JPS61233328A - Colorimetric color difference meter - Google Patents
Colorimetric color difference meterInfo
- Publication number
- JPS61233328A JPS61233328A JP60066639A JP6663985A JPS61233328A JP S61233328 A JPS61233328 A JP S61233328A JP 60066639 A JP60066639 A JP 60066639A JP 6663985 A JP6663985 A JP 6663985A JP S61233328 A JPS61233328 A JP S61233328A
- Authority
- JP
- Japan
- Prior art keywords
- light
- integrating sphere
- sample
- value
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0251—Colorimeters making use of an integrating sphere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/502—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/51—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/52—Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
- G01J3/524—Calibration of colorimeters
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、積分球を用いた測色色差計に関するもので
める。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a colorimeter using an integrating sphere.
従来、2つの試料の間の色差などを測定する測色色差計
として1次のものが考えられていた。Conventionally, a first-order colorimeter has been considered as a colorimeter that measures the color difference between two samples.
第2図は従来の測色色差計で積分球を用いたものの説明
図である。FIG. 2 is an explanatory diagram of a conventional colorimeter using an integrating sphere.
図において、1は光源連続スペクトル光を発光する光源
、2はこの光源からの光を反射するミラー、3は絞り、
4はレンズ、5はこのレンズ4からの反射光をプリズム
6へ反射し、このプリズム6からの反射光を測定数シフ
へみちびくコリメーター鏡、8は積分球、9はこの積分
球8内に取シ付けた試料、10は標準板、11は光検知
器、12はマイクロアンメーターでるる。この測色色差
計では、絞シ3を通った光源1からの光を、ミラー4で
反射してプリズム6で分光後に、コリメーター鏡5で平
行光線として測定数シフへみちびく。このプリズム6は
矢印方向に回転可能で、プリズム6で分光した光のうち
、所要の波長をもつ光が試料9に入射するように波長選
定ができるようになっている。In the figure, 1 is a light source that emits continuous spectrum light, 2 is a mirror that reflects the light from this light source, 3 is an aperture,
4 is a lens, 5 is a collimator mirror that reflects the reflected light from this lens 4 to a prism 6, and leads the reflected light from this prism 6 to the measurement number shift, 8 is an integrating sphere, and 9 is an element inside this integrating sphere 8. 10 is a standard plate, 11 is a photodetector, and 12 is a microammeter. In this colorimetric colorimeter, light from a light source 1 that has passed through an aperture 3 is reflected by a mirror 4, separated into spectra by a prism 6, and then transformed into parallel rays by a collimator mirror 5, which leads to a measurement number shift. This prism 6 is rotatable in the direction of the arrow, and the wavelength can be selected so that out of the light separated by the prism 6, light having a desired wavelength is incident on the sample 9.
試料9からの反射光を光検知器11で光電変換し、光電
流をマイクロアンメーター12で指示し、この光電流を
利用して試料の色差を測定する。The reflected light from the sample 9 is photoelectrically converted by a photodetector 11, the photocurrent is indicated by a microammeter 12, and the color difference of the sample is measured using this photocurrent.
次に2つの試料の間における色差の測定について説明す
る。Next, measurement of color difference between two samples will be explained.
測色の分野ではCIB(国際照明委員会)およびJIS
で規定されている三原色(赤、緑。In the field of colorimetry, CIB (International Commission on Illumination) and JIS
The three primary colors (red, green) defined by
育)の三刺激値であるx、y、zが用いられる。The tristimulus values of x, y, and z are used.
これは人間の目は、独立した3種の感光機構を有してお
り、その刺激の割合で色を識別し、知覚するものと考え
られることに基づいている。This is based on the fact that the human eye has three independent photosensitive mechanisms, and is thought to distinguish and perceive colors depending on the stimulation rate.
測色測定において直接的に得られるものは上記の三刺激
値x、y、zであって、この三刺激値を用いて、たとえ
ば下記の測色関係式などによって、明度り9色度a、b
が求められる。What can be directly obtained in colorimetric measurement are the above tristimulus values x, y, and z. Using these tristimulus values, for example, the following colorimetric relational expression can be used to calculate brightness, 9 chromaticity a, b
is required.
測色関係式
%式%
いま、試料1と試料2があって、この試料1゜2間の色
差ΔEは次式で算出して得られる。Colorimetric relationship formula % formula % Now, there are sample 1 and sample 2, and the color difference ΔE between the samples 1°2 is obtained by calculating with the following formula.
ΔE= (xL)”十(Δ3)十(Δb)”ここに、
2つの試料についてり、a、bの値をそれぞれLIHa
l 、 bl 、L、 、 afi 、 b2
でるるとΔL、Δa、Δbはそれぞれ次式で表わされる
。ΔE= (xL) “10 (Δ3) 10 (Δb)” Here,
For the two samples, the values of a and b are LIHa
l, bl, L, , afi, b2
Then, ΔL, Δa, and Δb are each expressed by the following equations.
ΔL=L2 Ll、Δa”a2 al + Δb=
J b。ΔL=L2 Ll, Δa”a2 al + Δb=
Jb.
なお、気体、液体の透過色についての色差の測定のよう
に多種の測定ができるようにするため付属品が用意され
ている。Note that accessories are available to enable a variety of measurements, such as the measurement of color differences in transmitted colors of gases and liquids.
第3図は積分球を用いた測色色差計の他の従来装置の説
明図である。この装置では図示されない光源からの光を
積分球B内にみちびき、この積分球8にセットした試料
9または標準板10を積分球8の空間からの拡散光で照
明し、この拡散光を反射するようになっている。この試
料9または標準板10からの反射光を、それぞれ光電管
13.14で受光し、光電流に変換する。試料9または
標準板10からの反射光を変換し九光電流を比較するこ
とによって試料9・、と標準板100間の反射度を比較
するよ、うになっている。この光電流は微弱で、直接的
に比較するとか、指示することは困難であるので、増幅
器15で増幅する。また光電流を補整するため。FIG. 3 is an explanatory diagram of another conventional colorimetric color difference meter using an integrating sphere. In this device, light from a light source (not shown) is guided into the integrating sphere B, and the sample 9 or standard plate 10 set in the integrating sphere 8 is illuminated with diffused light from the space of the integrating sphere 8, and this diffused light is reflected. It looks like this. The reflected light from the sample 9 or the standard plate 10 is received by phototubes 13 and 14, respectively, and converted into photocurrent. By converting the reflected light from the sample 9 or the standard plate 10 and comparing the nine photocurrents, the reflectivity between the sample 9 and the standard plate 100 is compared. Since this photocurrent is weak and difficult to directly compare or indicate, it is amplified by an amplifier 15. Also to compensate for photocurrent.
測定回路に灰色くさび16.比較回路には測定絞シねじ
17があシ、補整の管理には、零点指示器1Bを用いる
。さらに、光電管13.14の前にはそれぞれフィルタ
ー19.20を設けてl、フィルター19.20は対を
なしてねじ込まれていて、必要とする波長ごとに切シ換
えられるようになっている。Gray wedge in the measuring circuit16. A measuring screw 17 is provided in the comparison circuit, and a zero point indicator 1B is used to manage the compensation. Further, filters 19,20 are provided in front of each of the phototubes 13,14, and the filters 19,20 are screwed in pairs so that they can be switched for each required wavelength.
この測色色差計を用いるには、まず、フィルターを希望
する波長のものと交換し、試料、標準板などの被検物を
測定口にあて、測定窓(不図示)をのぞいて、被検物を
正しい位置におき、標準板10をそう人する。この標準
板10の検定値を測定絞#)7ドラム上でセットし、灰
色くさび16で光電流を補整し、零点指示器で管理する
。つぎに、標準板10を側方にはずし、測電絞シフで光
電流を補整する。これによって。To use this colorimeter, first replace the filter with one of the desired wavelength, place the object to be measured, such as a sample or standard plate, into the measurement port, look through the measurement window (not shown), and then Place the object in the correct position and align the standard plate 10. The calibration value of this standard plate 10 is set on the measuring aperture #7 drum, the photocurrent is corrected with the gray wedge 16, and the zero point indicator is used to manage it. Next, the standard plate 10 is removed laterally, and the photocurrent is corrected by an electrometer diaphragm shift. by this.
被検物の反射度を直接、測定絞シフドラム上で読み取シ
、試料などを測定口にあてたままで。The reflectance of the object to be measured is read directly on the measurement aperture shift drum, while the sample remains in contact with the measurement port.
フィルター19.20を交換して、同様な測定操作をく
シ返す。所要時間は20〜30秒である。Replace filters 19 and 20 and repeat the same measurement operation. The required time is 20-30 seconds.
なお、2つの被検物の間の色差を三刺激値X。Note that the tristimulus value X is the color difference between two objects.
Y、Zの測定値を用いて求めることについては第3図に
示した測色色差計の場合と同様である。The determination using the measured values of Y and Z is the same as in the case of the colorimeter shown in FIG. 3.
第2図に示す積分球を用いて固体表面の反射率を測定で
き、吸収セルを用いることによってガラス、フィルム、
液体の透過率をいろいろな波長の光についてできるので
あるが、試料、標準板の交換とか積分球のかわシに吸収
セルを置くことによる反射光の光度のバラツキを生じ易
く、測定の精度を悪くする。このため光学系をその都度
、微妙な調整をしなければならないし、また、測定に要
する時間が長くなるという問題点がめった。The reflectance of solid surfaces can be measured using the integrating sphere shown in Figure 2, and the reflectance of glass, film, etc. can be measured using an absorption cell.
Although it is possible to measure the transmittance of a liquid for light of various wavelengths, it is easy to cause variations in the luminous intensity of the reflected light due to replacing the sample or standard plate, or placing an absorption cell in front of the integrating sphere, which impairs measurement accuracy. do. For this reason, the optical system must be delicately adjusted each time, and the time required for measurement is often increased.
さらに、第3図に示す積分球を用いた測色色差計では、
試料9と標準板10を交互に測定する必要はないのでお
るが、波長ごとにフィルターを用意しておき、交換しな
ければならないし、測定の対象が固体表面の反射度に限
られるという制約がるり、測定時間が長い欠点がめった
。Furthermore, in the colorimeter using an integrating sphere shown in Fig. 3,
Although it is not necessary to measure the sample 9 and the standard plate 10 alternately, it is necessary to prepare and replace filters for each wavelength, and there is a restriction that the measurement target is limited to the reflectance of the solid surface. However, the drawback was that the measurement time was long.
以上説明した2種類の従来装置は、測色色差計として限
られた用途に対してはそれなシに有用なものであるが、
共通していえることは、固体表面の反射率、ガラス、フ
ィルム、液体の透過率などを一つの装置で簡単、迅速か
つ良い再現性と精度で測定をするには、いずれも満足す
べきものとはいえないし、特に高光沢、メタリックを伴
なった試料の色差の測定では肉眼判定と合致する測定値
が得にくいという難点がめった。The two types of conventional devices described above are useful for limited applications as colorimetric colorimeter; however,
What we can say in common is that in order to measure reflectance of solid surfaces, transmittance of glass, films, liquids, etc. easily, quickly, and with good reproducibility and accuracy using a single device, all of them must be satisfactory. In particular, when measuring the color difference of a sample with high gloss or metallic color, it was difficult to obtain a measured value that matched the judgment with the naked eye.
この発明は、このような問題点を解決するためになされ
たもので、光源で発光した光を積分球にみちびき、拡散
光で被検物を照明し、被検物からほぼ8°の反射角で光
学系へ射出する積分球手段を設け、この積分球手段から
の反射光と合致する光軸を有する光学系からの射出光を
、単色手段で分光した光を光検知手段で検知することに
よシ、試料の反射率、透過率などを簡単。This invention was made in order to solve these problems.The light emitted by the light source is guided to an integrating sphere, the test object is illuminated with diffused light, and the reflection angle from the test object is approximately 8 degrees. In this method, an integrating sphere means is provided to emit light into an optical system, and the light emitted from the optical system having an optical axis that coincides with the reflected light from the integrating sphere means is separated by a monochromatic means, and the light is detected by a light detection means. You can easily check the reflectance, transmittance, etc. of the sample.
迅速に、精度良く測定でき、特に高光沢、メタリックを
伴なった試料の色差を肉眼判定と合致する測定ができる
測色色差計を提供することを目的とするものである。It is an object of the present invention to provide a colorimetric colorimeter that can measure color differences quickly and accurately, and in particular, can measure color differences in samples with high gloss and metallic colors that match visual judgment.
以下に、この発明の一実施例の測色色差計を第1図に基
づいて説明する。なお従来と同一または相当部分には同
一符号を付し、その説明の詳細を省く。A colorimetric colorimeter according to an embodiment of the present invention will be described below with reference to FIG. Note that the same reference numerals are given to the same or corresponding parts as in the conventional art, and detailed explanation thereof will be omitted.
21は光源1を冷却するだめのファン、22゜23は光
源1からの光が積分球8に入射する前部に配設したフィ
ルター、24は積分球8内に被検物をセットするセット
部、25はこのセット部24からの反射した光が光学系
26へ入射する入口、27は光学系26のレンズ、28
は透過用試料室、29はこの光学系26からの光を単色
手段である分光器30へ入射するピンホール、31は回
折格子、32はミラー、33はコリメーター鏡、34は
光検知手段である光電子増倍管、35は測定波長を選定
する単色手段でおる回折格子31で分光する光線の波長
選定用のモーター、36は吸光部材である光沢トラップ
で、セット部24における垂線とほぼ8°の角度で積分
球8に着脱可能に取シ付け、また上記光学系26の光軸
を、セット部24からの反射角がほぼ8°の反射角で反
射する光線と合致するように取υ付けである。37は増
幅器、38はA/D変換器、39はコンピュータでろる
。21 is a fan for cooling the light source 1; 22 and 23 are filters disposed at the front part where the light from the light source 1 enters the integrating sphere 8; and 24 is a setting part for setting the object to be examined inside the integrating sphere 8. , 25 is an entrance through which the light reflected from the set section 24 enters the optical system 26, 27 is a lens of the optical system 26, and 28
29 is a transmission sample chamber, 29 is a pinhole through which the light from this optical system 26 enters a spectroscope 30 which is a monochromatic means, 31 is a diffraction grating, 32 is a mirror, 33 is a collimator mirror, and 34 is a light detection means. A photomultiplier tube, 35 is a motor for selecting the wavelength of the light beam separated by the diffraction grating 31, which is a monochromatic means for selecting the measurement wavelength, and 36 is a gloss trap, which is a light absorbing member, and is approximately 8 degrees from the perpendicular line in the set part 24. The optical system 26 is removably attached to the integrating sphere 8 at an angle of 8 degrees, and the optical system 26 is attached so that the optical axis of the optical system 26 coincides with the light beam reflected from the set part 24 at an angle of approximately 8 degrees. It is. 37 is an amplifier, 38 is an A/D converter, and 39 is a computer.
作用について説明する。The effect will be explained.
この発明の一実施例の測色色差計では、測定をするには
、まず、標準板10をセット部24に置き、正しい位置
にセットし、モーター35で回折格子31の取付角度を
変えて、回折格子31で分光した光線のうち、所要の光
線の波長のみを光電子増倍管34で検知し、増幅器37
を通しA/D変換器38で変換した後、コンピュータ3
9に入力し、計算値をコンピュータ39に記憶させる。In the colorimetric colorimeter according to the embodiment of the present invention, in order to make a measurement, first, the standard plate 10 is placed on the setting part 24, set at the correct position, and the mounting angle of the diffraction grating 31 is changed using the motor 35. Of the light beams separated by the diffraction grating 31, only the desired wavelength of the light beam is detected by the photomultiplier tube 34, and the amplifier 37
after being converted by the A/D converter 38, the computer 3
9, and the calculated value is stored in the computer 39.
また、測定絞り17を通した光を光電子増倍管34にみ
ちびき、入射光を遮断したときの値を0とする。前記入
射光を遮断しないときの光電子増倍管34の入力値を1
00とし、コンピュータ39に記憶しておき、標準板1
0のかわシに試料9をセット部24に置き、正しい位置
にセットし、光電子増倍管34の入力値を読みとる。Further, the value when the light passing through the measurement aperture 17 is guided to the photomultiplier tube 34 and the incident light is blocked is set to zero. The input value of the photomultiplier tube 34 when the incident light is not blocked is 1.
00, memorize it in the computer 39, and select the standard plate 1.
The sample 9 is placed on the setting section 24 at the zero mark, set at the correct position, and the input value of the photomultiplier tube 34 is read.
この測定において、用いた標準板の検知値が、たとえば
100で、試料の測定目盛が50でめるときは試料の測
定値は50となる。In this measurement, if the detection value of the standard plate used is, for example, 100 and the measurement scale of the sample is 50, the measured value of the sample will be 50.
同じ試料について、別の波長をもつ光線ごとに、上記の
測定過程を繰シ返見せはよい。また。It is a good idea to repeat the above measurement process for the same sample using different wavelengths of light. Also.
この発明の一実施例の測色色差計では波長が、380〜
780 nmでおる領域に亘るスキャンニングの所要時
間は1秒程度で、従来装置に比較してきわめて短かい。In the colorimeter of one embodiment of the present invention, the wavelength is 380~
The time required for scanning over the 780 nm region is about 1 second, which is extremely short compared to conventional devices.
さらに赤、緑、青の三原色についての三つの色刺戟の基
本値X、Y、Zを計算し、これらを用いた三色係数x=
X/ (X±Y十Z )。Furthermore, the basic values X, Y, and Z of the three color stimulations for the three primary colors of red, green, and blue are calculated, and the three-color coefficient x=
X/ (X±Y ten Z).
y==Y/(X十Y十Z)、z=Z/(x+y十Z)、
ΔEなどの演算をコンピューターで短時間内に行ないう
ろことはいうまでもない。y==Y/(X0Y1Z), z=Z/(x+y1Z),
It goes without saying that calculations such as ΔE can be performed on a computer within a short period of time.
さらKま九、この発明の測色色差計を液体の透過率など
の測定に用いるには、透過用試料室28に吸収セルを置
くことによシ透過率などの測定を行なうこともできる。Furthermore, in order to use the colorimeter of the present invention to measure the transmittance of a liquid, it is also possible to measure the transmittance by placing an absorption cell in the transmission sample chamber 28.
しかして、この発明の一実施例の測色色差計では、積分
球B内に置いた被検物からの反射光が、はぼ8°の反射
角で光学系26へ入射するように作られている理由につ
いては下記のように説明される。Therefore, in the colorimeter according to one embodiment of the present invention, the reflected light from the object placed in the integrating sphere B is made to enter the optical system 26 at a reflection angle of approximately 8°. The reason for this is explained below.
これは被検物の面からの反射した光線の強さは、反射角
をθとすると■番θの法則によって変わると考えられる
ので、この反射角θを小さく選ぶことが望ましいのであ
るが、余シ小さくすると積分球8の光沢トラップ36の
位置と光学系26が被検物を積分球8ヘセツトするセッ
ト部24の光軸に対して対称的に設置することができな
くなシ、すなわち光学系26の入口25と重なった位置
となって都合が悪い。そこで的記被検物からの反射光を
、強さを全9弱めないで、光路上の光学系26へみちび
くには幾何学的位置として、前記反射角をほぼ8°とし
ていることが理解される。This is because the intensity of the light beam reflected from the surface of the object to be inspected is thought to change according to the law of θ, where θ is the reflection angle, so it is desirable to select a small reflection angle θ. If the diameter is made smaller, the position of the gloss trap 36 of the integrating sphere 8 and the optical system 26 cannot be installed symmetrically with respect to the optical axis of the setting section 24 that sets the test object on the integrating sphere 8. In other words, the optical system The location overlaps with the entrance 25 of 26, which is inconvenient. Therefore, it is understood that in order to guide the reflected light from the test object to the optical system 26 on the optical path without weakening the intensity, the reflection angle is approximately 8 degrees as a geometric position. be done.
しかして、この発明の一実施例では、このようにほぼ8
°の反射角で反射した光線を光学系26へ入射するので
、(1)光の強さを全9弱めないで光学系26から分光
器30などの測定部へ測定光をみちびくことができ、ま
た(2)光学系26の入口からの反射光は、試料で反射
して直接。Thus, in one embodiment of the present invention, approximately 8
Since the light beam reflected at a reflection angle of ° is incident on the optical system 26, (1) the measurement light can be guided from the optical system 26 to the measuring section such as the spectrometer 30 without weakening the total intensity of the light; , and (2) the reflected light from the entrance of the optical system 26 is directly reflected by the sample.
光学系26の取付位置へは戻らない。さらに光学系26
の光軸と試料から反射した光線が合致するようになって
いるので、(3)光沢分を伴なう試料であっても、試料
からの反射光を光沢トラップ36へ入射し、この反射光
に含まれた光沢分を吸光する。It does not return to the mounting position of the optical system 26. Furthermore, the optical system 26
(3) Even if the sample has a glossy component, the reflected light from the sample is incident on the glossy trap 36, and this reflected light is Absorbs the luster contained in the light.
上記の(1)ないしく3)で説明したように、試料から
の反射光の強さを余り弱めることなく、光沢分を伴なう
試料などの被検物からの反射光から光沢分を除いた光に
ついて色差の測定を、肉眼による判定と良く合致させる
ことができる。従来の測定では、高光沢などを伴なった
試料の色差を、肉眼による判定と合致性が良く測定でき
るものが望まれていたもので、この発明の一実施例はこ
の問題点を解決するものである。As explained in (1) to 3) above, the gloss component is removed from the reflected light from the test object, such as the sample, without significantly weakening the intensity of the reflected light from the sample. The measurement of color difference for the light obtained can be in good agreement with the judgment made by the naked eye. In conventional measurements, it was desired to be able to measure the color difference of a sample with high gloss, etc., with good agreement with the judgment made by the naked eye.One embodiment of the present invention solves this problem. It is.
しかしてまた、上記フィルター22に熱線吸収用のHA
フィルターを用い、フィルター23にひる間の日光に近
い光線が得られるD65フィルターを用いることで、測
色の測定条件を一層望ましい状態にしうる。このように
この発明の一実施例は多目的の用途に適する。However, the filter 22 also includes HA for absorbing heat rays.
By using a filter, and by using a D65 filter that can obtain light rays close to that of daylight as the filter 23, the measurement conditions for colorimetry can be made even more desirable. Thus, one embodiment of the present invention is suitable for multiple purposes.
以上説明したように、この発明の一実施例の測色色差計
では、固体の反射度などの測定のほか、気体、液体の透
過率などの測定とともに。As explained above, the colorimetric colorimeter of one embodiment of the present invention can measure not only the reflectance of solids but also the transmittance of gases and liquids.
高光沢、メタリックを伴なう2つの試料間の色差を簡単
、迅速かつ精度良く行ないうる。Color difference between two samples with high gloss and metallic color can be easily, quickly and precisely determined.
この発明は1以上説明したとおシ、光源で発光した光を
積分球にみちびき、拡散光で被検物を照明し、被検物か
らほぼ8°の反射角で光学系・へ射出する積分球手段、
この積分球手段からの反射する光線と合致する光軸を有
する光学系。As described above, the present invention is directed to an integrating sphere that directs light emitted from a light source to an integrating sphere, illuminates a test object with diffused light, and emits the light from the test object to an optical system at a reflection angle of approximately 8 degrees. means,
An optical system having an optical axis that coincides with the reflected rays from this integrating sphere means.
この光学系からの射出光を分光する単色手段およびこの
単色手段で分光した光を検知する光検知手段を備えると
いう簡単な構造によシ、試料の反射率、透過率などを簡
単、迅速に、精度良く測定でき、高光沢、メタリックを
伴なった試料の色差を肉眼判定と近い測定を行なうこと
ができるという効果がめる。With a simple structure that includes a monochromatic means for dispersing the light emitted from this optical system and a light detection means for detecting the light separated by the monochromatic means, it is possible to easily and quickly measure the reflectance, transmittance, etc. of a sample. It has the advantage of being able to measure with high precision and making it possible to measure the color difference of samples with high gloss and metallic appearance, which is similar to the naked eye judgment.
第1図はこの発明の一実施例の測色色差計の説明図、第
2図は、積分球を用いた従来の測色色差計の説明図、第
3図は同積分球を用いた測色色差計で零位法によるもの
の説明図でるる。
1・・・・・・・・・光源
8・・・・・・・・・積分球
9・・・・・・・・・試料
26・・・・・・光学系
30・・・・・・分光器
36・・・・・・光沢トラップFig. 1 is an explanatory diagram of a colorimetric colorimeter according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of a conventional colorimetric colorimeter using an integrating sphere, and Fig. 3 is an explanatory diagram of a colorimetric colorimeter using the same integrating sphere. This is an explanatory diagram of a color difference meter using the zero position method. 1... Light source 8... Integrating sphere 9... Sample 26... Optical system 30... Spectrometer 36...Gloss trap
Claims (4)
で発光した光を積分球にみちびき拡散光で被検物を照明
し被検物からほぼ8°の反射角で光学系へ射出する積分
球手段、この積分球手段で被検物から反射する光線と合
致する光軸を有する光学系、この光学系からの射出光を
分光する単色手段およびこの単色手段で分光した光を検
知する光検知手段を備えた測色色差計。(1) A light source that emits light that enters the integrating sphere. The light emitted by this light source is guided into the integrating sphere, illuminates the test object with diffused light, and is emitted from the test object to the optical system at a reflection angle of approximately 8°. an optical system having an optical axis that coincides with the light beam reflected from the object by the integrating sphere means, a monochromatic means for separating the light emitted from the optical system, and a detecting light separated by the monochromatic means. A colorimetric colorimeter equipped with a light detection means.
第1項記載の測色色差計。(2) The colorimeter according to claim 1, wherein the integrating sphere has a mounting portion for the object to be measured.
囲第1項記載の測色色差計。(3) The colorimetric colorimeter according to claim 1, wherein the integrating sphere has a sample cylinder for the object to be measured.
記載の測色色差計。(4) The colorimeter according to claim 1, wherein the integrating sphere has a light-absorbing member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60066639A JPS61233328A (en) | 1985-04-01 | 1985-04-01 | Colorimetric color difference meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60066639A JPS61233328A (en) | 1985-04-01 | 1985-04-01 | Colorimetric color difference meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61233328A true JPS61233328A (en) | 1986-10-17 |
Family
ID=13321668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60066639A Pending JPS61233328A (en) | 1985-04-01 | 1985-04-01 | Colorimetric color difference meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61233328A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63145926A (en) * | 1986-12-10 | 1988-06-18 | Hoya Corp | Color sensor |
US5384641A (en) * | 1992-07-29 | 1995-01-24 | Minolta Co., Ltd. | Color measuring instrument with multiple inputs of light |
-
1985
- 1985-04-01 JP JP60066639A patent/JPS61233328A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63145926A (en) * | 1986-12-10 | 1988-06-18 | Hoya Corp | Color sensor |
US5384641A (en) * | 1992-07-29 | 1995-01-24 | Minolta Co., Ltd. | Color measuring instrument with multiple inputs of light |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5764352A (en) | Process and apparatus for spectral reflectance and transmission measurements | |
US5369481A (en) | Portable spectrophotometer | |
US5844680A (en) | Device and process for measuring and analysing spectral radiation, in particular for measuring and analysing color characteristics | |
US3999864A (en) | Gloss measuring instrument | |
Clarke et al. | Correction methods for integrating‐sphere measurement of hemispherical reflectance | |
CN101324468B (en) | Low stray light rapid spectrometer and measurement method thereof | |
JPH04218734A (en) | Apparatus and method for providing scale of spectrophotometer | |
US9347823B2 (en) | Absolute measurement method and apparatus thereof for non-linear error | |
JPH05312639A (en) | Spectral radiation flux measuring apparatus and total light flux measuring apparatus | |
US6278521B1 (en) | Method of and apparatus for bispectral fluorescence colorimetry | |
Zwinkels | Colour-measuring instruments and their calibration | |
CN1311230C (en) | Quickly measuring method and device for lens transmittivity | |
KR100385923B1 (en) | High Resolution Multi Functional Spectrophotometer for Color Measurement | |
JP2689707B2 (en) | Spectrometer with wavelength calibration function | |
JPS62185128A (en) | Light and color measuring apparatus | |
JPS61233328A (en) | Colorimetric color difference meter | |
CN217358748U (en) | Device for improving accuracy of spectral imager and spectral imaging system | |
Neyezhmakov et al. | Increasing the measurement accuracy of wide-aperture photometer based on digital camera | |
Chen et al. | Spectrophotometer Design Using Single-Grating, Single-Sensor, Double-Beam Spectroscope | |
JP3261888B2 (en) | Liquid color detection device | |
Weidner | Spectral reflectance | |
Zwinkels et al. | Development of a new reference spectrofluorimeter | |
Nadal et al. | 0: 45 Surface Color | |
JPH05203495A (en) | Color meter and color measuring method for color meter | |
KR200256599Y1 (en) | High Resolution Multi Functional Spectrophotometer for Color Measurement |