形状要素を用いて節点の移動を行わないでき裂形
状を判定する方法を示す図である。 1・・・駆動装置、5・・・給電端子、10・・・測定
端子、20・・・探傷ヘッド、21・・・基板、25・
・・ステッピングモータ、30・・・空気シリンダ、5
1・・・X軸、52・・・ステッピングモータ、53・
・・減速機、56・・・Y軸、57・・・ステッピング
モータ、58・・・減速機、60・・・側板、61・・
・コンプレッサ、62・・・吸盤、65・・・駆動制御
装置、6.6・・・直流電源、67・・・スイッチング
装置、70・・・スキャナー、71・・・微小電圧計、
72・・・インターフェース、100・・・コンピュー
タ、101・・・メツシュ形状記憶装置、102・・・
電位分布記憶装置、103・・・記憶装置。 %+   図 ¥J z 国 ¥J3図 更 4 図 纂5図 ′FJ  6  図 fJ  7  図 ”iq  図 夏 lo  図 二裂シVゴは 第11図 χ 冨12図 ■lj 口 冨 14  図 蔓 !5″ 図 冨 16  図
FIG. 1 shows a defect detection device, and FIG. 2 shows a potential distribution around a surface crack determined by analysis, where the solid line in the center is the crack and the broken line is the equipotential line. Figure 3 shows the potential distribution parallel to the crack near the crack shown in Figure 2, Figure 4 shows the structure of the flaw detection head for measuring potential distribution, and Figure 5 shows the shape of the terminal. Figure 6 is a flowchart for determining the shape of the plate, Figure 7 is an element division diagram with an aspect ratio of 1.0, Figure 8 is an element division diagram with an aspect ratio of 0.5, Figure 9 shows the actual measured potential difference distribution around the crack, Figure 10 shows the relationship between potential difference ratio and crack depth, Figures 11, 12, and 14 show how to correct the nodal element data, and Figure 13. 15 is a diagram showing a comparison between measured values and analytical values of potential difference distribution, FIG. 15 is a rectangular element division diagram, and FIG. 16 is. Figure 17 is a diagram showing how to modify node element data, Figure 18
The figure shows a method for determining the shape of a crack without moving nodes using rectangular elements. DESCRIPTION OF SYMBOLS 1... Drive device, 5... Power supply terminal, 10... Measurement terminal, 20... Flaw detection head, 21... Board, 25...
...Stepping motor, 30...Air cylinder, 5
1...X axis, 52...Stepping motor, 53...
...Reducer, 56...Y axis, 57...Stepping motor, 58...Reducer, 60...Side plate, 61...
・Compressor, 62... Suction cup, 65... Drive control device, 6.6... DC power supply, 67... Switching device, 70... Scanner, 71... Micro voltmeter,
72... Interface, 100... Computer, 101... Mesh shape memory device, 102...
Potential distribution storage device, 103... storage device. % + Fig. J Z Country ¥ J3 Fig. 4 Fig. 5 Fig. FJ 6 Fig. Fig. Fig. 7 "IQ Fig. 5″ Figure 16

Claims (1)

【特許請求の範囲】 1、部材表面に相互に離間した1組または複数組の給電
端子対により直流電流を印加し、該給電端子対の間にお
いて電位差測定端子対を走査させて電位分布を測定し、
該電位分布から欠陥の形状を検出する装置において、電
位差分布を測定するための測定端子を走査する装置と該
装置を駆動する制御装置と共に、電場を有限要素法によ
り解析し得る電場解析装置を設け、測定された電位差分
布から予め前記電場解析装置に記憶させた種々の形状の
欠陥の電位差分布との比較から決定された仮の欠陥形状
を基に有限要素法により電場を解析して電位差分布を求
め、該解析された電位差分布と測定された電位差分布と
を比較して解析する欠陥形状に修正を加えて再び計算し
、この過程を繰り返して最終的に電位差分布の測定値と
計算値が一致したときの欠陥形状を部材の欠陥形状と判
定することを特徴とする欠陥検出法および装置。 2、特許請求の範囲第1項記載のものにおいて電場解析
装置の記憶回路の中に半楕円形のアスペクト比が種々異
なる要素を記憶させると共に、欠陥深さが異なる場合の
電位分布を計算して記憶させておき、測定された電位差
分布と最も近い電位差分布のアスペクト比、欠陥深さの
欠陥形状を選び出し、各位置における測定された電位差
と解析による電位差の比だけ要素節点の深さを移動して
電場解析装置の演算回路により電場を解析して電位差分
布を求めることを繰り返して、解析された電位差分布と
測定された電位差分布が一致したときの欠陥形状を部材
の欠陥形状と判定することを特徴とする欠陥検出法およ
び装置。 3、特許請求の範囲第2項記載のものにおいて電場解析
装置の記憶回路の中に記憶させる欠陥のアスペクト比と
して1.0、0.75、0.5、0.2、0.1、欠陥
深さとして部材の板厚の5%、10%、15%、20%
、25%、30%、35%、40%、45%、50%、
55%、60%、65%、70%、75%、80%、8
5%、90%、95%、100%としたことを特徴とす
る欠陥検出法および装置。 4、特許請求の範囲第2項記載のものにおいて測定され
た電位差分布と最も近い電位差分布のアスペクト比、欠
陥深さの欠陥形状を選び、各位置における解析された電
位差に対する測定された電位差の比だけ要素節点の深さ
を移動させたときの欠陥形状を部材の欠陥形状と判定す
ることを特徴とする欠陥検出法および装置。 5、特許請求の範囲第1項記載のものにおいて電場解析
装置の記憶回路の中に小さい矩形の要素を記憶させてお
き、測定された電位差分布の形状と一致するように欠陥
とする要素部分を決定し、演算回路により電位差分布を
解析し、解析された電位差分布と測定された電位差分布
に差があれば、欠陥とする要素部分を増減させて、前記
演算回路により電位差分布を解析することを繰り返して
測定された電位差分布と一致したときの欠陥要素部分の
形状を部材の欠陥形状と判定することを特徴とする欠陥
検出法および装置。 6、特許請求の範囲第1項記載のものにおいて電位分布
を測定するための給電端子及び測定端子を走査する装置
と該装置を駆動する制御装置を設け、部材の形状を電場
解析装置に入力することにより前記電場解析装置に内蔵
した自動要素分割プログラムにより部材を要素分割し、
欠陥形状及び電流入力位置を入力することにより電位分
布を解析し、測定された電位分布と一致するまで欠陥形
状を換えて電位分布を計算し、一致したときの欠陥形状
を部材の欠陥形状と判定することを特徴とする欠陥検出
法および装置。
[Claims] 1. Direct current is applied to the surface of the member through one or more power supply terminal pairs spaced apart from each other, and a potential difference measuring terminal pair is scanned between the power supply terminal pairs to measure the potential distribution. death,
In the device for detecting the shape of a defect from the potential distribution, an electric field analysis device capable of analyzing the electric field by a finite element method is provided, along with a device for scanning the measurement terminal for measuring the potential difference distribution and a control device for driving the device. The potential difference distribution is determined by analyzing the electric field using the finite element method based on a temporary defect shape determined by comparing the measured potential difference distribution with the potential difference distribution of defects of various shapes stored in advance in the electric field analysis device. The analyzed potential difference distribution is compared with the measured potential difference distribution, and the defect shape to be analyzed is corrected and calculated again. This process is repeated until the measured value and calculated value of the potential difference distribution match. A defect detection method and device characterized in that the defect shape when the defect is detected is determined to be the defect shape of the member. 2. In the device described in claim 1, semi-elliptical elements with various aspect ratios are stored in the storage circuit of the electric field analyzer, and potential distributions when the defect depths are different are calculated. Then, select the aspect ratio of the potential difference distribution closest to the measured potential difference distribution and the defect shape of the defect depth, and move the depth of the element node by the ratio of the measured potential difference and the analyzed potential difference at each position. By repeatedly analyzing the electric field and determining the potential difference distribution using the arithmetic circuit of the electric field analyzer, the defect shape when the analyzed potential difference distribution and the measured potential difference distribution match is determined to be the defect shape of the member. Characteristic defect detection method and device. 3. In the item described in claim 2, the aspect ratio of the defect to be stored in the storage circuit of the electric field analyzer is 1.0, 0.75, 0.5, 0.2, 0.1, and the defect Depth: 5%, 10%, 15%, 20% of the thickness of the member
, 25%, 30%, 35%, 40%, 45%, 50%,
55%, 60%, 65%, 70%, 75%, 80%, 8
5%, 90%, 95%, and 100% defect detection method and device. 4. Select the defect shape of the defect depth and the aspect ratio of the potential difference distribution closest to the measured potential difference distribution in the item described in claim 2, and calculate the ratio of the measured potential difference to the analyzed potential difference at each position. A defect detection method and device characterized in that a defect shape obtained when the depth of an element node is moved by a depth is determined to be a defect shape of a member. 5. In the device described in claim 1, a small rectangular element is stored in the memory circuit of the electric field analyzer, and the element portion to be defected is made to match the shape of the measured potential difference distribution. the potential difference distribution is analyzed by the arithmetic circuit, and if there is a difference between the analyzed potential difference distribution and the measured potential difference distribution, the element portion to be determined as a defect is increased or decreased, and the potential difference distribution is analyzed by the arithmetic circuit. A defect detection method and device characterized in that the shape of a defective element portion when it matches a repeatedly measured potential difference distribution is determined to be a defect shape of a member. 6. In the device described in claim 1, a device for scanning the power supply terminal and the measurement terminal for measuring the potential distribution and a control device for driving the device are provided, and the shape of the member is input to the electric field analysis device. By this, the member is divided into elements by an automatic element division program built into the electric field analysis device,
Analyzes the potential distribution by inputting the defect shape and current input position, calculates the potential distribution by changing the defect shape until it matches the measured potential distribution, and determines the defect shape when it matches as the defect shape of the member. A defect detection method and device characterized by:
JP7830485A 1985-04-15 1985-04-15 Defect detector Granted JPS61237045A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7830485A JPS61237045A (en) 1985-04-15 1985-04-15 Defect detector
DE19863612651 DE3612651A1 (en) 1985-04-15 1986-04-15 METHOD AND DEVICE FOR DETECTING CRACKS
US06/852,313 US4764970A (en) 1985-04-15 1986-04-15 Method and apparatus for detecting cracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7830485A JPS61237045A (en) 1985-04-15 1985-04-15 Defect detector

Publications (2)

Publication Number Publication Date
JPS61237045A true JPS61237045A (en) 1986-10-22
JPH049470B2 JPH049470B2 (en) 1992-02-20

Family

ID=13658184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7830485A Granted JPS61237045A (en) 1985-04-15 1985-04-15 Defect detector

Country Status (1)

Country Link
JP (1) JPS61237045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435357A (en) * 1987-07-31 1989-02-06 Hitachi Ltd Deciding method for surface cracking
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2007057448A (en) * 2005-08-26 2007-03-08 Hitachi Ltd Flaw monitoring device
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196450A (en) * 1982-05-12 1983-11-15 Hitachi Ltd Detection of crack shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196450A (en) * 1982-05-12 1983-11-15 Hitachi Ltd Detection of crack shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435357A (en) * 1987-07-31 1989-02-06 Hitachi Ltd Deciding method for surface cracking
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2007057448A (en) * 2005-08-26 2007-03-08 Hitachi Ltd Flaw monitoring device
JP2014126375A (en) * 2012-12-25 2014-07-07 Ntn Corp Hardening quality inspection device

Also Published As

Publication number Publication date
JPH049470B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
US8374803B2 (en) Damage detection apparatus, damage detection method and recording medium
US7443177B1 (en) Characterization of conductor by alternating current potential-drop method with a four-point probe
US6377039B1 (en) Method for characterizing coating and substrates
US4764970A (en) Method and apparatus for detecting cracks
CN111948279A (en) Quantitative evaluation method for weak magnetic detection of paramagnetic metal material crack defects
CN105021637A (en) Method for determining crystal reciprocity primitive cell basis vector based on EBSD pattern
Farayola et al. Detection of site to site variations from volume measurement data in multisite semiconductor testing
JPS61237045A (en) Defect detector
US10132906B2 (en) Multi-element sensor array calibration method
EP0401852A3 (en) Surface microscope
US6285183B1 (en) Method and system for measuring the volume loss of a metal substrate
CN111556963A (en) Scanning Electron Microscopy and Methods for Analyzing Secondary Electron Spin Polarization
JPS61239154A (en) Crack shape detection method and device
Betta et al. Calibration and adjustment of an eddy current based multi-sensor probe for non-destructive testing
US11630081B2 (en) Method for non-destructively examining an anode of an aluminium electrolysis cell
CN117943732B (en) Welding quality detection method, system, device and storage medium
Martens et al. Fast precise eddy current measurement of metals
CN111323476A (en) Crack direction judgment method based on force magnetic effect
JPS61292546A (en) Method for detecting surface crack shape
JP2601477B2 (en) Surface crack shape determination method and device
JPH04551B2 (en)
DE4211548A1 (en) Two=dimensional testing of current distribution in printed circuit board - using array of magnetoresistive sensors, each having screening part shaped to define detection depth
Carere et al. Improving Defect Detection in Eddy Current Testing using Multi-Frequency Rotating Eddy Current Strategy
JPS58196450A (en) Detection of crack shape
Dusek et al. A novel measurement technique for stencil printed solder paste