JPS6123644Y2 - - Google Patents
Info
- Publication number
- JPS6123644Y2 JPS6123644Y2 JP179080U JP179080U JPS6123644Y2 JP S6123644 Y2 JPS6123644 Y2 JP S6123644Y2 JP 179080 U JP179080 U JP 179080U JP 179080 U JP179080 U JP 179080U JP S6123644 Y2 JPS6123644 Y2 JP S6123644Y2
- Authority
- JP
- Japan
- Prior art keywords
- intake air
- fuel
- engine
- solenoid valve
- canister
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
Description
【考案の詳細な説明】
本考案は車載の燃料タンク等から蒸発した燃料
成分が大気中に放散しないようにした蒸発燃料の
処理装置に関する。[Detailed Description of the Invention] The present invention relates to an evaporated fuel processing device that prevents fuel components evaporated from a vehicle-mounted fuel tank or the like from being released into the atmosphere.
自動車の燃料タンク等から蒸発した燃料成分
(HC)をそのまま外部に放出させることは大気汚
染の一因となるため、この蒸発燃料を一時的に蓄
え、機関の吸入空気中に導入して本来の供給燃料
と共に燃焼室内で燃やすようにした装置が実用さ
れている。(参考文献、特開昭54−20231号公報)
これは、活性炭などの吸着剤を収めたキヤニス
タと呼ばれる容器に、燃料タンク等の蒸発燃料を
導き、吸着剤に一時的に吸着させた燃料成分を機
関運転時に離脱させ、機関吸気中に導入するもの
である。 Discharging evaporated fuel components (HC) directly from automobile fuel tanks, etc. to the outside contributes to air pollution, so this evaporated fuel is temporarily stored and introduced into the intake air of the engine to recover its original content. A device in which the fuel is burned in a combustion chamber along with the supplied fuel is in practical use. (Reference document, Japanese Unexamined Patent Publication No. 54-20231) In this method, evaporated fuel from a fuel tank or the like is introduced into a container called a canister containing an adsorbent such as activated carbon, and the fuel components are temporarily adsorbed by the adsorbent. is removed during engine operation and introduced into the engine intake.
キヤニスタに吸着保持された燃料成分は、機関
運転時の吸気管負圧に応じて活性炭層を介して吸
引された外気に触れて離脱し、外気と共に吸気管
に導入される。 The fuel components adsorbed and held in the canister come into contact with the outside air sucked through the activated carbon layer in response to the intake pipe negative pressure during engine operation, are released, and are introduced into the intake pipe together with the outside air.
ただし、この導入空気は空燃比としては極めて
高い、すなわち含まれている燃料分が少ないの
で、例えば低負荷時のように吸気管負圧が強いと
きに大量に導入されると、吸入混合気が過薄とな
つて排気組成や運転性能に支障をきたすため、そ
の導入路に制御弁を介装して吸入空気量の多い中
〜高負荷時にのみ導入空気を吸引するようにした
り、あるいは導入路そのものを細く絞つて導入空
気の最大流量を制限するなどして対策している。 However, this introduced air has an extremely high air-fuel ratio, that is, it contains a small amount of fuel, so if a large amount is introduced when the intake pipe negative pressure is strong, such as during low load, the intake air-fuel mixture will If the air becomes too thin, it will affect the exhaust composition and operational performance. Therefore, it is necessary to install a control valve in the introduction path so that the introduced air is sucked only at medium to high loads when the amount of intake air is large, or to Countermeasures are being taken by narrowing down the airflow and limiting the maximum flow rate of the introduced air.
しかしながら、このようなキヤニスタ装置にあ
つては、燃料タンク容量が大きいか又は高温時の
ように蒸発燃料量が多い場合には相対的に導入空
気量が不足するので、過剰分の燃料成分をキヤニ
スタで吸着しきれなくなつて(オーバフロー)外
部に放散させてしまうおそれがあつた。 However, in such a canister device, if the fuel tank capacity is large or the amount of evaporated fuel is large, such as at high temperatures, the amount of introduced air is relatively insufficient, so excess fuel components are transferred to the canister. There was a risk that it could not be absorbed completely (overflow) and would be released outside.
また、キヤニスタと燃料タンクを連通する導入
路に電磁弁を設けたもの(例えば実公昭51−
12571号公報)があるが、電磁弁に燃料中のガム
質が付着し電磁弁の開閉作動ができなくなること
がある。 In addition, a solenoid valve is installed in the introduction path that communicates the canister and the fuel tank (for example,
12571), however, gum in the fuel may adhere to the solenoid valve, making it impossible to open and close the solenoid valve.
そこで本考案は、機関負荷を検出する負荷検出
手段と、蒸発燃料の導入路を開閉し、かつ該導入
路を仕切るダイヤフラムと一体動する弁を有する
電磁弁と、機関負荷に基づいて該電磁弁の開口面
積を予め設定した記憶値と、該記憶値に応じて所
定振動数の制御電圧のパルス幅を制御する制御手
段とを設け、該電磁弁の開口面積を該制御手段に
より負荷に応じて制御することによりキヤニスタ
内の吸着燃料の脱離と運転性の両立、および安定
した電磁弁の開閉作動を図ることを目的とする。 Therefore, the present invention provides a load detection means for detecting the engine load, a solenoid valve having a valve that opens and closes an evaporative fuel introduction passage and operates integrally with a diaphragm that partitions the introduction passage, and a solenoid valve that operates based on the engine load. A memory value that presets the opening area of the electromagnetic valve and a control means for controlling the pulse width of a control voltage of a predetermined frequency according to the memory value are provided, and the opening area of the solenoid valve is controlled by the control means according to the load. The purpose of this control is to achieve both desorption of adsorbed fuel in the canister and improved drivability, as well as stable opening and closing of the solenoid valve.
以下、図示実施例に基づいて本考案を説明す
る。 Hereinafter, the present invention will be explained based on illustrated embodiments.
第1図は本考案の一実施例の概略構成を示し、
図中1は内燃機関本体、2は吸気通路、3は絞り
弁、4はキヤニスタ(本体)である。 FIG. 1 shows a schematic configuration of an embodiment of the present invention,
In the figure, 1 is an internal combustion engine main body, 2 is an intake passage, 3 is a throttle valve, and 4 is a canister (main body).
キヤニスタ4の詳細は、第2図に示したよう
に、本体4の内部空間を下室5と中室6と上室7
とに仕切る上下の多孔材8,9を備え、下室5に
はフイルタ10が、また中室6には活性炭などか
らなる吸着剤11がそれぞれ収納される。 The details of the canister 4 are as shown in FIG.
A filter 10 is housed in the lower chamber 5, and an adsorbent 11 made of activated carbon or the like is housed in the middle chamber 6.
下室5は本体底部4aに設けた外気取入孔12
を介して大気側と連通し、また中室6は多孔材9
を介して下室5と連通しさらにフイルタ10を介
して大気側と連通する。 The lower chamber 5 has an outside air intake hole 12 provided in the bottom part 4a of the main body.
The middle chamber 6 communicates with the atmosphere through the porous material 9.
It communicates with the lower chamber 5 through the filter 10, and further communicates with the atmosphere side through the filter 10.
一方、上室7は、本体頂部4bに設けた入口管
13と連通する中央空間部7aと、同じく電磁弁
14を介して出口管15と連通する側方空間部7
bとに画成される。これら空間部7a,7bは、
ともにそれぞれの多孔材8を介して中室6と連通
する。 On the other hand, the upper chamber 7 includes a central space 7a that communicates with an inlet pipe 13 provided on the top portion 4b of the main body, and a side space 7 that also communicates with an outlet pipe 15 via a solenoid valve 14.
b. These spaces 7a and 7b are
Both communicate with the middle chamber 6 via their respective porous materials 8.
電磁弁14は、側方空間部7aの上方に突出し
た中継管16と同軸的に配設したときのこ形の弁
体17と、弁体17を中継管16の開孔端部に付
勢するコイルスプリング18、およびソレノイド
19導入路20を仕切りかつ弁体17と一体動す
るダイヤフラム17′などからなり、通常はコイ
ルスプリング18の弾発力に基づいて弁体17が
中継管16に当接し、側方空間部7bを出口管1
5と遮断しているが、ソレノイド19に通電する
と、第3図に示したように、弁体17が吸引され
て中継管16から離れ、空間部7bと出口管15
とを連通する。なお、出口管15は、第1図に示
したように、導入路20を介して吸気通路2(絞
り弁3の下流側)と、また入口管13は図示しな
い燃料タンク空間部とそれぞれ連通する。 The electromagnetic valve 14 includes a saw-shaped valve body 17 when disposed coaxially with the relay pipe 16 protruding above the side space 7a, and urges the valve body 17 toward the open end of the relay pipe 16. It consists of a coil spring 18 and a diaphragm 17' that partitions the solenoid 19 introduction path 20 and moves integrally with the valve body 17. Normally, the valve body 17 comes into contact with the relay pipe 16 based on the elastic force of the coil spring 18, The side space 7b is connected to the outlet pipe 1
However, when the solenoid 19 is energized, the valve body 17 is attracted and separated from the relay pipe 16, as shown in FIG.
communicate with. Note that, as shown in FIG. 1, the outlet pipe 15 communicates with the intake passage 2 (downstream of the throttle valve 3) via the introduction passage 20, and the inlet pipe 13 communicates with a fuel tank space (not shown). .
ここで、電磁弁14(ソレノイド19)に対す
る通電は、クランク角センサ21が出力するクラ
ンク軸回転信号と、エアフローメータ(吸気流量
計)22が出力する吸気量信号とに基づいて制御
回路23を介してパルス制御する。 Here, the electromagnetic valve 14 (solenoid 19) is energized via the control circuit 23 based on the crankshaft rotation signal output from the crank angle sensor 21 and the intake air amount signal output from the air flow meter (intake flow meter) 22. pulse control.
クランク角センサ21は、クランク軸24に直
結した歯付円板25の回転に応じて基準となるク
ランク位置を検出するものであり、この検出信号
に応じて制御回路23がクランク角ないし回転速
度を演算する。また、エアフローメータ22は、
吸気通路2(絞り弁3の上流側)に介装され、吸
入空気量に応じた信号を制御回路23に出力する
ものである。 The crank angle sensor 21 detects a reference crank position according to the rotation of a toothed disk 25 directly connected to the crankshaft 24, and the control circuit 23 determines the crank angle or rotational speed according to this detection signal. calculate. Moreover, the air flow meter 22 is
It is installed in the intake passage 2 (upstream side of the throttle valve 3) and outputs a signal corresponding to the amount of intake air to the control circuit 23.
この場合、制御回路23は、これらクランク軸
回転信号と吸気量信号とに基づいて、クランク軸
1回転毎に吸入空気量を検知し、予め設定したメ
モリーマツプに従つて電磁弁14に対する出力の
パルスを変調する。 In this case, the control circuit 23 detects the intake air amount every revolution of the crankshaft based on the crankshaft rotation signal and the intake air amount signal, and outputs pulses to the solenoid valve 14 according to a preset memory map. Modulate.
つまり、制御回路23は電磁弁14に付与する
制御電圧のパルス割合(デユーテイ比)を変化さ
せて電磁弁14を開閉する通電時間割合、即ちパ
ルス幅を制御する。この場合、1回当たりの吸入
空気量が多い程電磁弁14の開時間割合が多く、
即ち開口面積が大きくなるように設定する。この
ことはマイクロコンピユータ制御による燃料噴射
システムに本案を適用参入させることが容易にな
しうることを意味する。 That is, the control circuit 23 changes the pulse ratio (duty ratio) of the control voltage applied to the solenoid valve 14 to control the energization time ratio for opening and closing the solenoid valve 14, that is, the pulse width. In this case, the greater the amount of intake air per intake, the greater the open time percentage of the solenoid valve 14.
That is, the opening area is set to be large. This means that the present invention can be easily applied to a fuel injection system controlled by a microcomputer.
次に、上記構成に基づく作用について説明す
る。 Next, the operation based on the above configuration will be explained.
まず、機関停止状態においては、燃料タンク内
で蒸発した燃料成分はその蒸気圧に基づいてキヤ
ニスタ14の内部に侵入し、吸着剤11に吸着さ
れる。 First, when the engine is stopped, fuel components evaporated in the fuel tank enter the canister 14 based on their vapor pressure and are adsorbed by the adsorbent 11.
そして、機関を始動すると、このときには絞り
弁3の開度が極く小さいため、絞り弁3の下流側
ないし導入路20に強い負圧が作用する。 Then, when the engine is started, since the opening degree of the throttle valve 3 is extremely small at this time, a strong negative pressure acts on the downstream side of the throttle valve 3 or the introduction passage 20.
このため、電磁弁14が開くと、この強い負圧
力に基づいてキヤニスタ底部4aの取入孔12を
介して外気が、また入口部13を介して蒸発燃料
がそれぞれ吸引され、吸着剤11を介して空間部
7bへ、さらに導入管20を介して吸気通路2へ
と導入され、吸気中に混入する。 Therefore, when the solenoid valve 14 opens, based on this strong negative pressure, outside air is sucked in through the intake hole 12 of the canister bottom 4a, and evaporated fuel is sucked in through the inlet 13, and is sucked in through the adsorbent 11. The air is introduced into the space 7b and further into the intake passage 2 via the introduction pipe 20, and mixed into the intake air.
このとき、吸着剤11に吸着保持されていた燃
料成分が導入外気に触れて吸着剤11から離脱
し、その外気および新たに侵入した一部の蒸発燃
料と共に吸気中に導入される。 At this time, the fuel component adsorbed and held by the adsorbent 11 comes into contact with the introduced outside air and leaves the adsorbent 11, and is introduced into the intake air together with the outside air and some of the newly entered evaporated fuel.
ただし、既に説明したように、電磁弁14の開
弁割合は、このような低速低負荷時には相対的に
減少するので、強い負圧が作用しても、吸気通路
2吸引される導入空気流量が小さく抑えられる。 However, as already explained, the opening ratio of the solenoid valve 14 is relatively reduced at such low speeds and low loads, so even if a strong negative pressure acts, the flow rate of the introduced air sucked into the intake passage 2 will be reduced. Can be kept small.
その反面、高速高負荷時には吸入空気量が多く
なるとともに、電磁弁14の開弁割合も比例的に
大きくなるので、吸気通路2ないし導入路16に
作用する負圧が弱まつても、適度な量の導入空気
が吸気中に導入される。 On the other hand, at high speeds and high loads, the amount of intake air increases and the opening ratio of the solenoid valve 14 also increases proportionally. A quantity of inlet air is introduced into the intake air.
従つて、吸入空気量に対して導入空気量の割合
が過大になるようなことがなく、安定した機関性
能を維持させることができるのであるが、さら
に、常に適量の導入空気を吸気中に導くので、例
えば高温下で多量の蒸発燃料が発生した場合で
も、キヤニスタ14がオーバフローして燃料成分
を大気中に放散させるような心配もない。 Therefore, the ratio of the amount of introduced air to the amount of intake air does not become excessive, and stable engine performance can be maintained. Therefore, even if a large amount of evaporated fuel is generated at a high temperature, for example, there is no fear that the canister 14 will overflow and dissipate fuel components into the atmosphere.
また、ダイヤフラム17′は導入路20(出口
管15)と電磁弁14の摺動部を仕切るため、燃
料中のガム質がコイルスプリング18等に付着す
ることがなく、弁体17の安定した開閉作動がは
かれる。更に、本実施例は、電磁弁14の通電制
御にあたつて、その制御回路23に対する入力条
件として吸入空気量ならびにクランク軸回転を採
用したが、こうすることにより既存の電子制御燃
料噴射装置のコントロールユニツトを利用するこ
とができるので、製造上、価格上の利点が多い。 In addition, since the diaphragm 17' separates the sliding part of the inlet passage 20 (outlet pipe 15) and the solenoid valve 14, gum in the fuel does not adhere to the coil spring 18, etc., and the valve body 17 can be opened and closed stably. The operation is measured. Furthermore, in this embodiment, when controlling the energization of the solenoid valve 14, the intake air amount and crankshaft rotation are used as input conditions to the control circuit 23. Since a control unit can be used, there are many manufacturing and cost advantages.
以上のように本考案は、機関吸入空気量を検出
する手段と、機関回転数を検出する手段とを設
け、機関一回転当たりの吸入空気量に基づいて電
磁弁の開口面積をパルス制御により、低速低負荷
域ほど導入空気量を減少させるようにしたため、
吸入空気量が少ないときは、キヤニスタに対する
燃料の吸着状態により、吸気中に導入される燃料
量が変化すると、空燃比に大きな影響を及ぼすの
であるが、このような吸気量の少ないときには、
電磁弁からの導入量を減少させるので、空燃比の
変動を確実に防止できるという効果がある。 As described above, the present invention includes a means for detecting the amount of intake air in the engine and a means for detecting the number of engine revolutions, and pulse-controls the opening area of the solenoid valve based on the amount of intake air per revolution of the engine. By reducing the amount of air introduced in the low speed and low load range,
When the amount of intake air is small, changes in the amount of fuel introduced into the intake air due to the state of adsorption of fuel to the canister have a large effect on the air-fuel ratio.
Since the amount introduced from the solenoid valve is reduced, it has the effect of reliably preventing fluctuations in the air-fuel ratio.
第1図は本考案の一実施例を示す概略構成図、
第2図はキヤニスタの断面図、第3図はそのA部
拡大図である。
2……吸気通路、4……キヤニスタ(本体)、
11……吸着剤、14……電磁弁、20……導入
路、23……制御回路。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention;
FIG. 2 is a sectional view of the canister, and FIG. 3 is an enlarged view of section A thereof. 2...Intake passage, 4...Canister (main body),
DESCRIPTION OF SYMBOLS 11...Adsorbent, 14...Solenoid valve, 20...Introduction path, 23...Control circuit.
Claims (1)
るキヤニスタを設け、該キヤニスタ吸着燃料を機
関運転時に離脱させて機関吸入空気中に導入路を
介して導入する蒸発燃料の処理装置において、機
関回転数を検出する回転数検出手段と、機関吸入
空気量を検出する吸気量検出手段と、上記導入路
を開閉しかつ該導入路を仕切るダイヤフラムと一
体動する弁体を有する電磁弁と、機関回転数及び
機関吸入空気量に基づいて該電磁弁の開口面積を
予め設定した記憶値と、該記憶値に応じて所定振
動数の制御パルス幅を制御する制御手段とを設
け、該電磁弁の開口面積を該制御手段により機関
一回転当たりの吸入空気量に応じて制御し、機関
一回転当たりの吸入空気量が小さいほど該電磁弁
の開弁時間を短くするように構成したことを特徴
とする蒸発燃料の処理装置。 In an evaporated fuel processing device that is provided with a canister that adsorbs and holds evaporated fuel in a fuel tank or the like on an adsorbent material, and in which the adsorbed fuel from the canister is released during engine operation and introduced into the engine intake air through an introduction passage, the engine rotational speed is an intake air amount detection means for detecting the engine intake air amount; a solenoid valve having a valve body that opens and closes the introduction passage and moves integrally with a diaphragm that partitions the introduction passage; and a memory value in which the opening area of the electromagnetic valve is preset based on the engine intake air amount, and a control means for controlling the control pulse width of a predetermined frequency according to the memory value, and the opening area of the electromagnetic valve is is controlled by the control means according to the amount of intake air per engine revolution, and the opening time of the solenoid valve is shortened as the intake air amount per engine revolution is smaller. Fuel processing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP179080U JPS6123644Y2 (en) | 1980-01-11 | 1980-01-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP179080U JPS6123644Y2 (en) | 1980-01-11 | 1980-01-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56103659U JPS56103659U (en) | 1981-08-13 |
JPS6123644Y2 true JPS6123644Y2 (en) | 1986-07-15 |
Family
ID=29598674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP179080U Expired JPS6123644Y2 (en) | 1980-01-11 | 1980-01-11 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6123644Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5752663A (en) * | 1980-09-16 | 1982-03-29 | Toyota Motor Corp | Purge control method for fuel evaporated gas |
-
1980
- 1980-01-11 JP JP179080U patent/JPS6123644Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56103659U (en) | 1981-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4953514A (en) | Device for the metered supplying of fuel vapor into the intake pipe of a combustion engine | |
JPH0568635B2 (en) | ||
JPH0726599B2 (en) | Evaporative fuel control device for internal combustion engine | |
JPH01224446A (en) | Device for supplying suction pipe for internal combustion engine with fixed quantity of volatile fuel | |
US6349707B1 (en) | Method for regenerating an activated carbon filter loaded with hydrocarbons | |
JPH08226355A (en) | Evaporative fuel processing device of internal combustion engine | |
JP2003042010A (en) | Fuel evaporating gas treatment device | |
JP3267088B2 (en) | Evaporative fuel treatment system for internal combustion engine | |
JPS6123644Y2 (en) | ||
JPH0730354U (en) | Evaporative fuel control device for internal combustion engine | |
JPH04203467A (en) | Vapored fuel control device of engine | |
JP3147410B2 (en) | Purge air control device | |
JP3470421B2 (en) | Evaporative fuel treatment system for internal combustion engine | |
JPS6385237A (en) | Failure diagnosis method for air-fuel ratio control system | |
JPH0537007Y2 (en) | ||
JPH0438907B2 (en) | ||
JPH05202812A (en) | Evaporated fuel control device for engine | |
JPS61149562A (en) | Purge control device for fuel evaporated gas | |
JPH07119558A (en) | Evaporative fuel processing device | |
JPH0313566Y2 (en) | ||
JPS6341632A (en) | Air-fuel ratio controller for engine | |
KR100558855B1 (en) | Fuel Evaporation Gas Control Device for Automotive Canisters | |
JPH0455218Y2 (en) | ||
JPH06193518A (en) | Failure diagnostic device for evaporation fuel supplying device | |
JPS6140437A (en) | Intake-air device in internal combustion engine |