JPS61234534A - Fabrication of silicon nitride coating - Google Patents
Fabrication of silicon nitride coatingInfo
- Publication number
- JPS61234534A JPS61234534A JP60078002A JP7800285A JPS61234534A JP S61234534 A JPS61234534 A JP S61234534A JP 60078002 A JP60078002 A JP 60078002A JP 7800285 A JP7800285 A JP 7800285A JP S61234534 A JPS61234534 A JP S61234534A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- connection
- silicon
- film
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、光電変換半導体装置、非線型素子、LSI等
、各種半導体装置に応用可能な窒化珪素非単結晶半導体
被膜を作成する方法に関するものである。Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method for producing a silicon nitride non-single crystal semiconductor film that can be applied to various semiconductor devices such as photoelectric conversion semiconductor devices, non-linear elements, and LSIs. It is.
「従来の技術」
従来、光電変換半導体装置、非線型特性を有する半導体
装置に用いられている窒化珪素半導体の作成方法として
は、グロー放電法を用いたプラズマ気相反応方法または
水銀(h)増悪を用いた光気相反応法等によりシラン(
SiH4)とアンモニア(Nnz)とを反応させ、20
0〜400℃に保持された基板上に被膜を形成していた
。また反応性気体として他にジシラン等のポリシラン、
窒素(N2)、ヒドラジン(Nzlln)等を用いてい
た。"Prior Art" Conventionally, methods for producing silicon nitride semiconductors used in photoelectric conversion semiconductor devices and semiconductor devices with nonlinear characteristics include a plasma vapor phase reaction method using a glow discharge method or a mercury (h) aggravation method. Silane (
SiH4) and ammonia (Nnz) are reacted, and 20
A film was formed on a substrate maintained at 0 to 400°C. In addition, other reactive gases include polysilanes such as disilane,
Nitrogen (N2), hydrazine (Nzlln), etc. were used.
「発明が解決しようとする問題点」
しかしながら、これら従来の窒化珪素作成方法は、プラ
ズマ気相法において下地基板からまたは下地基板への不
純物混入を極力低くおさえるためや、良好な膜質の窒化
珪素半導体を得るため低出力で成膜する必要があり、そ
の結果成膜速度が非常に遅いという問題がある。また光
気相反応法においてはプラズマ気相法のような問題は比
較的少ないが、成膜速度が非常に遅く、成膜速度を上げ
るため人体に有害な水銀(Hg)を用いる必要があった
。``Problems to be Solved by the Invention'' However, these conventional silicon nitride production methods are designed to minimize impurity contamination from or into the base substrate in the plasma vapor phase method, and to produce silicon nitride semiconductors with good film quality. In order to obtain this, it is necessary to form a film at low output, resulting in a problem that the film forming speed is very slow. In addition, the photovapor phase reaction method has relatively few problems like the plasma vapor phase method, but the film formation rate is very slow, and it was necessary to use mercury (Hg), which is harmful to the human body, to increase the film formation speed. .
「問題点を解決するための手段」
本発明は、N−H結合、Si−H結合、N −Si結合
をそれぞれ少なくとも1つ以上有する珪素と窒素と水素
原子からなる化合物、例えばシラザンH,Si (NH
SiH,) m NHSiH3(m≧0)、シリルアミ
ン(H−3i)、INH3−fi(n = 1〜3 )
等と窒素(N2)、アンモニア(NH3) 、ヒドラジ
ン(N2H4)より選ばれた窒化物の反応性混合物に対
し電気エネルギまたは光エネルギまたはそれらに相当す
るエネルギを加えて窒化珪素被膜を作成する方法である
。"Means for Solving the Problems" The present invention provides compounds consisting of silicon, nitrogen, and hydrogen atoms having at least one N-H bond, one Si-H bond, and one or more N-Si bonds, such as silazane H, Si (NH
SiH,) mNHSiH3 (m≧0), silylamine (H-3i), INH3-fi (n = 1-3)
A method of creating a silicon nitride film by applying electric energy, light energy, or equivalent energy to a reactive mixture of nitrides selected from nitrogen (N2), ammonia (NH3), and hydrazine (N2H4). be.
「作用」
本発明方法により、被膜の形成が100〜200℃の低
い温度、例えば150℃で可能となり、かつ下地基板の
損傷または下地基板よりの不純物の混入を除去すること
ができる。さらにPまたはN型の窒化珪素膜とするとと
もに、光電変換装置の広いエネルギバンド巾のPまたは
N型半導体として有効である。"Function" According to the method of the present invention, a film can be formed at a low temperature of 100 to 200°C, for example, 150°C, and damage to the underlying substrate or contamination of impurities from the underlying substrate can be removed. Furthermore, it is effective as a P- or N-type silicon nitride film and as a P- or N-type semiconductor with a wide energy band width for photoelectric conversion devices.
以下、この発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.
「実施例1」
本実施例においては、窒素、珪素、水素化合物としてト
リシリルアミン((H3si)J) 、窒化物としてア
ンモニア(NH3)を用いた。作成法としては光気相反
応法(光CVD法)にて行った。本実施例にて使用した
装置の概略図を第2図に示す。"Example 1" In this example, nitrogen, silicon, trisilylamine ((H3si)J) was used as the hydrogen compound, and ammonia (NH3) was used as the nitride. The production method was a photo-vapor phase reaction method (photo-CVD method). FIG. 2 shows a schematic diagram of the apparatus used in this example.
第2図において、ヒータ(4)、ヒータカバー(7)上
に接して基板(5)が配されている。ガスライン(9)
よりトリシリルアミンをガスライン(10)よりアンモ
ニアを流量比(HzSi) 3N/NH3= 1/1で
反応室(3)に導入し、コンダクタンスバルブ(14)
にて反応室内圧力を5 2Hrrに設定した。この時基
板(5)はヒーター(4)によって200℃に保たれて
いる。In FIG. 2, a substrate (5) is arranged on and in contact with a heater (4) and a heater cover (7). Gas line (9)
Trisilylamine was introduced into the reaction chamber (3) from the gas line (10) with ammonia at a flow rate ratio (HzSi) of 3N/NH3 = 1/1, and the conductance valve (14)
The pressure inside the reaction chamber was set at 52 Hrr. At this time, the substrate (5) is maintained at 200° C. by the heater (4).
さらに低圧水銀灯(6)により184nmの波長の光を
含む300nn+以下の紫外光を照射し、光化学反応を
行い、基板上に窒化珪素被膜を形成した。光化学反応用
光源部(6)はバルブ(13)により反応室とまったく
同じ圧力にした上、バルブ(12)よりNz+He等不
活性等大活性ガス、紫外域での波長の光の吸収を極力低
くおさえた。また低圧水銀灯(6)の本数または種類を
変えて同様に成膜した結果、第1図直線1のような関係
が得られた。Furthermore, ultraviolet light of 300 nm+ or less including light with a wavelength of 184 nm was irradiated with a low-pressure mercury lamp (6) to cause a photochemical reaction and form a silicon nitride film on the substrate. The light source section (6) for photochemical reactions is made to have exactly the same pressure as the reaction chamber by the valve (13), and the absorption of large active gases such as Nz+He and other inert gases and light with wavelengths in the ultraviolet region is kept as low as possible by the valve (12). I suppressed it. Further, as a result of forming a film in the same manner by changing the number or type of low-pressure mercury lamps (6), a relationship as shown by straight line 1 in FIG. 1 was obtained.
また比較の為、まったく同一の反応装置を用いて、ガス
ライン(11)によりアンモニア(NH3)を流量比N
H3/Siz)L =5/1で反応室に導入し、同様の
実験を行った結果を第1図の直線2に示す。For comparison, ammonia (NH3) was supplied through the gas line (11) at a flow rate of N using the same reactor.
Straight line 2 in FIG. 1 shows the results of a similar experiment conducted with H3/Siz)L = 5/1 introduced into the reaction chamber.
この時、本発明方法により得られた厚さ約2000人の
窒化珪素被膜のC−V特性を測定し、得られた界面準位
は1.2 X 10” cm−”ときわめて少なく、屈
折率=2.0と非常に良好な膜質の被膜であった。At this time, the CV characteristics of the silicon nitride film with a thickness of approximately 2000 mm obtained by the method of the present invention were measured, and the obtained interface states were extremely small at 1.2 x 10"cm-", and the refractive index was = 2.0, the film quality was very good.
「実施例2」
本実施例においても、実施例1と同様、トリシリルアミ
ンを用い、窒化物としてヒドラジン(NJ4)を用い、
公知のプラズマCVD装置を用いて形成した。両物質を
流量比(H3Si) :+N/NzH4= 1/1で、
反応室圧力0.12Hrr 、基板温度300℃、RF
Power 10mw/cm”で窒化珪素膜を形成した
。その結果、屈折率1.95. C−V特性より得られ
た界面単位は2.5×10”cm−”と従来のプラズマ
CVD法より作成された膜と比較してきわめて低い値で
あった。"Example 2" In this example, as in Example 1, trisilylamine was used, hydrazine (NJ4) was used as the nitride,
It was formed using a known plasma CVD apparatus. The flow ratio of both substances (H3Si): +N/NzH4 = 1/1,
Reaction chamber pressure 0.12Hrr, substrate temperature 300℃, RF
A silicon nitride film was formed with a power of 10 mw/cm". As a result, the refractive index was 1.95. The interface unit obtained from the CV characteristics was 2.5 x 10" cm, which was created using the conventional plasma CVD method. The value was extremely low compared to the membranes prepared.
「効果」
本発明は出発材料としてはじめから5t−N結合を有す
る化合物を用いた為に、反応性混合物を分解し膜を形成
する際に加えるエネルギが少なくてすむ。そのため、被
膜を形成する下地基板をスパッタすることがな(、下地
にダメージを与えず、膜を形成することができた。"Effects" Since the present invention uses a compound having a 5t-N bond from the beginning as a starting material, less energy is required to decompose the reactive mixture and form a film. Therefore, the film could be formed without sputtering the base substrate on which the film was to be formed (without damaging the base).
さらに本発明の方法を用いて、半導体装置(例えば太陽
電池や非線型素子やLSI )等に応用した場合、下層
よりの不純物の混入が少なく、また下層へのダメージを
極力少なくすることが可能で良好な特性が得られた。Furthermore, when the method of the present invention is applied to semiconductor devices (for example, solar cells, non-linear elements, LSI), etc., it is possible to reduce the amount of impurities mixed in from the lower layers and to minimize damage to the lower layers. Good characteristics were obtained.
また光気相反応のはあい、従来よりも低い温度で膜を形
成することが可能なため、化合物半導体(例えばInP
等)を用いた高い温度に保持できない半導体装置のファ
イルパッシベイション膜等に使用することが可能である
。In addition, photovapor phase reactions allow film formation at lower temperatures than conventional methods, making it possible to form films using compound semiconductors (e.g. InP).
It can be used as a file passivation film for semiconductor devices that cannot be maintained at high temperatures.
第1図は本発明方法により形成した被膜の成膜速度と印
加エネルギとの関係を示す。
第2図は本発明で用いた光CVD装置の概略を示す。FIG. 1 shows the relationship between the deposition rate and applied energy of a film formed by the method of the present invention. FIG. 2 schematically shows the optical CVD apparatus used in the present invention.
Claims (1)
れ少なくとも1つ以上有する珪素と窒素と水素原子から
なる化合物と、窒素(N_2)、アンモニア(NH_3
)、ヒドラジン(N_2H_4)より選ばれた窒化物気
体との混合物に対し電気エネルギまたは光エネルギまた
はそれらに相当するエネルギを加えて窒化珪素被膜を作
成する方法。 2、特許請求の範囲第1項において、前記珪素と窒素と
水素原子からなる化合物としては、 H_3Si〔NHSiH_2〕_mNHSiH_3(m
≧0)(H−Si)_nNH_3_−_n(n=1〜3
)で示されるジラザン、シリルアミンよりなることを特
徴とする窒化珪素被膜作成方法。[Claims] 1. A compound consisting of silicon, nitrogen, and hydrogen atoms each having at least one N-H bond, one Si-H bond, and one or more N-Si bonds, nitrogen (N_2), ammonia (NH_3
), hydrazine (N_2H_4), and a mixture thereof with a nitride gas selected from hydrazine (N_2H_4). 2. In claim 1, the compound consisting of silicon, nitrogen, and hydrogen atoms is H_3Si[NHSiH_2]_mNHSiH_3(m
≧0) (H-Si)_nNH_3_-_n (n=1~3
) A method for producing a silicon nitride film, characterized in that it is made of dilazan and silylamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60078002A JPS61234534A (en) | 1985-04-11 | 1985-04-11 | Fabrication of silicon nitride coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60078002A JPS61234534A (en) | 1985-04-11 | 1985-04-11 | Fabrication of silicon nitride coating |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61234534A true JPS61234534A (en) | 1986-10-18 |
Family
ID=13649589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60078002A Pending JPS61234534A (en) | 1985-04-11 | 1985-04-11 | Fabrication of silicon nitride coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61234534A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414927A (en) * | 1987-07-09 | 1989-01-19 | Kojundo Kagaku Kenkyusho Kk | Forming method of silicon nitride film or silicon oxynitride film |
JPH0459971A (en) * | 1990-06-28 | 1992-02-26 | Toshiba Corp | Method of forming silicon nitride film |
KR100419025B1 (en) * | 1996-11-06 | 2004-04-29 | 주식회사 하이닉스반도체 | Nitride film formation method of semiconductor device |
JP2007318142A (en) * | 2006-05-23 | 2007-12-06 | Air Products & Chemicals Inc | Method for manufacturing silicon oxide film from organic amino silane precursor |
US7510984B2 (en) | 2004-03-02 | 2009-03-31 | Ulvac, Inc. | Method of forming silicon nitride film and method of manufacturing semiconductor device |
US20110111137A1 (en) * | 2009-11-12 | 2011-05-12 | Applied Materials, Inc. | Curing non-carbon flowable cvd films |
TWI392760B (en) * | 2003-04-17 | 2013-04-11 | Air Liquide | Methods for producing silicon nitride films by vapor-phase growth |
US8889566B2 (en) | 2012-09-11 | 2014-11-18 | Applied Materials, Inc. | Low cost flowable dielectric films |
US8980382B2 (en) | 2009-12-02 | 2015-03-17 | Applied Materials, Inc. | Oxygen-doping for non-carbon radical-component CVD films |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US9285168B2 (en) | 2010-10-05 | 2016-03-15 | Applied Materials, Inc. | Module for ozone cure and post-cure moisture treatment |
US9404178B2 (en) | 2011-07-15 | 2016-08-02 | Applied Materials, Inc. | Surface treatment and deposition for reduced outgassing |
US9412581B2 (en) | 2014-07-16 | 2016-08-09 | Applied Materials, Inc. | Low-K dielectric gapfill by flowable deposition |
US9777025B2 (en) | 2015-03-30 | 2017-10-03 | L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude | Si-containing film forming precursors and methods of using the same |
US20170338109A1 (en) * | 2014-10-24 | 2017-11-23 | Versum Materials Us, Llc | Compositions and methods using same for deposition of silicon-containing films |
US9920078B2 (en) | 2013-09-27 | 2018-03-20 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Halogen free synthesis of aminosilanes by catalytic dehydrogenative coupling |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125635A (en) * | 1979-03-23 | 1980-09-27 | Hitachi Ltd | Semiconductor device |
JPS5625018A (en) * | 1979-08-01 | 1981-03-10 | Happich Gmbh Gebr | Sun visor for automobile with mirror arranged to sun vistor body |
JPS5958819A (en) * | 1982-09-29 | 1984-04-04 | Hitachi Ltd | Formation of thin film |
-
1985
- 1985-04-11 JP JP60078002A patent/JPS61234534A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125635A (en) * | 1979-03-23 | 1980-09-27 | Hitachi Ltd | Semiconductor device |
JPS5625018A (en) * | 1979-08-01 | 1981-03-10 | Happich Gmbh Gebr | Sun visor for automobile with mirror arranged to sun vistor body |
JPS5958819A (en) * | 1982-09-29 | 1984-04-04 | Hitachi Ltd | Formation of thin film |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414927A (en) * | 1987-07-09 | 1989-01-19 | Kojundo Kagaku Kenkyusho Kk | Forming method of silicon nitride film or silicon oxynitride film |
JPH0459971A (en) * | 1990-06-28 | 1992-02-26 | Toshiba Corp | Method of forming silicon nitride film |
KR100419025B1 (en) * | 1996-11-06 | 2004-04-29 | 주식회사 하이닉스반도체 | Nitride film formation method of semiconductor device |
TWI392760B (en) * | 2003-04-17 | 2013-04-11 | Air Liquide | Methods for producing silicon nitride films by vapor-phase growth |
US7510984B2 (en) | 2004-03-02 | 2009-03-31 | Ulvac, Inc. | Method of forming silicon nitride film and method of manufacturing semiconductor device |
JP2007318142A (en) * | 2006-05-23 | 2007-12-06 | Air Products & Chemicals Inc | Method for manufacturing silicon oxide film from organic amino silane precursor |
JP4718515B2 (en) * | 2006-05-23 | 2011-07-06 | エア プロダクツ アンド ケミカルズ インコーポレイテッド | Silicon oxide and silicon oxynitride films, methods for forming them, and compositions for chemical vapor deposition |
US20110111137A1 (en) * | 2009-11-12 | 2011-05-12 | Applied Materials, Inc. | Curing non-carbon flowable cvd films |
US8449942B2 (en) * | 2009-11-12 | 2013-05-28 | Applied Materials, Inc. | Methods of curing non-carbon flowable CVD films |
US8980382B2 (en) | 2009-12-02 | 2015-03-17 | Applied Materials, Inc. | Oxygen-doping for non-carbon radical-component CVD films |
US9285168B2 (en) | 2010-10-05 | 2016-03-15 | Applied Materials, Inc. | Module for ozone cure and post-cure moisture treatment |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9404178B2 (en) | 2011-07-15 | 2016-08-02 | Applied Materials, Inc. | Surface treatment and deposition for reduced outgassing |
US8889566B2 (en) | 2012-09-11 | 2014-11-18 | Applied Materials, Inc. | Low cost flowable dielectric films |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US11780859B2 (en) | 2013-09-27 | 2023-10-10 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Halogen free syntheses of aminosilanes by catalytic dehydrogenative coupling |
US11274112B2 (en) | 2013-09-27 | 2022-03-15 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Halogen free syntheses of aminosilanes by catalytic dehydrogenative coupling |
US9920078B2 (en) | 2013-09-27 | 2018-03-20 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Halogen free synthesis of aminosilanes by catalytic dehydrogenative coupling |
US10494387B2 (en) | 2013-09-27 | 2019-12-03 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Halogen free syntheses of aminosilanes by catalytic dehydrogenative coupling |
US9412581B2 (en) | 2014-07-16 | 2016-08-09 | Applied Materials, Inc. | Low-K dielectric gapfill by flowable deposition |
US10316407B2 (en) * | 2014-10-24 | 2019-06-11 | Versum Materials Us, Llc | Compositions and methods using same for deposition of silicon-containing films |
US10106890B2 (en) | 2014-10-24 | 2018-10-23 | Versum Materials Us, Llc | Compositions and methods using same for deposition of silicon-containing film |
US20170338109A1 (en) * | 2014-10-24 | 2017-11-23 | Versum Materials Us, Llc | Compositions and methods using same for deposition of silicon-containing films |
US10403494B2 (en) | 2015-03-30 | 2019-09-03 | L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Si-containing film forming precursors and methods of using the same |
US9777025B2 (en) | 2015-03-30 | 2017-10-03 | L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude | Si-containing film forming precursors and methods of using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61234534A (en) | Fabrication of silicon nitride coating | |
US4371587A (en) | Low temperature process for depositing oxide layers by photochemical vapor deposition | |
EP0030798B1 (en) | Low temperature process for depositing oxide layers by photochemical vapor deposition | |
US4818560A (en) | Method for preparation of multi-layer structure film | |
ATE27186T1 (en) | PROCESSES FOR THE PRODUCTION OF AMORPHOUS SEMICONDUCTING ALLOYS AND ARRANGEMENTS BY MICROWAVE ENERGY. | |
JP2001358139A (en) | CVD synthesis of silicon nitride material | |
JPH01500444A (en) | Photochemical vapor deposition method with increased oxide layer growth rate | |
JPH07221026A (en) | Method for forming quality semiconductor thin film | |
Rathi et al. | Photo-processing of silicon nitride | |
JPS61234533A (en) | Fabrication of silicon nitride coating | |
JPS6366919A (en) | Manufacture of film | |
JPS63258016A (en) | Method for producing amorphous thin film | |
JPS5994812A (en) | Production of thin film of semiconductor | |
JPS6058616A (en) | Growth of thin film | |
JPS6262529A (en) | Forming method for silicon nitride film | |
JP2723224B2 (en) | Amorphous semiconductor and manufacturing method thereof | |
JPH01152631A (en) | Formation of sixoynz insulating film | |
JPS61276976A (en) | Method and apparatus for producing high-quality silicon-containing thin films by thermal CVD using intermediate state species | |
JP2558457B2 (en) | Method for forming silicon oxide film | |
JPH0364019A (en) | Semiconductor thin film | |
JP2966909B2 (en) | Amorphous semiconductor thin film | |
JPH071753B2 (en) | Method for manufacturing semiconductor device | |
JPH0267719A (en) | Formation of silicon carbide crystallite thin film | |
JPS59161811A (en) | Formation of semiconductor thin film | |
JPH02184023A (en) | Glow discharge precipitation method of multilayer structure |