[go: up one dir, main page]

JPS61235741A - Nuclear magnetic resonance device - Google Patents

Nuclear magnetic resonance device

Info

Publication number
JPS61235741A
JPS61235741A JP60076754A JP7675485A JPS61235741A JP S61235741 A JPS61235741 A JP S61235741A JP 60076754 A JP60076754 A JP 60076754A JP 7675485 A JP7675485 A JP 7675485A JP S61235741 A JPS61235741 A JP S61235741A
Authority
JP
Japan
Prior art keywords
magnetic field
ramp
gradient magnetic
pulse
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60076754A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoda
潔 依田
Masao Morita
正夫 守田
Tadatoshi Yamada
山田 忠利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60076754A priority Critical patent/JPS61235741A/en
Publication of JPS61235741A publication Critical patent/JPS61235741A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To eliminate the distortion of a resonance image by detecting the ramp of the flat top part of a ramp magnetic field pulse from the frequency spectral shape of a nuclear magnetic resonace signal and controlling the output current waveform of a power source for a ramp magnetic field coil thereby controlling the ramp in the flat top part to a prescribed value or below. CONSTITUTION:A measuring body is disposed in a static magnetic field. A high-frequency magnetic pulse (a) is passed to a high-frequency coil and the ramp magnetic field pulse (b) is passed to the ramp magnetic field coil. The intensity of the ramp magnetic field pulse is adequately selected as shown by (c) to excite the entire spin of the measuring body. A spin echo (d) is observed. The ramp in the flat top part of the ramp magnetic field pulse intensity is detected and the output electric power waveform of the power source for the ramp magnetic field coil for generating the ramp magnetic field is so controlled that the ramp thereof attains the prescribed value or below in accordance with the result of the detection. Since the ramp in the flat top part of the ramp magnetic field is decreased in the above-mentioned manner, the distortion and blur of the unclear magnetic resonance image is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、核磁気共鳴装置、特に核磁気共鳴断層診断
装置に関するものである。 。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nuclear magnetic resonance apparatus, particularly a nuclear magnetic resonance tomography apparatus. .

〔従来の技術〕[Conventional technology]

第6図は従来の核磁気共鳴装置を示すブロック図であり
、′これはA、James i!F、 America
n Journalof Radiology : /
3を巻、 p sob (tqtr2)に記載されたも
のを簡単化したものである。図において、(1)は磁石
、(・2)はこの磁石(1)の静磁場中に横たえられた
被測定体例えば人体、(3)は人体(2)の回りに巻か
れた高周波コイル、(りは高周波コ′イル(3)に電磁
波を送信しかつ人体(2)からの電磁波を受信する送受
信器、(5)は磁石(1)と高周波コイル(3)の間に
あって複数対からなる傾斜磁場コイル、(6)はこの傾
斜磁場コイル(S)のための電源、(7)は傾斜磁場コ
イル用電源(6)と送受信器(りを制御する制御回路、
(ざ)はこの制御回路(7)と連結した計算機、(t)
は画像表示器で計算機(す)に連結されている。
FIG. 6 is a block diagram showing a conventional nuclear magnetic resonance apparatus. F.America
Journal of Radiology: /
This is a simplified version of the one described in Volume 3 and p sob (tqtr2). In the figure, (1) is a magnet, (2) is an object to be measured, such as a human body, lying in the static magnetic field of this magnet (1), (3) is a high-frequency coil wound around the human body (2), (The transceiver transmits electromagnetic waves to the high-frequency coil (3) and receives the electromagnetic waves from the human body (2). (5) is located between the magnet (1) and the high-frequency coil (3) and consists of multiple pairs. A gradient magnetic field coil, (6) a power source for this gradient magnetic field coil (S), (7) a control circuit that controls the gradient magnetic field coil power source (6) and the transmitter/receiver,
(za) is a computer connected to this control circuit (7), (t)
is connected to a computer via an image display.

次に動作について説明する。磁石(1)によって人体(
−)に均一な静磁場をかけ、人体(2)内の特定の原子
核にそのゼーマンエネルギーに一致fる電磁波を送受信
器(りの送信部から高周波コイル(3)を通して照射す
る。この電磁波により人体(2)内の特定の原子核は基
底状態から励起状態への共鳴的遷移を起こす。この後に
電磁波の照射を止めると1人体(2)内の原子核から電
磁波が放出され。
Next, the operation will be explained. The human body (
A uniform static magnetic field is applied to the human body (2), and an electromagnetic wave corresponding to the Zeeman energy of the specific atomic nucleus in the human body (2) is irradiated from the transmitter/receiver (2) through the high-frequency coil (3). A specific atomic nucleus in (2) causes a resonant transition from the ground state to an excited state.After this, when the irradiation of electromagnetic waves is stopped, electromagnetic waves are emitted from the atomic nuclei in one human body (2).

この電磁波を高周波コイル(3)を通して送受信器(り
の受信部で検出する。この時、傾斜磁場コイル(ヨ)で
静磁場に勾配をつけ1人体(2)のどの位置からの信号
かを判別する。また、計算機(ざ)は制御回路(り)を
介して、傾斜磁場コイル(5)に電流を供給するための
傾斜磁場コイル用電源(6)および送受信器(りを制御
し、この結果得られた画像は画像表示器(テ)に表示さ
れる。
This electromagnetic wave is passed through a high-frequency coil (3) and detected by the transmitter/receiver (receiver). At this time, a gradient magnetic field coil (Y) creates a gradient in the static magnetic field to determine which position on the human body (2) the signal is coming from. In addition, the computer (za) controls the gradient magnetic field coil power supply (6) for supplying current to the gradient magnetic field coil (5) and the transmitter/receiver (ri) via the control circuit (ri). The obtained image is displayed on an image display (te).

〔発明が解決しようとする問題点〕 従来の核磁気共鳴装置は以上のように構成されているの
で、特に磁石として超電導磁石を用いた場合に傾斜磁場
パルス印加時に超電導磁石を冷却・支持する箱体にうず
電流が流れ、傾斜磁場パルス波形が歪む結果、核磁気共
鳴画像に歪やぼけなどが生じるなどの問題点があった。
[Problems to be solved by the invention] Since the conventional nuclear magnetic resonance apparatus is configured as described above, especially when a superconducting magnet is used as a magnet, a box for cooling and supporting the superconducting magnet when applying gradient magnetic field pulses is required. Eddy currents flow through the body, distorting the gradient magnetic field pulse waveform, resulting in problems such as distortion and blurring of nuclear magnetic resonance images.

第7図(a)および(b)に、傾斜磁場コイル用電源の
出力電流波形および同一時間内に発生する傾斜磁場波形
の例を示す。この例は、電流一定の部分(10)に対応
する傾斜磁場波形(ll)の部分が傾きを有し、さらに
残留磁場(12)が生じることを示している。
FIGS. 7(a) and 7(b) show examples of output current waveforms of the power source for gradient magnetic field coils and gradient magnetic field waveforms generated within the same time period. This example shows that the portion of the gradient magnetic field waveform (ll) corresponding to the constant current portion (10) has a slope, and furthermore, a residual magnetic field (12) is generated.

この発明は上記のような問題点を解決するためになされ
たもので、核磁気共鳴画像から歪やほけなどを除去でき
る核磁気共鳴装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a nuclear magnetic resonance apparatus that can remove distortion, blur, etc. from nuclear magnetic resonance images.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る核磁気共鳴装置は、傾斜磁場パルスのフ
ラットトップ部の傾きを検出しかつその絶対値が所定の
値以下になるように傾斜磁場コイル用電源の出力電流波
形を制御する手段を備えたものである。
The nuclear magnetic resonance apparatus according to the present invention includes means for detecting the inclination of the flat top portion of the gradient magnetic field pulse and controlling the output current waveform of the power source for the gradient magnetic field coil so that the absolute value thereof is equal to or less than a predetermined value. It is something that

〔作用〕[Effect]

この発明における核磁気共鳴装置は、傾斜磁場パルス波
形を理想的な形状に制御することにより、核磁気共−画
像の歪やぼけを低減する。
The nuclear magnetic resonance apparatus of the present invention reduces distortion and blurring of nuclear magnetic co-images by controlling the gradient magnetic field pulse waveform to an ideal shape.

〔実施例〕〔Example〕

以下、この発明を核磁気共鳴断層診断装置に適用した場
合の実施例を図について説明する。本実施例の構成は第
6図に示した構成と同じであり。
Hereinafter, an embodiment in which the present invention is applied to a nuclear magnetic resonance tomography apparatus will be described with reference to the drawings. The configuration of this embodiment is the same as the configuration shown in FIG.

計算機(ff)内のプログラムが異なること、および傾
斜磁場コイル用電源(6)の出力電流波形を最適化する
際に1人体(2)の代りに所定の被測定体を用いること
だけが異なる。
The only difference is that the program in the computer (ff) is different and that a predetermined object to be measured is used instead of a human body (2) when optimizing the output current waveform of the gradient coil power source (6).

即ち、この発明における計算機(ざ)は、従来と同様の
機能に加え、所定の被測定体から得られる核磁気共鳴信
号の周波数スペクトルを所定のイメージングクーケンス
の下で測定し、傾斜磁場パルスのフラットトップ部の傾
きを検出する機能と。
That is, in addition to the same functions as conventional ones, the computer in this invention measures the frequency spectrum of a nuclear magnetic resonance signal obtained from a predetermined object to be measured under a predetermined imaging sequence, and calculates the gradient magnetic field pulse. A function to detect the inclination of the flat top part.

この検出結果に基いて制御回路(7)を制御し、上記フ
ラットトップ部の傾きの絶対値が所定の値以下になるよ
うに制御回路(り)から傾斜磁場コイル用電源(6)に
フィードバック信号を出力させる機能とを有している。
The control circuit (7) is controlled based on this detection result, and a feedback signal is sent from the control circuit (ri) to the power source (6) for the gradient magnetic field coil so that the absolute value of the slope of the flat top portion is equal to or less than a predetermined value. It has a function to output.

次に、第1の実施例を第1図〜第を図について説明する
。第1図は傾斜磁場パルス波形を補正するための手順を
示すフローチャート図であり、第一図は傾斜磁場補正用
パルスシーケンスを示すタイムチャート図であり、第3
図は得られたスピンエコー信号のパワースペクトル図で
あり、そして第ダ図は所定の被測定体としての直方体試
料の斜視図である。
Next, a first embodiment will be described with reference to FIGS. FIG. 1 is a flowchart showing a procedure for correcting a gradient magnetic field pulse waveform, FIG. 1 is a time chart showing a pulse sequence for gradient magnetic field correction, and FIG.
The figure is a power spectrum diagram of the obtained spin echo signal, and Fig. D is a perspective view of a rectangular parallelepiped sample as a predetermined object to be measured.

第9図に示すように、まず直方体試料(JA)例えば水
の入っている容器をその各辺” * ’Y r zが傾
斜磁場Gx r Gy * Gzの方向に一致するよう
に置く(第1図のステップS/)。次に傾斜磁場補正用
ハk スジ−ケ:/スヲ起動スる(ステップS2)。
As shown in Fig. 9, first, a rectangular parallelepiped sample (JA), for example, a container containing water, is placed so that each side of the sample (JA) coincides with the direction of the gradient magnetic field Gx r Gy * Gz (first Step S/) in the figure.Next, the gradient magnetic field correction function is started (Step S2).

なお、傾斜磁場は3種類ちるが、順次lっずつ調整して
いく。即ち、第一図(a)に示す高周波磁場パルスを高
周波コイル(3)に流すと共に、第2図(b)の傾斜磁
場電流パルスGα(αはX r Y + Zのいずれか
1つ)を傾斜磁場コイル(j)に流する。この時、高周
波磁場パルスおよび第2図(C)の傾斜磁場パルス強度
を適切に選び、直方体試料(コA)内の全スピンが励起
されるようにする。この結果。
There are three types of gradient magnetic fields, and they are adjusted one by one. That is, the high-frequency magnetic field pulse shown in Fig. 1 (a) is passed through the high-frequency coil (3), and the gradient magnetic field current pulse Gα (α is any one of X r Y + Z) shown in Fig. 2 (b) is applied. The current is applied to the gradient magnetic field coil (j). At this time, the high-frequency magnetic field pulse and the gradient magnetic field pulse intensity shown in FIG. 2(C) are appropriately selected so that all the spins in the rectangular parallelepiped sample (core A) are excited. As a result.

第−図(d)のスピンエコー信号が観測される。この時
、うず電流の影響でスピンエコー信号観測中の傾斜磁場
パルス強度は図示のように一定とならない。このスピン
エコー信号のパワースペクトルを計算する(ステップ8
.7)。第3図に、(a)傾斜磁場パルス強度が理想的
な一定の場合1 (b) 、 (C)傾斜磁場パルス強
度の傾きβが順次大きくなった時のスピンエコー信号の
、それぞれ傾きha、hb、hoヲを有するパワースペ
クトルを示す。第3図中の傾きhの絶対値は傾斜磁場パ
ルス強度の傾きβの増大に伴ない、小さくなることが分
る。したがって。
The spin echo signal shown in FIG. 3(d) is observed. At this time, the gradient magnetic field pulse intensity during spin echo signal observation is not constant as shown in the figure due to the influence of eddy currents. Calculate the power spectrum of this spin echo signal (step 8
.. 7). Figure 3 shows (a) the case where the gradient magnetic field pulse strength is ideally constant; (b) (C) the slope ha of the spin echo signal when the gradient β of the gradient magnetic field pulse strength gradually increases; The power spectrum with hb and howo is shown. It can be seen that the absolute value of the slope h in FIG. 3 decreases as the slope β of the gradient magnetic field pulse intensity increases. therefore.

この傾きhを最大にすれば、傾斜磁場パルス強度波形の
傾きβが最小になシ補正ができる。具体的には、hの絶
対値が所定の大きい数Hより犬になるまで、制御回路(
7)よ抄傾斜磁場コイル用電源(6)へフィードバック
信号を送り、傾斜磁場コイル用電源(6)の出力電流波
形を変化させる(ステップBeおよびS3)、なお、h
の絶対値が所定の値■より大きくなれば、順次3チヤン
ネルの傾斜磁場コイル用電源について同一のことを行な
い。
By maximizing this slope h, correction can be made to minimize the slope β of the gradient magnetic field pulse intensity waveform. Specifically, the control circuit (
7) Send a feedback signal to the gradient coil power source (6) to change the output current waveform of the gradient coil power source (6) (steps Be and S3);
If the absolute value of becomes larger than the predetermined value (2), the same process is performed for the gradient coil power supplies of the three channels one after another.

その後イメージングシーケンスへ移行する(ステップS
a)。
After that, proceed to the imaging sequence (step S
a).

次に、第コ実施例について説明する。第コの実施例は傾
斜磁場補正用パルスシーケンスとして第3図に示すタイ
ムチャート図を用いることを除いては、第1の実施例と
同じである。第S図は、同時多層断層法など、傾斜磁場
パルスを頻繁に印加する場合に有効なパルスシーケンス
で、高周波磁場パルス列としてはcp系列またはCPM
G系列を用い、複数のスピンエコー信号を測定し、各ス
ピンエコー信号の周波数スペクトル例えばパワースペク
トルを評価する。
Next, the fourth embodiment will be described. The fourth embodiment is the same as the first embodiment except that the time chart shown in FIG. 3 is used as the gradient magnetic field correction pulse sequence. Figure S shows a pulse sequence that is effective when applying gradient magnetic field pulses frequently, such as in simultaneous multilayer tomography.
A plurality of spin echo signals are measured using the G sequence, and the frequency spectrum, such as the power spectrum, of each spin echo signal is evaluated.

なお、上記実施例では高周波磁場パルスの形状として第
1の実施例ではガウス関数状、第コの実施例では方形波
形のものを示したが、他の関数形状でもよい。また、直
方体試料を小型にして、常時イメージング空間に挿入し
ておくことも考えられる。
In the above embodiments, the shape of the high-frequency magnetic field pulse is a Gaussian function in the first embodiment, and a rectangular waveform in the fourth embodiment, but other function shapes may be used. It is also conceivable to make the rectangular parallelepiped sample small and insert it into the imaging space at all times.

サラに、パワースペクトルの測定に、計算−内のプログ
ラムを用いて計算したが、FFTアナライザなど専用の
ハードウェアを用いて高速化を図ってもよい。
Although the power spectrum was simply measured using a program in Calculation, the speed may be increased by using dedicated hardware such as an FFT analyzer.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、傾斜磁場ノ(ルスの
フラットトップ部の傾きを検出する手段および上記傾き
の絶対値が所定の値以下になるように傾斜磁場コイル用
電源の出力電流波形を制御する手段を計算機内に設置し
たので、核磁気共鳴画像の歪やぼけを除去できる効果が
ある。
As described above, according to the present invention, there is provided a means for detecting the inclination of the flat top portion of the gradient magnetic field coil, and an output current waveform of the power source for the gradient magnetic field coil such that the absolute value of the inclination is equal to or less than a predetermined value. Since the means for controlling this is installed in the computer, it has the effect of eliminating distortion and blurring of nuclear magnetic resonance images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による傾斜磁場パルス波形
補正手順を示すフローチャート図、第2図は傾斜磁場補
正用パルスシーケンスを示すタイムチャート図、第3図
は得られたスピンエコー信号のパワースペクトル図、第
9図は直方体試料と傾斜磁場の方向を示す図、第3図は
他の実施例における傾斜磁場補正用パルスシーケンスを
示すタイムチャート図、第6図は核磁気共鳴装置の概略
構成を示すブロック図、第7図は傾斜磁場コイル用電源
の出力電流波形と実際の傾斜磁場波形を示す図である。 (1)は磁石、(2)は被測定体、(2人)は直方体試
料、(3)は高周波コイル、(5)は傾斜磁場コイル、
(6)は傾斜磁場コイル用電源、(7)は制御回路、(
t)は計算機である。 なお、各図中、同一符号は同−又は相当部分を示す。 革1図 第2図 帛4図 ^ 2A:11!τ体試枡 革3図 第5図
FIG. 1 is a flowchart showing the gradient magnetic field pulse waveform correction procedure according to an embodiment of the present invention, FIG. 2 is a time chart showing the gradient magnetic field correction pulse sequence, and FIG. 3 is the power of the obtained spin echo signal. Spectrum diagram, Figure 9 is a diagram showing a rectangular parallelepiped sample and the direction of a gradient magnetic field, Figure 3 is a time chart diagram showing a pulse sequence for gradient magnetic field correction in another embodiment, and Figure 6 is a schematic configuration of a nuclear magnetic resonance apparatus. FIG. 7 is a diagram showing the output current waveform of the gradient magnetic field coil power supply and the actual gradient magnetic field waveform. (1) is a magnet, (2) is an object to be measured, (2 people) is a rectangular parallelepiped sample, (3) is a high frequency coil, (5) is a gradient magnetic field coil,
(6) is a power supply for gradient magnetic field coils, (7) is a control circuit, (
t) is a calculator. In each figure, the same reference numerals indicate the same or corresponding parts. Leather Figure 1 Figure 2 Figure 4 ^ 2A: 11! τ body sample leather 3 figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)静磁場中に配置された被測定体に高周波磁場およ
び傾斜磁場を印加し、上記被測定体から核磁気共鳴信号
を得る核磁気共鳴装置において、所定の被測定体を用い
て上記核磁気共鳴信号の周波数スペクトル形状により傾
斜磁場パルスのフラットトップ部の傾きを検出するパル
ス特性検出手段と、このパルス特性検出手段の検出結果
に基いて、上記フラットトップ部の傾きの絶対値が所定
の値以下になるように、上記傾斜磁場を発生させる傾斜
磁場コイル用電源の出力電流波形を制御する制御手段と
を備えたことを特徴とする核磁気共鳴装置。
(1) In a nuclear magnetic resonance apparatus that applies a high-frequency magnetic field and a gradient magnetic field to an object to be measured placed in a static magnetic field and obtains a nuclear magnetic resonance signal from the object to be measured, a predetermined object to be measured is used to Pulse characteristic detection means detects the slope of the flat top portion of the gradient magnetic field pulse based on the frequency spectrum shape of the magnetic resonance signal, and the absolute value of the slope of the flat top portion is determined to be a predetermined value based on the detection result of the pulse characteristic detection means. A nuclear magnetic resonance apparatus comprising: a control means for controlling an output current waveform of a power source for a gradient magnetic field coil that generates the gradient magnetic field so that the waveform of the output current is equal to or less than a value of the gradient magnetic field.
(2)所定の被測定体が直方体試料である特許請求の範
囲第1項記載の核磁気共鳴装置。
(2) The nuclear magnetic resonance apparatus according to claim 1, wherein the predetermined object to be measured is a rectangular parallelepiped sample.
JP60076754A 1985-04-12 1985-04-12 Nuclear magnetic resonance device Pending JPS61235741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60076754A JPS61235741A (en) 1985-04-12 1985-04-12 Nuclear magnetic resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60076754A JPS61235741A (en) 1985-04-12 1985-04-12 Nuclear magnetic resonance device

Publications (1)

Publication Number Publication Date
JPS61235741A true JPS61235741A (en) 1986-10-21

Family

ID=13614374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60076754A Pending JPS61235741A (en) 1985-04-12 1985-04-12 Nuclear magnetic resonance device

Country Status (1)

Country Link
JP (1) JPS61235741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227932A (en) * 1985-07-25 1987-02-05 ピカ− インタ−ナシヨナル インコ−ポレイテツド Method and apparatus for generating gradient magnetic field for nuclear magnetic imaging
JPS62152444A (en) * 1985-12-27 1987-07-07 株式会社東芝 Magnetic resonance imaging apparatus
CN102819002A (en) * 2011-06-08 2012-12-12 西门子公司 Method and magnetic resonance system for distortion correction in magnetic resonance imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227932A (en) * 1985-07-25 1987-02-05 ピカ− インタ−ナシヨナル インコ−ポレイテツド Method and apparatus for generating gradient magnetic field for nuclear magnetic imaging
JPS62152444A (en) * 1985-12-27 1987-07-07 株式会社東芝 Magnetic resonance imaging apparatus
CN102819002A (en) * 2011-06-08 2012-12-12 西门子公司 Method and magnetic resonance system for distortion correction in magnetic resonance imaging

Similar Documents

Publication Publication Date Title
US20090102483A1 (en) Magnetic resonance with time sequential spin excitation
JP5184049B2 (en) Magnetic resonance inspection apparatus and high-frequency pulse waveform calculation method
US9097779B2 (en) Magnetic field insensitive CEST imaging
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
JPH0856928A (en) Mr modulus that determines core magnetization distribution by surface coil setting
US4978919A (en) Measurement and calibration of eddy currents for magnetic resonance imagers
JP2000279396A (en) Calibration method and system for magnetic resonance imaging system
JP2918242B2 (en) Object inspection equipment
JP2945048B2 (en) Magnetic resonance imaging equipment
JPS61235741A (en) Nuclear magnetic resonance device
JPH0418856B2 (en)
EP0431684A1 (en) MRI apparatus having an optimally adjusted detection chain and an enlarged dynamic range
JPH02107230A (en) Method and device for compensating eddy current of mr device
JPH0728856B2 (en) Pulsed main magnetic field Nuclear magnetic imaging system
US11035921B2 (en) Method and system for operating a magnetic resonance facility
JP2528864B2 (en) Inspection equipment using nuclear magnetic resonance
US20250060439A1 (en) Mri system
JPS61275644A (en) Measuring method for magnetic field distribution
GB2256277A (en) Region of interest magnetic resonance imaging.
JPH0467848A (en) Static magnetic field strength measuring/display method for magnetic resonance imaging device
JPH05220126A (en) Magnetic resonance imaging device
JPH05300896A (en) Magnetic resonance imaging apparatus
JPS6363441A (en) Nuclear magnetic resonance image pickup apparatus
JPH0670912A (en) Magnetic resonance imaging device
JPH08592A (en) Mr apparatus