[go: up one dir, main page]

JPS61236685A - Crucible for growing compound semiconductor - Google Patents

Crucible for growing compound semiconductor

Info

Publication number
JPS61236685A
JPS61236685A JP60077566A JP7756685A JPS61236685A JP S61236685 A JPS61236685 A JP S61236685A JP 60077566 A JP60077566 A JP 60077566A JP 7756685 A JP7756685 A JP 7756685A JP S61236685 A JPS61236685 A JP S61236685A
Authority
JP
Japan
Prior art keywords
crucible
compound semiconductor
boron nitride
pbn
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60077566A
Other languages
Japanese (ja)
Inventor
Masaharu Suzuki
正治 鈴木
Kenji Nomura
謙二 野村
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60077566A priority Critical patent/JPS61236685A/en
Publication of JPS61236685A publication Critical patent/JPS61236685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide the title crucible for preparing a compound semiconductor having long life and high quality wherein said crucible comprises a specified boron nitride prepd. by thermal cracking. CONSTITUTION:Boron nitride is formed by chemical vapor deposition from a gaseous mixture consisting of boron halide and ammonia at >=1,850 deg.C deposition temp. at >=400mum/hr vapor deposition velocity. Thus, a crucible for growing a compound semiconductor is obtd. from boron nitride having <=6.90Angstrom lattice constant of the C axis, >=20Angstrom size of crystalline in the direction of the C axis, >=2.1g/cm<3> density and <=50ppm content of Si.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体育成用熱分解窒化ホウ素るつぼ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pyrolytic boron nitride crucible for growing compound semiconductors.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

熱分解窒化ホウ素(以下PBhJという)は高純度、高
品質の窒化ホウ素(BN)として半導体や特殊合金製造
用のるつばをはじめとする巾広い用途で使用されている
工業材料である。
Pyrolytic boron nitride (hereinafter referred to as PBhJ) is a high-purity, high-quality boron nitride (BN) that is an industrial material used in a wide range of applications, including crucibles for manufacturing semiconductors and special alloys.

PBN製るつほやその製法についてはいろいろ提案され
ている。たとえば米国特許第3152006号明細書に
開示されているように、三塩化ホウ素(BCl、 )の
ようなハロゲン化ホウ素とアンモニアとを気体状原料と
し、温度1450〜2300℃、圧力I Torr未満
〜50 Torrの条件下、適当な基材の表面上にBN
を析出させる、いわゆる化学気相蒸着法(以下CVD法
という)により得られる。基材材料とCVD法の条件を
適切に選べば析出したPBN膜を基材がら分離し、自立
型のP−BN物品例えばるつばを得ることができる。
Various proposals have been made regarding PBN-made rutsuho and its manufacturing method. For example, as disclosed in US Pat. No. 3,152,006, a boron halide such as boron trichloride (BCl) and ammonia are used as gaseous raw materials at a temperature of 1450 to 2300°C and a pressure of less than I Torr to 50 BN on the surface of a suitable substrate under conditions of Torr.
It is obtained by a so-called chemical vapor deposition method (hereinafter referred to as CVD method), in which . By appropriately selecting the base material and CVD process conditions, the deposited PBN film can be separated from the base material to obtain a self-supporting P-BN article, such as a crucible.

PBN物品は優れた耐食性、熱的安定性を有しまた高純
度であることがら化合物半導体育成用るつぼとして重用
されており、不純物が少く電気特性の優れた化合物半導
体単結晶を育成する上で不可欠の材料となっている。
PBN products have excellent corrosion resistance, thermal stability, and high purity, so they are used as crucibles for growing compound semiconductors, and are essential for growing compound semiconductor single crystals with low impurities and excellent electrical properties. It is the material of

しかしながら、PBNけ前記したようにCVD法により
作製される為に基材表面と平行に結晶のC面f foi
l l而)が高麗に配向した層構造を1−7ている。こ
のためるつぼとして繰り返し使用する際に、層剥離を起
こしやすく、寿命が短く、また一定した寿命を持つ物が
得られにくいという問題点があった。またPBNるつぼ
に含まれる金属不純物が、化合物半導体育成中にその中
に混入し、著しくその電気特性を低下させるという問題
点もあった。
However, since PBN is produced by the CVD method as mentioned above, the C plane of the crystal f foi is parallel to the base material surface.
1-7) has a layered structure oriented in a Goryeo layer. Therefore, when used repeatedly as a crucible, there are problems in that layers tend to peel off, the lifespan is short, and it is difficult to obtain a product with a constant lifespan. There is also the problem that metal impurities contained in the PBN crucible get mixed into the PBN crucible during growth of the compound semiconductor, significantly degrading its electrical properties.

本発明者らはこねらの問題点を解決する為に種々の研究
を行った結果、PBWるつぼの殉命およびそれから育成
される化合物半導体の品質とPBWるつほの物性との間
に密接な関係があり、その物性を特定の範囲に制御する
ことによりるつぼの寿命を長くしかつ安定化させ、さら
に育成される化合物半導体を高品質にできるという知見
を得た。その物性の中重要な因子としてはたとえば次の
ものがあげられる。
As a result of various studies conducted by the present inventors in order to solve the problems of the PBW crucible, we found that there is a close relationship between the failure of the PBW crucible, the quality of the compound semiconductor grown from it, and the physical properties of the PBW crucible. We have found that by controlling the physical properties within a specific range, the life of the crucible can be extended and stabilized, and the quality of the compound semiconductor grown can be improved. Among the physical properties, important factors include, for example, the following.

(1)  るつぼを構成するBN結晶(六方晶)のC軸
の格子定数(co) (2)  るつぼを構成するBN結晶子のC軸方向の大
きさく Lc 1 (3)  るつぼの密度 (4)  るつぼに含まれるシリコン濃度(1)は、B
N結晶化度を表わすものであり、この値が小さくなるに
従い、すなわち理論値に近づくに従い結晶化が進んでい
ることを示すものである。(2)は結晶の大きさを表わ
すもので、値が大きければ結晶が成長していることを示
す。
(1) C-axis lattice constant (co) of the BN crystal (hexagonal crystal) constituting the crucible (2) Size in the C-axis direction of the BN crystallite constituting the crucible Lc 1 (3) Density of the crucible (4) The silicon concentration (1) contained in the crucible is B
It represents the degree of N crystallinity, and as this value decreases, that is, as it approaches the theoretical value, it indicates that crystallization progresses. (2) represents the size of the crystal, and a large value indicates that the crystal is growing.

(3)は、BN結晶格子の大きさもさることながらその
積み重なり方の尺度を示すものと考えられており、この
値が大きい程結晶化の進んだ結晶がち密に積み重なって
いることを示す。
(3) is considered to be a measure of not only the size of the BN crystal lattice but also the way in which it is stacked, and the larger this value is, the more highly crystallized the crystals are stacked up.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はハロゲン化ホウ素とアンモニアを原料とし、化
学気相蒸着法により得られるPBNるつほにおいて、そ
のPBNのC軸の格子定数が6.90オングストローム
以下、C軸方向における結晶子の大きさが20オングス
トローム以上であり、しかもその密度が2.1 El/
cd以上で、かつシリコン含有量が50 ppm以下の
ものから構成された化合物半導体育成用PBNるつほで
ある。
The present invention provides a PBN rutsuho obtained by chemical vapor deposition using boron halide and ammonia as raw materials, in which the lattice constant of the C axis of the PBN is 6.90 angstroms or less, and the size of crystallites in the C axis direction. is 20 angstroms or more, and its density is 2.1 El/
This is a PBN rutsuho for compound semiconductor growth, which is made of a material having a cd or more and a silicon content of 50 ppm or less.

以下さらに本発明を具体的に説明する。The present invention will be further explained in detail below.

化合物半導体育成用るつぼにおいて、それを構成するP
BNのC軸の格子定数が6.90オングストロームを越
えるもの、C軸方向における結晶子の大きさが20オン
グストローム未満のものおよびるつぼの密度が2.1F
/d未満のものは、機械的性質や耐熱衝撃性の低下が著
しいためにるつぼとして繰り返し使用すると、層剥離が
起こしやすく、その結果るつぼの寿命が著しく短い。こ
の原因としては、結晶(1−、の進んでないBN結晶や
、結晶が極端に小さいものまた結晶がち密に積み重なっ
ていないこと等がPBNの微構造に影響しているだめと
考えられる。
In the crucible for growing compound semiconductors, the P that makes up the crucible
BN with a C-axis lattice constant of more than 6.90 angstroms, a crystallite size in the C-axis direction of less than 20 angstroms, and a crucible density of 2.1F.
If it is less than /d, the mechanical properties and thermal shock resistance are significantly lowered, and when used repeatedly as a crucible, the layers tend to peel off, resulting in a significantly short life span of the crucible. The reason for this is thought to be that the microstructure of PBN is affected by undeveloped BN crystals (1-), extremely small crystals, or crystals that are not stacked closely.

この様なりNを得る為の具体的なCVD条件としては、
析出温度を1850℃以上に蒸着速度f400μm/h
r以下とすることが好ましい。
The specific CVD conditions to obtain N like this are:
Deposition temperature: 1850°C or higher; deposition rate: f: 400 μm/h
It is preferable to make it below r.

また、QaAs  などの化合物半導体単結晶を育成す
る際に、るつぼに含まれるシリコン含有量が50 pp
mを越えるものを用いると、その比抵抗が1×107Ω
m未満の物となり好ましくない。
In addition, when growing compound semiconductor single crystals such as QaAs, the silicon content in the crucible is 50 ppp.
If a material exceeding m is used, its specific resistance will be 1 x 107Ω.
It is less than m, which is not preferable.

るつぼに含捷れる不純物として特にシリコンに注目した
理由としては、るつぼを製作する際に、用いられる三塩
化ホウ素の沸点とシリコン塩化物の沸点が近い為に蒸留
分離しきれないシリコン塩化物が三塩化ホウ素中に多く
含まれることが多く、その結果としてPBNるつぼ中に
は金属不純物の中でも特にシリコンが多く含まれる傾向
が見られる。PBNるつぼのシリコンte50 ppm
以下にする為には原料として99.91以上(シリコン
濃度50 ppm以下)の三塩化ホウ素を用い、さらに
基材として灰分0.1重量係以下の黒鉛を用いることが
好ましい。
The reason why we focused on silicon as an impurity that can be included in the crucible is that when making the crucible, the boiling point of boron trichloride used is close to the boiling point of silicon chloride, so silicon chloride, which cannot be separated by distillation, is It is often contained in large amounts in boron chloride, and as a result, PBN crucibles tend to contain particularly large amounts of silicon among metal impurities. PBN crucible silicon te50 ppm
In order to achieve the following, it is preferable to use boron trichloride with an ash content of 99.91 or more (silicon concentration of 50 ppm or less) as a raw material, and graphite with an ash content of 0.1 or less by weight as a base material.

PBHの物性は、以下に示す方法で容易に変えることが
可能である。すなわちPBNを作製する際のCVD条件
、たとえば析出温度を高くすることにより、C軸の格子
定数coを小さく、結晶子の大きさ、密度を大きくする
ことが可能である。甘だ時間当りに供給する原料の葉を
増やすすなわち蒸着速度を太きくするとC軸の格子定数
Coは大きく、結晶子の大きさLcけ小さく、その密度
は小さくなる傾向がある。
The physical properties of PBH can be easily changed by the method shown below. That is, by increasing the CVD conditions when producing PBN, such as increasing the precipitation temperature, it is possible to decrease the lattice constant co of the C axis and increase the size and density of crystallites. When the number of raw materials supplied per sweet time is increased, that is, when the deposition rate is increased, the lattice constant Co of the C axis increases, the crystallite size Lc decreases, and the density tends to decrease.

1だP B N中の不純物量は当然のことながら原料ガ
スの純度及び基材の純度と密接な関係があり、これらの
純度を変えることで容易に変えることができる。
Naturally, the amount of impurities in PBN is closely related to the purity of the raw material gas and the purity of the base material, and can be easily changed by changing these purities.

本発明によるPBNるつぼの効率的に得る為のCVD条
件の例としては、析出温度1900℃以上、蒸着速度3
00μm / h r  以下とし、原料として純度9
9.91以上(811m%度50 ppm以下)の三塩
化ホウ素をまた基材に灰分が0.1重量係以下の黒鉛を
用いることが挙げられる。
Examples of CVD conditions for efficiently obtaining a PBN crucible according to the present invention include a deposition temperature of 1900°C or higher, and a deposition rate of 3.
00μm/hr or less, and purity 9 as raw material.
Examples include using boron trichloride with a concentration of 9.91 or more (811 m% degree, 50 ppm or less) and graphite with an ash content of 0.1 or less by weight as a base material.

実施例 10t−In巾×60m長×1cm厚の黒鉛板6枚を使
い、直径30mの黒鉛板(底板)の上面に六角形状反応
室を形成した。底板の中央にはガス導入の為の孔を開け
、原料ガス導入管として予めPBN被覆した黒鉛の管2
本を同軸になるように接続した。六角形状体上端から直
径96m+、長さ100鰯のるつぼ型の黒鉛基材を吊り
下げ、反応室全体を抵抗加熱方式の真空炉内(F装入し
た。炉をl O−” Torr  まで排気[7た後、
析出温度まで加熱した。0.75 TOrr  の圧力
下、窒素ガスで稀釈した三塩化ホウ素とアンモニアを導
入し、所定時間蒸着後冷却し、生成したPBNを取り外
し肉厚1mのPBNるつぼを得た。
Example 10 Using six graphite plates of T-In width x 60 m length x 1 cm thickness, a hexagonal reaction chamber was formed on the top surface of the graphite plate (bottom plate) with a diameter of 30 m. A hole is made in the center of the bottom plate for gas introduction, and a graphite tube 2 coated with PBN in advance is used as the raw material gas introduction tube.
I connected the books so that they were coaxial. A crucible-shaped graphite base material with a diameter of 96 m+ and a length of 100 sardines was suspended from the upper end of the hexagonal body, and the entire reaction chamber was placed in a resistance heating vacuum furnace (F was charged. The furnace was evacuated to 1 O-" Torr [ After 7
Heated to precipitation temperature. Under a pressure of 0.75 Torr, boron trichloride and ammonia diluted with nitrogen gas were introduced, and after vapor deposition for a predetermined period of time, it was cooled, and the generated PBN was removed to obtain a PBN crucible with a wall thickness of 1 m.

3種類のPBNるつほを作製した。作製した3種類のる
つぼについてX線回折法によりPBNのC軸の格子定数
(co)、C軸方向の結晶子の大き5 (Lc)を、ア
ルキメデス法により密度fa)を、発光分光分析法によ
りるつぼ中のシリコン含有量を測定した。
Three types of PBN rutsuho were produced. For the three types of crucibles prepared, the lattice constant (co) of the C axis of PBN and the size of crystallites in the C axis direction (Lc) were determined by X-ray diffraction, the density fa) was determined by Archimedes method, and the density fa) was determined by emission spectrometry. The silicon content in the crucible was measured.

さらに、同一条件で作製した各るつぼの内面をす500
のエメリー紙で約50μm研磨した後、エタノールでる
つぼを洗浄し乾燥した。これらるつぼにより、各々Ga
As  単結晶をB、0゜を封11−1剤として液体封
1Fチョコラルスキ法によりるつ#ヨ゛が破損する迄繰
り返し育成した。るつほが破損する迄に行った育成回数
と、各々のるつぼを用いた際に育成されたGaAs  
単結晶の比抵抗値の平均を表に示す。
Furthermore, the inner surface of each crucible prepared under the same conditions was
After polishing the crucible by about 50 μm with emery paper, the crucible was washed with ethanol and dried. With these crucibles, each Ga
The As single crystal was grown repeatedly by the liquid sealing 1F Czochralski method using B and 0° as the sealing agent 11-1 until the melt was broken. The number of times the crucible was grown before it was damaged, and the GaAs grown when using each crucible.
The average resistivity values of single crystals are shown in the table.

尚、実施例に示[7た実験を同様の操作で3度行ったが
、得られた結果は同じであった。
The experiment shown in Example 7 was conducted three times using the same procedure, but the obtained results were the same.

表 本発明によるPBNるつぼは寿命が20回以上と長く、
このようなるつぼから育成されたGaA1+  単結晶
の比抵抗値も2xlO’Ωm以上の中絶縁性のものであ
ることが明らかである。
Table: The PBN crucible according to the present invention has a long life of more than 20 times.
It is clear that the specific resistance value of the GaA1+ single crystal grown from such a crucible is also moderately insulating, with a resistivity value of 2xlO'Ωm or more.

〔発明の効果〕〔Effect of the invention〕

本発明で示した4因子の物性を同時に満足す(9)  
          ・−・るPBNるつぼは、結晶化
が進み結晶子が大きく、それらがち密に積み重なり、そ
の中に含む金属不純物の極めて少いものである。従って
、化合物半導体を育成する際に本発明のPBNるつほを
用いれば層剥離を起こしに<<、寿命が長く、かつ安定
した物となり、またるつぼから混入する不純物が少い為
に優れた電気特性を持つ化合物半導体が育成できるとい
う利点がある。
Simultaneously satisfies the physical properties of the four factors shown in the present invention (9)
In the PBN crucible, crystallization progresses, the crystallites are large, they are stacked closely together, and there are very few metal impurities contained therein. Therefore, if the PBN crucible of the present invention is used when growing a compound semiconductor, it will not cause layer delamination, will have a long life, and will be stable, and will be excellent because there will be less impurities mixed in from the crucible. The advantage is that compound semiconductors with electrical properties can be grown.

Claims (1)

【特許請求の範囲】[Claims]  ハロゲン化ホウ素とアンモニアとを原料とし、化学気
相蒸着法により得られる化合物半導体育成用熱分解窒化
ホウ素るつぼにおいて、その熱分解窒化ホウ素のC軸の
格子定数が6.90オングストローム以下、C軸方向に
おける結晶子の大きさが20オングストローム以上であ
り、しかもその密度が2.1g/cm^3以上かつ、そ
のシリコン含有量が50ppm以下のものから構成され
た化合物半導体育成用熱分解窒化ホウ素るつぼ。
In a pyrolytic boron nitride crucible for compound semiconductor growth obtained by chemical vapor deposition using boron halide and ammonia as raw materials, the pyrolytic boron nitride has a C-axis lattice constant of 6.90 angstroms or less in the C-axis direction. A pyrolytic boron nitride crucible for growing compound semiconductors, the crucible having a crystallite size of 20 angstroms or more, a density of 2.1 g/cm^3 or more, and a silicon content of 50 ppm or less.
JP60077566A 1985-04-13 1985-04-13 Crucible for growing compound semiconductor Pending JPS61236685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077566A JPS61236685A (en) 1985-04-13 1985-04-13 Crucible for growing compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077566A JPS61236685A (en) 1985-04-13 1985-04-13 Crucible for growing compound semiconductor

Publications (1)

Publication Number Publication Date
JPS61236685A true JPS61236685A (en) 1986-10-21

Family

ID=13637559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077566A Pending JPS61236685A (en) 1985-04-13 1985-04-13 Crucible for growing compound semiconductor

Country Status (1)

Country Link
JP (1) JPS61236685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302757A (en) * 2006-05-10 2007-11-22 Denki Kagaku Kogyo Kk Alpha-type sialon phosphor, method for producing the same, and lighting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302757A (en) * 2006-05-10 2007-11-22 Denki Kagaku Kogyo Kk Alpha-type sialon phosphor, method for producing the same, and lighting apparatus

Similar Documents

Publication Publication Date Title
US11761117B2 (en) SiC single crystal sublimation growth apparatus
US4147572A (en) Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique
JP4574852B2 (en) Method for growing SiC single crystal
US5993770A (en) Silicon carbide fabrication
US20080003447A1 (en) Materials and methods for the manufacture of large crystal diamonds
JP4199921B2 (en) Method and apparatus for producing silicon carbide single crystal
US7520930B2 (en) Silicon carbide single crystal and a method for its production
CN110396717B (en) High-quality high-purity semi-insulating silicon carbide single crystal, substrate and preparation method thereof
JP2000302600A (en) Method for growing large single crystal of single polytype of silicon carbide
CN102405310A (en) Apparatus for producing aluminum nitride single crystal, method for producing aluminum nitride single crystal, and aluminum nitride single crystal
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
EP0065122B1 (en) Device made of silicon nitride for pulling single crystal of silicon and method of manufacturing the same
JPS5935099A (en) Method for growing silicon carbide crystal
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JPH11199395A (en) Production of silicon carbide single crystal
US20090004093A1 (en) Materials and methods for the manufacture of large crystal diamonds
US5674317A (en) Vessel made from pyrolytic boron nitride
JPS61236685A (en) Crucible for growing compound semiconductor
JPH0639360B2 (en) Method for growing 6H-type and 4H-type silicon carbide single crystals
JPH0688866B2 (en) Boron nitride coated crucible and method of manufacturing the same
JP2003034867A (en) Tubular SiC molded body and method for producing the same
JPH0784357B2 (en) Boron nitride coated crucible
JPH0987086A (en) Single crystal manufacturing method
JPS62132798A (en) Crucible for growing compound semiconductor and production thereof
JPS62113770A (en) Crystalline aluminum nitride product and manufacture