[go: up one dir, main page]

JPS61232201A - Method for decomposing methanol - Google Patents

Method for decomposing methanol

Info

Publication number
JPS61232201A
JPS61232201A JP7109385A JP7109385A JPS61232201A JP S61232201 A JPS61232201 A JP S61232201A JP 7109385 A JP7109385 A JP 7109385A JP 7109385 A JP7109385 A JP 7109385A JP S61232201 A JPS61232201 A JP S61232201A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
oxide
water
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7109385A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Mitsuharu Murakami
村上 光春
Yoshio Miyairi
宮入 嘉夫
Mamoru Tamai
玉井 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7109385A priority Critical patent/JPS61232201A/en
Priority to AU46959/85A priority patent/AU4695985A/en
Priority to CN 85106645 priority patent/CN85106645A/en
Priority to DE19853531757 priority patent/DE3531757A1/en
Publication of JPS61232201A publication Critical patent/JPS61232201A/en
Priority to US07/011,371 priority patent/US4780300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain economically a hydrogen-containing gas which has a high octane number and burns cleanly without lowering activity for a long period, by decomposing methanol having water by the use of a catalyst containing a specific metal (oxide). CONSTITUTION:For example, an aqueous solution of copper nitrate is blended with a mixed aqueous solution of Na2Cr2O7 and NH4OH to form precipitate, which is washed, dried and calcined to give a catalyst containing one or more metals(oxides) selected from copper, zinc and a metal of group VIII of the periodic table, e.g., catalyst such as CuO.CuCr2O4, etc., consisting essentially of copper oxide and chromium oxide. Then, 100mol methanol is mixed with 1-99mol water and subjected to a decomposition reaction shown by the formula (0<n<1) at 0-50kg/cm<2> at 150-600 deg.C by the use of the catalyst to form a hydrogen-containing gas over a long period.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、メタノール分解方法に関するものである。[Detailed description of the invention] <Industrial application field> The present invention relates to a methanol decomposition method.

更に詳しくは、銅、亜鉛、■族金属からなる群の一種以
上の金属又は金属酸化物を含有する触媒を用いてメタノ
ールを分解して水素含有ガスを製造する方法において水
を共存させることにより長時間安定してメタノールを分
解する方法に関するものである。
More specifically, in a method of producing a hydrogen-containing gas by decomposing methanol using a catalyst containing one or more metals or metal oxides of the group consisting of copper, zinc, and metals in group 1, it is possible to increase the This invention relates to a method for decomposing methanol in a time-stable manner.

(従来の技術) 現在、発電用ボイラ、内燃機関などに用いられる液体燃
料中気体燃料及び還元ガス製造用原料には原油及びそれ
から精製された石油類が使用されているが最近の石油価
格の高騰のため、燃料の多様化が指向されて製油以外の
化石燃料から合成されるメタノールがこれら燃料及び還
元ガス製造用原料として注目されてbろ。
(Prior art) Currently, crude oil and petroleum products refined from it are used as raw materials for producing gaseous fuel in liquid fuel and reducing gas used in power generation boilers, internal combustion engines, etc., but the recent rise in oil prices Therefore, as fuels are diversified, methanol, which is synthesized from fossil fuels other than oil, is attracting attention as a raw material for producing these fuels and reducing gases.

またメタノールはナフサよシはるかに低温で水素含有ガ
スに分解されるので、上記分解反応の熱源として廃熱の
利用が可能であるという優位性をもっている。メタノー
ル100モルに対して水を1〜99モルの割合で共存さ
せた場合の分解反応は下記(1)式でちる。
Furthermore, since methanol is decomposed into hydrogen-containing gas at a much lower temperature than naphtha, it has the advantage that waste heat can be used as a heat source for the decomposition reaction. The decomposition reaction when water is present in a ratio of 1 to 99 moles per 100 moles of methanol is expressed by the following formula (1).

CP[sOH+n馬0→(2+n)Fh+(1,n)C
O+nC01”(1)ここでO< n < 1 反応(1)で生成した分解ガスは、分解反応の吸熱量相
当分だけ分解ガスの発熱量が増加するという利点と、さ
らにこの生成ガスは高オクタン価で高出力設計の内燃機
関に適用すると圧縮比をあげて熱効率を改善することや
、メタノール燃焼時のホルムアルデヒド類などの排出も
なくクリーン燃焼が可能などの利点があ夛、自動車用さ
らには発電用無公害燃料としての利用が可能である。
CP[sOH+nhorse0→(2+n)Fh+(1,n)C
O+nC01'' (1) where O< n < 1 The cracked gas generated in reaction (1) has the advantage that the calorific value of the cracked gas increases by the amount equivalent to the endothermic amount of the cracking reaction, and furthermore, this generated gas has a high octane number. When applied to internal combustion engines with high output design, it has many advantages such as increasing the compression ratio and improving thermal efficiency, and enabling clean combustion without emitting formaldehyde when burning methanol. It can be used as a pollution-free fuel.

さらに上記反応(1)Kよυ生成した分解ガスから水素
を分離し、この水素を燃料電池発電用燃料として、又石
油精製、化学工業における各種有機化合物の水素化反応
などの水素源として利用できるし、また分解ガスから一
酸化炭素を分離し一酸化炭素源として利用できる。
Furthermore, hydrogen can be separated from the cracked gas produced by reaction (1) above, and this hydrogen can be used as a fuel for fuel cell power generation and as a hydrogen source for hydrogenation reactions of various organic compounds in petroleum refining and chemical industries. Additionally, carbon monoxide can be separated from cracked gas and used as a carbon monoxide source.

従来、メタノールを分解する触媒としては、アルミナな
どの担体に白金などの白金族元素又は銅、ニッケル、ク
ロム、亜鉛などの卑金属元素の金属又はその酸化物など
を担持した触媒、亜鉛、クロムさらKは銅を含有するメ
タノール合成用触媒など銅、亜鉛、■族金属からなる群
の一種以上の金属又はその酸化物を含有する触媒が提案
されている。また、発明者らは、上記の従来公知の触媒
よりも低温活性が高くかつ副反応の起こシにくい触媒と
して 銅、亜鉛、クロムからなる群の一種以上の酸化物をベー
スに酸化ニッケルを担持又は混合した触媒(特開昭57
−174138.174139号公報)、 アルミナをあらかじめ塩基性酸化物で被覆したものを担
体に白金、パラジウムを担持した触媒(特開昭57〜6
8140号公報)などをすでに特許出願している。
Conventionally, catalysts for decomposing methanol include catalysts in which platinum group elements such as platinum or base metal elements such as copper, nickel, chromium, and zinc or their oxides are supported on a carrier such as alumina, zinc, chromium, and K. Catalysts containing one or more metals of the group consisting of copper, zinc, and group (1) metals or their oxides, such as copper-containing catalysts for methanol synthesis, have been proposed. In addition, the inventors have developed a catalyst that has higher low-temperature activity than the conventionally known catalysts and is less likely to cause side reactions. Mixed catalyst (Japanese Unexamined Patent Publication No. 57
-174138.174139), a catalyst in which platinum and palladium are supported on alumina coated with a basic oxide (Japanese Unexamined Patent Publication No. 57-6
No. 8140) and other patent applications have already been filed.

〈発明が解決しようとする問題点〉 しかし、上記触媒はメタノールのみを原料とする場合、
低温活性が十分でなく、またカーボンの析出が起こシや
すいため寿命が短いという問題点がある。
<Problems to be solved by the invention> However, when the above catalyst uses only methanol as a raw material,
There are problems in that low-temperature activity is insufficient and carbon precipitation is likely to occur, resulting in a short life.

本発明の目的は上記の如き問題点を解決し、よシ低温下
で活性が高く、耐久性に優れたメタノール分解方法を提
供することにある。
The object of the present invention is to solve the above-mentioned problems and to provide a methanol decomposition method that is highly active at very low temperatures and has excellent durability.

〈問題点を解決するための手段〉 本発明者らは、上記の問題点を解決すぺく、鋭意実験検
討を重ねた結果、メタノール100モルに対して水を1
〜99モルの割合で水を共存させてメタノールを分解す
ることにょシ、低温活性が高くかつカーボン析出がない
ため長寿命であることを見い出し、本発明に至った。
<Means for Solving the Problems> In order to solve the above problems, the present inventors have conducted extensive experimental studies and found that 100 moles of methanol is mixed with 1 part of water.
It was discovered that methanol can be decomposed in the coexistence of water at a ratio of ~99 moles, and has a long life due to high low temperature activity and no carbon precipitation, leading to the present invention.

すなわち、銅、亜鉛、■族金属からなる群の−fi以上
の金属又はその酸化物を含有する触媒を用いてメタプー
ルを分解して水素含有ガスを製造する方法においてメタ
ノール100モルに対して水を1〜99モルの割合で水
を共存させることを特徴とするメタノール分解方法を提
供する。
That is, in a method of producing a hydrogen-containing gas by decomposing metapool using a catalyst containing a metal of -fi or higher in the group consisting of copper, zinc, and metals of group 1 or an oxide thereof, water is added to 100 moles of methanol. Provided is a methanol decomposition method characterized by allowing water to coexist at a ratio of 1 to 99 moles.

本発明のメタノール分解方法は、メタノール100モル
に対して水を1〜99モルの割合で共存させるととを特
徴とするものである。
The methanol decomposition method of the present invention is characterized in that water is allowed to coexist at a ratio of 1 to 99 moles per 100 moles of methanol.

このように水を共存させる割合を限定しているのは、メ
タノール100モルに対して水が1モル未満では添加効
果が少なくカーボンの析出を防止し耐久性を向上させる
効果が少々い。また水が99モルを超える場合通常の水
蒸気改質反応(CH,OR+H,O→5 Eh+c O
x 」25℃=1 t8kcat/mot)と同程度の
吸熱量になり、分解反応(CH40H−+CO+21H
1、?匂5℃=2t7kca7/mo7  )の吸熱量
と比較し生成ガスのカロリーアップのメリットが低減す
ること、また水又はスチームの所要量が高くなるという
欠点があるからである。
The reason for limiting the ratio of coexisting water is that if less than 1 mole of water is added to 100 moles of methanol, the effect of adding water to prevent carbon precipitation and improve durability is small. In addition, when water exceeds 99 moles, the usual steam reforming reaction (CH, OR + H, O → 5 Eh + c O
The endothermic amount is about the same as ``25℃=1t8kcat/mot), and the decomposition reaction (CH40H-+CO+21H
1.? This is because the advantage of increasing the calories of the generated gas is reduced compared to the endothermic amount of 5°C = 2t7kca7/mo7), and the disadvantage is that the amount of water or steam required is increased.

メタノールに水を共存させる方法としては、液の段階で
混合してもメタノール蒸気に水蒸気を混合する方法でも
良い。
The method of making water coexist with methanol may be a method of mixing it in the liquid stage or a method of mixing water vapor with methanol vapor.

また本発明の反応条件としては、圧力0〜50に97−
1温度150〜600’Cノ範囲、メタノール100モ
ルに対して水を1〜99モルの割合で共存させることが
好ましく、特に好ましくはメタノール100モルに対し
て水を5〜50モルの割合で共存させることである。
In addition, the reaction conditions of the present invention include pressures of 0 to 50, 97-
It is preferable to coexist water in a ratio of 1 to 99 moles per 100 moles of methanol at a temperature in the range of 150 to 600'C, particularly preferably in a ratio of 5 to 50 moles of water to 100 moles of methanol. It is to let

また本発明でいう銅、亜鉛、■族金属からなる群の一種
以上の金属又はその酸化物を含有する触媒としては次の
ものがある。
Catalysts containing one or more metals or oxides thereof from the group consisting of copper, zinc, and group (I) metals as used in the present invention include the following.

(1)酸化銅、酸化クロムを主成分とする触媒で、さら
にはマンガン、バリウムなどの酸化物を含有する触媒(
特公昭54−11274号公報) (2)酸化鋼、酸化亜鉛を主成分とする触媒で、さらに
酸化クロムを含有する触媒(特開昭57−174158
号公報)、またさらに酸化アルミニウムを含有する触媒
、またさらに醸化アルミニウム及び酸化マンガン、酸化
ホウ素などを含有する触媒(特開昭5?−151511
号公報) (3)  酸化亜鉛、酸化クロムを主成分とする触媒(
4)銅、亜鉛クロムからなる群の一種以上の酸化物をベ
ースに酸化ニッケルを担持又は混合した触媒(特開昭5
7−174158.174139号公報) (5)アルミナ、シリカなどの担体に酸化鋼を担持した
触媒(特開昭58−17elS6号公報;竹澤暢恒2表
面、 voム20.mtOP、555゜(6)アルミナ
を担体に酸化ニッケル、酸化クロム、酸化銅を担持した
触媒 (特公昭5B−46546,45296号公報) (7)アルξすにニッケル及びカリウムを担持した触媒 (特開昭57−1440!51号公報)(8)白金族金
属を担持した触媒で、例えばアルミナをあらかじめ塩基
性物質の酸化物で被覆した担体上に白金、パラジウムを
担持した触媒(特開昭57−48140)、またアルミ
ナにロジウム及びカリウムを担持した触媒(水野光−2
表面、 voL19.m9. P、515.1?61 
)以上は例示であって本発明を特に限定するものではな
い。
(1) Catalysts whose main components are copper oxide and chromium oxide, and also catalysts containing oxides such as manganese and barium (
(Japanese Patent Publication No. 54-11274) (2) A catalyst mainly composed of oxidized steel and zinc oxide, and further containing chromium oxide (Japanese Patent Publication No. 57-174158)
(Japanese Unexamined Patent Publication No. 151511), a catalyst further containing aluminum oxide, and a catalyst further containing fermented aluminum, manganese oxide, boron oxide, etc.
(3) Catalyst containing zinc oxide and chromium oxide as main components (
4) A catalyst in which nickel oxide is supported or mixed based on one or more oxides of the group consisting of copper, zinc and chromium (Japanese Patent Laid-Open No. 5
7-174158.174139) (5) Catalyst in which oxidized steel is supported on a carrier such as alumina or silica (JP-A-58-17elS6; Takezawa Nobutsune 2 surface, vom 20.mtOP, 555° (6) Catalyst with nickel oxide, chromium oxide, and copper oxide supported on alumina (Japanese Patent Publication No. 5B-46546, 45296) (7) Catalyst with nickel and potassium supported on alumina (Japanese Patent Application Laid-open No. 57-1440!51) (8) A catalyst supporting a platinum group metal, such as a catalyst in which platinum or palladium is supported on a carrier coated with an oxide of a basic substance (Japanese Unexamined Patent Publication No. 57-48140), or alumina. Catalyst supporting rhodium and potassium (Mizuno Hikaru-2
Surface, voL19. m9. P, 515.1?61
) The above are examples and do not particularly limit the present invention.

〔実施例〕〔Example〕

以下、実施例によυ本発明のメタノール分解方法を具体
的に説明する。
Hereinafter, the methanol decomposition method of the present invention will be specifically explained with reference to Examples.

実施例1 アドキンス(Adkins )  法と呼ばれる調製法
、即ち硝酸鋼の水溶液に11クロム酸ソーダとアンモニ
ア水との混合水溶液を加え、良く混合して生成させた沈
殿cu(NL)oHcrlo4を洗浄、乾燥後350℃
で焼成することによF) CuO*CuCr104 の
組成の触媒1を得た。
Example 1 A preparation method called the Adkins method, that is, a mixed aqueous solution of sodium 11chromate and aqueous ammonia was added to an aqueous solution of nitrate steel, and the precipitate produced by mixing well was washed and dried. After 350℃
By firing at F), Catalyst 1 having a composition of CuO*CuCr104 was obtained.

上記触媒1をv!4製する時に、さらに硝a−’?7ガ
ンを添加して1!Il製した触媒2 (2CuO:Cr
30B :Mno、のモル比==+10:10:1)、
硝酸バリウムを添加してp!l製した触媒% 2CuO
:Cr103:BaOのモル比=l O: 10 : 
1 )、また硫酸マンガン及びクロム酸パリクムを添加
して調製した触媒4 (2CuO:Crzol:MnO
2:BaOのモル比−10:10: (L5 : cs
 )を触媒1と同じ方法で調製し九次に所定組成比の硝
酸鋼、硝酸亜鉛、硝酸アルミニウム、硝酸クロム、硝酸
マンガンから選ばれた混合水溶液と炭酸ナトリウムの水
溶液をそれぞれ80℃に加熱し良く攪拌しながら混合し
て生成させた沈殿を洗浄乾燥後350℃で焼成すること
によシ表1に示す組成の触i&5〜9を得た。また触媒
?において硝酸マンガンの代わりにジルコニア粉末を用
いたこと以外は触媒9と同じ方法で触媒10を調製した
The above catalyst 1 is v! When making 4, add glass a-'? Add 7 guns and get 1! Catalyst 2 made of Il (2CuO:Cr
Molar ratio of 30B:Mno==+10:10:1),
Add barium nitrate and p! Catalyst made by % 2CuO
:Cr103:BaO molar ratio=l O: 10:
1), and catalyst 4 prepared by adding manganese sulfate and palicum chromate (2CuO:Crzol:MnO
2: BaO molar ratio -10:10: (L5: cs
) was prepared in the same manner as Catalyst 1, and then a mixed aqueous solution selected from steel nitrate, zinc nitrate, aluminum nitrate, chromium nitrate, manganese nitrate, and an aqueous solution of sodium carbonate having a predetermined composition ratio were heated to 80°C, respectively. The precipitates produced by mixing with stirring were washed and dried, and then calcined at 350°C to obtain samples I & 5 to 9 having the compositions shown in Table 1. Catalyst again? Catalyst 10 was prepared in the same manner as Catalyst 9 except that zirconia powder was used in place of manganese nitrate.

アルミナ担体を硝酸鋼の水溶液に浸漬、乾燥後700℃
で焼成してCuOを51i量チ(以下、担持量は担体を
100として表示する)担持した触媒11を、またシリ
カ担体をテト〉アンミン銅の硝酸塩水溶液でイオン交換
し乾燥後350℃で焼成することによl) CuOを5
重量%担持した触媒12を調製した。アルミナ担体を所
定組成比の硝酸カリウム、硝酸ニッケルの混合水溶液に
浸漬、乾燥後5oot::で焼成してNiO及びに80
をそれぞれCLS重量%担持した触媒1sを¥AFJt
、た。
Alumina support is immersed in an aqueous solution of nitric acid steel and heated to 700°C after drying.
The catalyst 11 carrying 51i of CuO (hereinafter, the supported amount is expressed as 100 on the carrier) was calcined with a silica carrier, and the silica carrier was ion-exchanged with an aqueous solution of ammine copper nitrate, dried, and then calcined at 350°C. Especially l) CuO 5
A weight percent supported catalyst 12 was prepared. The alumina support is immersed in a mixed aqueous solution of potassium nitrate and nickel nitrate with a predetermined composition ratio, dried and then fired at 500% to give NiO and 80%
1s of catalysts each carrying CLS weight% were ¥AFJt.
,Ta.

触媒2,4を担体として硝酸ニッケルの水溶液に浸漬、
乾燥、500℃で焼成後NiOを2重量%担持した触媒
14.15を調製した。
Immersing catalysts 2 and 4 as carriers in an aqueous solution of nickel nitrate;
After drying and calcination at 500° C., a catalyst 14.15 was prepared in which 2% by weight of NiO was supported.

上記触媒1〜15を200℃で10時間(触媒13のみ
は400℃で3時間)2tlJ水素気流中で還元し、圧
力1s kg / 51”() 、 LH3v(液空間
速度) 1 h−12反反応度270℃でメタノールを
原料とした活性評価(10時間及び2000時間後)を
まず比較例として行い、またメタノ−ルと水の混合液(
H,o/c烏OHのモル比=11)を原料とした以外は
上記と同じ条件で活性評価(10時間及び2000時間
後)を行った。
The above catalysts 1 to 15 were reduced at 200°C for 10 hours (only catalyst 13 was at 400°C for 3 hours) in a 2 tlJ hydrogen stream, and the pressure was 1 s kg / 51" (), LH3v (liquid hourly hourly velocity) 1 h-12 reaction. Activity evaluation (after 10 hours and 2000 hours) using methanol as a raw material at a reactivity of 270°C was first performed as a comparative example, and a mixture of methanol and water (
Activity evaluation (after 10 hours and 2000 hours) was conducted under the same conditions as above except that H, o/c OH molar ratio = 11) was used as the raw material.

結果を表1に示す。H,O/CH,OHのモル比をS/
Cと略す。
The results are shown in Table 1. The molar ratio of H,O/CH,OH is S/
Abbreviated as C.

生成ガスの組成(h、Oを除く)は、いずれの触媒にお
いても、 馬0/CH30Hのモル比Oの場合 馬:58〜65チ、Co:28〜32%。
The composition of the generated gas (excluding h and O) is as follows for any catalyst: 58 to 65% Co, and 28 to 32% in the case of a molar ratio of O/CH30H.

Co、 : 1〜b ’4 tその他:2〜12チ馬0
/C馬OHのモル比α1の場合 −:63〜69チ、Co:25〜31チ。
Co,: 1~b'4 tOther:2~12 Chi horse 0
/C Horse OH molar ratio α1: -: 63 to 69 thi, Co: 25 to 31 thi.

Co、:2〜4%、その他:2〜51%であった。Co: 2-4%; Others: 2-51%.

実施例2 アルミナ担体を硝酸マグネシウム、硝酸カルシウム、硝
酸パリクム、硝酸カリウム又は硝酸2ンタンの水溶液に
浸漬、乾燥し550℃で焼成しアルミナに対して)#O
,Cab、 Bad、 KzO又はL〜01をそれぞれ
10重i%担持した担体1〜5を調製した。このように
して得られた担体1〜5を白金の硝酸塩水溶液に各々浸
漬、乾燥後550℃で焼成して白金を(L5tf%担持
した触媒16〜20をv4製した。
Example 2 An alumina support was immersed in an aqueous solution of magnesium nitrate, calcium nitrate, paricum nitrate, potassium nitrate, or diphosphorous nitrate, dried, and calcined at 550°C to obtain alumina) #O
, Cab, Bad, KzO or L~01 at a weight of 10% by weight, respectively, were supported on carriers 1 to 5. The supports 1 to 5 thus obtained were each immersed in a platinum nitrate aqueous solution, dried, and then calcined at 550°C to prepare catalysts 16 to 20 (v4) carrying platinum (L5tf%).

また担体2を用いてパラジウム又はロジウムの塩化物水
溶液それぞれに浸漬、乾燥後550℃で焼成してパラジ
ウムを[lL5重盆チ担持した触媒21、ロジウムをα
5重量%担持した触媒22を調製した。
Further, the carrier 2 was immersed in an aqueous solution of palladium or rhodium chloride, dried, and then calcined at 550°C to produce palladium.
A catalyst 22 supported at 5% by weight was prepared.

上記触媒16〜22を450℃で3時間4チ水素気流中
で還元し、反応温度を540℃とした以外は実施例1と
同じ条件で活性評価を行った。結果を表2に示す。
The activity was evaluated under the same conditions as in Example 1, except that the catalysts 16 to 22 were reduced at 450°C for 3 hours in a hydrogen stream and the reaction temperature was 540°C. The results are shown in Table 2.

生成ガスの組成(H,oを除く)は、いずれの触媒にか
いても、 H,O/C烏0■のモル比0の場合 E!、:59〜65%、 CO:28〜32 % 、 
Cot:、1〜6チ、その他:2〜101% 迅O/C鶏OHのモル比11の場合 H,:65〜68%、 CO:27〜52 % 、 C
o、:2〜6チ、その他:2〜5慢 であった。
The composition of the produced gas (excluding H and O) is as follows for any catalyst: When the molar ratio of H, O/C is 0, E! , : 59-65%, CO: 28-32%,
Cot:, 1-6%, Others: 2-101% When the molar ratio of O/C chicken OH is 11, H: 65-68%, CO: 27-52%, C
o,: 2-6 chi, others: 2-5 arrogant.

実施例S 実施例1の触媒7及び14を200℃で10時間2%水
素気流中で還元し、圧力2 s、kg/y 。
Example S Catalysts 7 and 14 of Example 1 were reduced at 200° C. for 10 hours in a 2% hydrogen stream at a pressure of 2 s, kg/y.

LH3’/1h、反応温度300℃でH!O/CH30
Hのモル比の異なるメタノールと水の混合液を原料とし
て活性評価(10時間及び4000時間後)を行った。
LH3'/1h, H at reaction temperature 300℃! O/CH30
Activity evaluations (after 10 hours and 4000 hours) were conducted using mixtures of methanol and water with different H molar ratios as raw materials.

結果を表3に示す。The results are shown in Table 3.

〈発明の効果〉 以上、実施例及び比較例の結果から明らかなように、本
発明の水を共存させるメタノール分解方法は、長時間の
運転でも活性の低下が少ない非常に優れた方法である。
<Effects of the Invention> As is clear from the results of the Examples and Comparative Examples, the methanol decomposition method of the present invention in which water coexists is an extremely excellent method with little decrease in activity even during long-term operation.

復代理人  内 1)  明 復代理人  萩 原 亮 −Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】 銅、亜鉛、VIII族金属からなる群の一種以上の金属又は
その酸化物を含有する触媒を用いてメタノールを分解し
て水素含有ガスを製造する方法において メタール100モルに対して水を1〜99モルの割合で
水を共存させることを特徴とするメタノール分解方法。
[Claims] In a method for producing hydrogen-containing gas by decomposing methanol using a catalyst containing one or more metals of the group consisting of copper, zinc, and group VIII metals or their oxides, A methanol decomposition method characterized by allowing water to coexist at a ratio of 1 to 99 moles.
JP7109385A 1984-09-04 1985-04-05 Method for decomposing methanol Pending JPS61232201A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7109385A JPS61232201A (en) 1985-04-05 1985-04-05 Method for decomposing methanol
AU46959/85A AU4695985A (en) 1984-09-04 1985-09-02 Process for reforming methanol
CN 85106645 CN85106645A (en) 1985-04-05 1985-09-03 The processing method of reforming methanol
DE19853531757 DE3531757A1 (en) 1984-09-04 1985-09-03 METHOD FOR REFORMING METHANOL
US07/011,371 US4780300A (en) 1984-09-04 1987-02-04 Process for reforming methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7109385A JPS61232201A (en) 1985-04-05 1985-04-05 Method for decomposing methanol

Publications (1)

Publication Number Publication Date
JPS61232201A true JPS61232201A (en) 1986-10-16

Family

ID=13450577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7109385A Pending JPS61232201A (en) 1984-09-04 1985-04-05 Method for decomposing methanol

Country Status (2)

Country Link
JP (1) JPS61232201A (en)
CN (1) CN85106645A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386255C (en) * 2006-07-27 2008-05-07 西安交通大学 Method for producing hydrogen from methanol
CN103922281B (en) * 2014-05-14 2015-12-30 陈照生 A kind of method manufacturing hydrogen air mixture and the pyrolysis reactor implementing the method
CN115893315B (en) * 2022-11-29 2024-10-15 本源精化环保科技有限公司 Preparation method of high-purity hydrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203702A (en) * 1983-05-04 1984-11-17 Mitsubishi Heavy Ind Ltd Manufacture of hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203702A (en) * 1983-05-04 1984-11-17 Mitsubishi Heavy Ind Ltd Manufacture of hydrogen

Also Published As

Publication number Publication date
CN85106645A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
US4780300A (en) Process for reforming methanol
JPS61501827A (en) Catalyst for methanol conversion and method of using the same
JPS58193738A (en) Catalyst for production of gas enriched with hydrogen
JPS61232201A (en) Method for decomposing methanol
JPS6241063B2 (en)
JPS58193736A (en) Catalyst for production of gas enriched with hydrogen
JPH0419901B2 (en)
JPH0425064B2 (en)
JPH0576341B2 (en)
JPH0427434A (en) Catalyst for reforming methanol
JPS63256136A (en) Methanol reforming catalyst
JPS6236001A (en) Reforming method for methanol
JPS6247578B2 (en)
JPS6235814B2 (en)
JPS61127601A (en) Reforming of methanol
JPH0211301B2 (en)
JP2851406B2 (en) Methanol reforming catalyst
CN88100605A (en) Supported Copper Nickel Based Methanol Decomposition Catalyst
JPS63182033A (en) Ethanol reforming catalyst
JPS60122038A (en) Catalyst for reforming methanol
JPH0611402B2 (en) Methanol reforming catalyst
JPS637842A (en) Catalyst for reforming methanol
JPH0578382B2 (en)
JP2000320407A (en) Method and apparatus for on-vehicle reforming of dimethyl ether
JPS58216742A (en) Methanol reforming method and methanol reforming catalyst