[go: up one dir, main page]

JPS61231078A - Method of storing heat - Google Patents

Method of storing heat

Info

Publication number
JPS61231078A
JPS61231078A JP60070640A JP7064085A JPS61231078A JP S61231078 A JPS61231078 A JP S61231078A JP 60070640 A JP60070640 A JP 60070640A JP 7064085 A JP7064085 A JP 7064085A JP S61231078 A JPS61231078 A JP S61231078A
Authority
JP
Japan
Prior art keywords
heat
heat storage
vapor pressure
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60070640A
Other languages
Japanese (ja)
Other versions
JPH0572952B2 (en
Inventor
Yasuo Koseki
小関 康雄
Akira Yamada
章 山田
Hideaki Kurokawa
秀昭 黒川
Harumi Matsuzaki
松崎 晴美
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60070640A priority Critical patent/JPS61231078A/en
Publication of JPS61231078A publication Critical patent/JPS61231078A/en
Publication of JPH0572952B2 publication Critical patent/JPH0572952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To store heat at a high heat storing density and low heat storing loss, by storing heat by taking advantage of the vapor transfer CONSTITUTION:A dil, heat-storing soln. 40 having a concn. of C2 which has been transferred with a pump 21 from a heat-storing.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蓄熱方法に係り、特に、液状の蓄熱剤を用いて
蓄熱ロスを少なくした蓄熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat storage method, and particularly to a heat storage method that uses a liquid heat storage agent to reduce heat storage loss.

〔発明の背景〕[Background of the invention]

蓄熱方法には、熱運動の形で貯える(1)顕熱利用(比
熱容量利用ともいう)と(2)潜熱利用、化学エネルギ
ーの形で蓄える(3)反応熱利用濃厚液の希釈熱を利用
する(4)濃度差エネルギー利用、およびそれらの組み
合わせの各型の方法がちる。
Heat storage methods include (1) storage in the form of thermal motion (1) use of sensible heat (also called use of specific heat capacity), (2) use of latent heat, stored in the form of chemical energy (3) use of reaction heat and use of dilution heat of concentrated liquid. (4) There are various methods of utilizing concentration difference energy and their combinations.

一般に顕熱利用は操作が簡単であるが、蓄熱密度(蓄熱
剤当りの蓄熱量)が他に比べ小さいという欠点がある。
In general, sensible heat utilization is easy to operate, but has the disadvantage that the heat storage density (the amount of heat stored per heat storage agent) is smaller than other methods.

また、及応熱利用は蓄熱密度は大きいが、蓄熱温度に制
限がある。一般に、200〜5oocと高温蓄熱が対象
となる。
In addition, although indirect heat utilization has a high heat storage density, there is a limit to the heat storage temperature. Generally, high temperature heat storage of 200 to 5 ooc is targeted.

希釈熱のみを利用する濃度差エネルギー利用は、蓄熱密
度は小さいので、これに潜熱利用を組み合わせた方法が
有利となる。
Concentration difference energy utilization, which uses only dilution heat, has a low heat storage density, so a method that combines this with latent heat utilization is advantageous.

したがって、冷暖房や給湯および加熱乾燥等の分野の蓄
熱方法には、潜熱利用と、希釈熱を併用した方法が好ま
しく用いられている。
Therefore, as a heat storage method in fields such as air conditioning, hot water supply, and heating and drying, a method that uses latent heat in combination with dilution heat is preferably used.

潜熱利用には、(A)液体が気化するときの蒸発熱を利
用する方法、(B)固体が液体になるときの融解熱を利
用する方法がある。蒸発潜熱の方が融解熱に比べ大きい
ため、蒸発熱利用の方が有利である。
There are two ways to utilize latent heat: (A) a method that utilizes the heat of vaporization when a liquid evaporates, and (B) a method that utilizes the heat of fusion when a solid becomes a liquid. Since the latent heat of vaporization is larger than the heat of fusion, it is more advantageous to utilize the heat of vaporization.

気化する物質として、蒸発潜熱の大きい水が用いられる
。この方法では熱を水の蒸発に用いて水蒸気に変える方
法であるが、水蒸気の状態では体積が大きいため、一般
に固体もしくは液体の蓄熱剤に吸着または吸収させて、
体積を小さくして貯蔵している。
Water, which has a large latent heat of vaporization, is used as the substance to be vaporized. In this method, heat is used to evaporate water and convert it into water vapor, but since the volume of water vapor is large, it is generally adsorbed or absorbed by a solid or liquid heat storage agent.
It is stored in a smaller volume.

水蒸気を固体蓄熱剤で保持する方法に、ゼオライト吸着
法や塩化カルシウム水利塩を用いる吸収法があるが(例
えば特開昭51−43387 )、固体(一般には微粒
)と水蒸気の接触不良および熱交換効率が小さい等の問
題がある。
Zeolite adsorption methods and absorption methods using calcium chloride water salts are methods for retaining water vapor with solid heat storage agents (for example, Japanese Patent Application Laid-Open No. 51-43387). There are problems such as low efficiency.

一方水蒸気を液体蓄熱剤で保持する方法は、固体蓄熱剤
に比べ水蒸気との接触が容易で熱交換効率も良好である
。液体蓄熱剤としては、吸収冷凍機に用いる臭化リチウ
ム水溶液(例えば冷凍34−496第22頁〜第25頁
)等の塩類や硫酸、水酸化ナトリウム等と酸、アルカリ
水溶液がある。
On the other hand, the method of retaining water vapor with a liquid heat storage agent allows easier contact with water vapor and has better heat exchange efficiency than a solid heat storage agent. Examples of liquid heat storage agents include salts such as lithium bromide aqueous solution (for example, Frozen 34-496, pages 22 to 25) used in absorption refrigerators, sulfuric acid, sodium hydroxide, and acid and alkali aqueous solutions.

液体蓄熱剤を用いた蓄熱システムとして例えばproc
、 工ntersoc、Engergy Conver
s 6ngconf 14 t h 41  で記載さ
れた従来例が存在する。この従来例の蓄熱システムを第
4図で説明する。
For example, proc is a heat storage system using a liquid heat storage agent.
, Engineering Converter
There is a conventional example described in s 6ngconf 14 th 41. This conventional heat storage system will be explained with reference to FIG.

図において、システムは、水タンク100.蓄熱液(臭
化リチウム水溶液)タンク500.伝熱管210を持つ
水用熱交換器200と、伝熱管610を持つ蓄熱液用熱
交換器600より構成される。水タンク100と水用熱
交換器200の間を水10がポンプ11によって循環す
る。一方、蓄熱液タンク500と蓄熱液用熱交換器60
0の間を蓄熱液20がポンプ21によって循環する。
In the figure, the system includes a water tank 100. Heat storage liquid (lithium bromide aqueous solution) tank 500. It is composed of a water heat exchanger 200 having heat transfer tubes 210 and a heat storage liquid heat exchanger 600 having heat transfer tubes 610. Water 10 is circulated between a water tank 100 and a water heat exchanger 200 by a pump 11. On the other hand, a heat storage liquid tank 500 and a heat storage liquid heat exchanger 60
The heat storage liquid 20 is circulated by the pump 21 between 0 and 0.

次にこのシステムにおける蓄熱および出熱(冷熱発生)
操作について第4図の他に第5図の水蒸気圧線図を用い
て説明する。
Next, heat storage and heat output (cold heat generation) in this system
The operation will be explained using the water vapor pressure diagram shown in FIG. 5 in addition to FIG. 4.

図において、横軸が温度で縦軸が水蒸気圧であシ、水と
蓄熱液の水蒸気圧線を示す。両者の水蒸気圧の相異によ
り、蓄熱および冷熱発生(出熱)が起こる。
In the figure, the horizontal axis is temperature and the vertical axis is water vapor pressure, and shows the water vapor pressure lines of water and heat storage liquid. The difference in water vapor pressure between the two causes heat storage and cold heat generation (heat output).

蓄熱操作は、まず蓄熱液用熱交換器600内で伝熱管6
10の表面に散布された蓄熱液を温度Tgで加熱し、温
度TMcで水を蒸発させ蓄熱液を濃度Cs%が濃度Ct
%まで濃縮する(第5図のG点)。そこで発生した水蒸
気30は蓄熱液用熱交換器600と連通された水用熱交
換器200へ入シ、外気の空気等により伝熱管210で
冷却され、温度TLCで凝縮し水となる(第5図の0点
)。画然交換器内の圧力は、温度TLCの水の飽和水蒸
気圧に等しくPgとなる。以上で温度TmC0熱を水を
相変化させて蒸発潜熱として回収し蓄熱液の濃度差とし
て蓄熱したことになる。
In the heat storage operation, first, the heat exchanger tube 6 is
The heat storage liquid sprinkled on the surface of 10 is heated at a temperature Tg, and the water is evaporated at a temperature TMc to change the heat storage liquid from a concentration Cs% to a concentration Ct.
% (point G in Figure 5). The water vapor 30 generated therein enters the water heat exchanger 200 connected to the heat storage liquid heat exchanger 600, is cooled by outside air, etc. in the heat transfer tube 210, and is condensed at the temperature TLC to become water (fifth 0 points in the figure). The pressure inside the Pazen exchanger is Pg, which is equal to the saturated vapor pressure of water at temperature TLC. In the above manner, the heat at temperature TmC0 is recovered as latent heat of vaporization by changing the phase of water, and is stored as a concentration difference in the heat storage liquid.

次に冷熱発生操作であるが、蓄熱液タンク500よりポ
ンプ21により濃度C鵞%の濃厚蓄熱液20を蓄熱液用
熱交換器600内へ送シ、伝熱管610表面へ散布する
と同時に伝熱管61Gで冷却する。すると蓄熱液20は
水蒸気圧が低いため、容器内の水蒸気を吸収し発熱する
とともに、容器は密閉されているから器内蒸気圧がPc
まで下がる。一方、水タンク100よりボンプ11で水
10を水用熱交換器200へ送シ、伝熱管2100表面
に散布すると、器内が真空になっているため蒸発が起こ
り、伝熱管210は蒸発潜熱を奪われ、冷却される。発
生した水蒸気31は蓄熱液20へ吸収され、蓄熱液は希
釈され水蒸気と蓄熱液量のバランスによ#)!I度Ct
 となる。伝熱管610表面の蓄熱液20は外気の空気
等により伝熱管610で冷され、水蒸気吸収時に発生す
る熱を奪われて温度TbCとなる。そのときの蓄熱液用
熱交換器600内圧力は、蓄熱液20の希釈後の濃度C
1%で温度Tt、Cの状態(第5図のA点)の水蒸気圧
Pcまで下がる。したがって、水用熱交換器200の伝
熱管210で蒸発する水の温度は、器内圧力Pcにおけ
る水の飽和温度Tcまで下がる(第5図のE点)。この
操作により、濃厚蓄熱液が水蒸気吸収で希釈されること
により、水用熱交換器200の伝熱管210より温度T
cの冷熱が発生し、冷房等に利用される。
Next, in the cold heat generation operation, the concentrated heat storage liquid 20 with a concentration of C% is sent from the heat storage liquid tank 500 into the heat exchanger 600 for heat storage liquid by the pump 21, and at the same time it is sprayed onto the surface of the heat transfer tube 610. Cool it down. Then, since the heat storage liquid 20 has a low water vapor pressure, it absorbs the water vapor in the container and generates heat, and since the container is sealed, the vapor pressure inside the container becomes Pc.
down to. On the other hand, when water 10 is sent from the water tank 100 to the water heat exchanger 200 using the pump 11 and sprayed on the surface of the heat exchanger tube 2100, evaporation occurs because the inside of the vessel is in a vacuum, and the heat exchanger tube 210 absorbs the latent heat of evaporation. Deprived and cooled. The generated water vapor 31 is absorbed into the heat storage liquid 20, and the heat storage liquid is diluted to maintain a balance between the amount of water vapor and the heat storage liquid. I degree Ct
becomes. The heat storage liquid 20 on the surface of the heat exchanger tube 610 is cooled by the outside air or the like in the heat exchanger tube 610, and the heat generated when absorbing water vapor is removed and the temperature reaches TbC. The internal pressure of the heat storage liquid heat exchanger 600 at that time is the concentration C of the heat storage liquid 20 after dilution.
At 1%, the temperature Tt decreases to the water vapor pressure Pc in the state of C (point A in FIG. 5). Therefore, the temperature of the water evaporated in the heat exchanger tubes 210 of the water heat exchanger 200 decreases to the saturation temperature Tc of water at the internal pressure Pc (point E in FIG. 5). Through this operation, the concentrated heat storage liquid is diluted by water vapor absorption, so that the temperature T
The cold energy of c is generated and used for air conditioning, etc.

上記蓄熱システムは固体蓄熱剤を用いた場合に比べ多く
の長所を持つが、蓄熱密度および得られる冷熱温度は、
蓄熱液の濃度と水蒸気圧特性に大きく影響し、低温度の
蓄熱の場合は、高濃度までの濃縮ができないため、蓄熱
密度が小さいことおよび冷熱温度があまシ下がらなくな
る欠点がある。
The above heat storage system has many advantages over solid heat storage agents, but the heat storage density and the resulting cold temperature are
It greatly affects the concentration and water vapor pressure characteristics of the heat storage liquid, and in the case of low temperature heat storage, it cannot be concentrated to a high concentration, so there are disadvantages that the heat storage density is small and the cold temperature does not drop.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、蓄熱密度が高く、かつより低温度の冷
熱を発生することのできる蓄熱方法を提供することにあ
る。
An object of the present invention is to provide a heat storage method that has a high heat storage density and can generate cold heat at a lower temperature.

゛〔発明の概要〕 本発明者らは上記目的を達成するために種々の検討をお
こなった結果、次のような知見を得るに至った。
[Summary of the Invention] The present inventors conducted various studies to achieve the above object, and as a result, they came to the following findings.

この知見の内容(1)〜(3)を第3図に基づきながら
説明する。
Contents (1) to (3) of this knowledge will be explained based on FIG.

(1)蓄熱密度向上 蓄熱が水蒸気の蒸発潜熱と蓄熱液の希釈熱で起こること
に着目すれば、蓄熱密度を上げるには、より高濃度まで
蓄熱液を濃縮させるのが最良である。つまシ高濃度はど
希釈熱が大きいとともに、水蒸気吸収容量が大きいから
、蓄熱液当シの蓄熱量(蓄熱密度)が大きくなる。した
がって、同じ温度の熱を用いてもより高濃度まで蓄熱液
を濃縮することができる。
(1) Improving heat storage density Considering that heat storage occurs due to the latent heat of vaporization of water vapor and the heat of dilution of the heat storage liquid, the best way to increase the heat storage density is to concentrate the heat storage liquid to a higher concentration. Since the high concentration of the liquid has a large dilution heat and a large water vapor absorption capacity, the heat storage amount (heat storage density) of the heat storage liquid becomes large. Therefore, even if heat at the same temperature is used, the heat storage liquid can be concentrated to a higher concentration.

このことは、第3図において、蓄熱時(つまシ高い水蒸
気圧と温度の所)で濃度02′の蓄熱液がよυ高濃度C
s  (>Cs )まで濃縮できる。
This means that during heat storage (at a place with high water vapor pressure and temperature), the heat storage liquid with a concentration of 02' has a higher concentration of C than in Figure 3.
It can be concentrated up to s (>Cs).

(2)低温冷熱発生 より低い温度Tc’を発生させる根本的方策は、第3図
で冷熱発生時(つまり低い水蒸気圧と温度の所)、蓄熱
液と媒体である水の水蒸気圧差および温度差が大きい必
要がある。
(2) The basic strategy for generating a temperature Tc' lower than low-temperature cold heat generation is shown in Figure 3. must be large.

(8)高性能蓄熱方法 上記(1)蓄熱密度向上 (2)低温冷熱発生のために
は、蒸気圧の低い蓄熱液と蒸気圧の高い媒体の水蒸気圧
差を、蓄熱時に小さく、冷熱発生時(水蒸気圧と温度小
のとき)に逆に大きくなるように操作することが重要で
ある。このことは、媒体の水蒸気圧勾配を小さくシ、蓄
熱液のそれは逆に大きいものを用いればよいことになる
(8) High-performance heat storage method (1) Improving heat storage density (2) In order to generate low-temperature cold heat, the water vapor pressure difference between the heat storage liquid with low vapor pressure and the medium with high vapor pressure must be kept small during heat storage, and when cold heat is generated ( It is important to operate the water vapor pressure so that it increases when the water vapor pressure and temperature are low. This means that the water vapor pressure gradient of the medium should be small, and that of the heat storage liquid should be conversely large.

そうすることにより、同じ温度差(Ti  Tc)を用
いても、高勾配の蓄熱液を用いることにより、高濃度(
Cs→Cs )まで濃縮できて蓄熱密度が向上するとと
もに、より低い温度(Tc→Ta’)の冷熱が発生でき
、さらに低勾配の媒体を用いることにより、より低い温
度の冷熱が得られる。
By doing so, even if the same temperature difference (TiTc) is used, a high concentration (TiTc) can be achieved by using a heat storage liquid with a high gradient.
Cs→Cs), improving the heat storage density, and generating cold heat at a lower temperature (Tc→Ta').Furthermore, by using a medium with a low gradient, cold heat at a lower temperature can be obtained.

本発明はこのような知見に基づいてなされたものであシ
、その構成は蒸気圧の低い物質と蒸気圧の高い物質の蒸
気圧差に基づく蒸気の移動により熱を貯蔵する蓄熱方法
において、前記蒸気圧の低い物質の温度変化に応じた蒸
気圧の変化率が、前記蒸気圧の高い物質の温度変化に応
じた蒸気圧の変化率より大きいことを特徴とする蓄熱方
法である。
The present invention has been made based on such knowledge, and is configured to provide a heat storage method for storing heat by moving steam based on a vapor pressure difference between a substance with a low vapor pressure and a substance with a high vapor pressure. The heat storage method is characterized in that the rate of change in vapor pressure of the substance with low vapor pressure in response to a change in temperature is greater than the rate of change in vapor pressure in response to a change in temperature of the substance with high vapor pressure.

上記本発明の構成において蒸気圧の低い物質と蒸気圧の
高い物質の間で温度変化に応じた蒸気圧の変化率を相対
的に変える方法として、蒸気圧の低い物質の水蒸気圧勾
配を大きくすることおよび蒸気圧の高い物質の水蒸気圧
勾配を低くする方法またはそれらの一方がある。
In the above configuration of the present invention, as a method for relatively changing the rate of change in vapor pressure according to temperature change between a substance with a low vapor pressure and a substance with a high vapor pressure, the water vapor pressure gradient of the substance with a low vapor pressure is increased. and/or methods for lowering the water vapor pressure gradient of substances with high vapor pressure.

蒸気圧の低い物質の水蒸気圧勾配を大きくする方策とし
て塩化カルシウム、塩化リチウム等の塩類やその混合物
、水酸化ナトリウム等のアルカリ溶液を用いる方法があ
る。
As a method for increasing the water vapor pressure gradient of substances with low vapor pressure, there is a method of using salts such as calcium chloride and lithium chloride, mixtures thereof, and alkaline solutions such as sodium hydroxide.

また逆に、水蒸気圧の大きい物質の水蒸気圧勾配を小さ
くする方法として、水の代わりにフレオン、n−ヘキサ
ン、ジクロルペンタンを用いる方法、水の代わりに水蒸
気圧勾配の小さい塩化マグネシュウムや塩化亜鉛の薄い
水溶液を中間蓄熱液として用いる方法がある。
Conversely, methods for reducing the water vapor pressure gradient of substances with high water vapor pressure include using Freon, n-hexane, or dichloropentane instead of water, or using magnesium chloride or zinc chloride, which have a small water vapor pressure gradient, instead of water. There is a method of using a dilute aqueous solution of as an intermediate heat storage liquid.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例を第1図および第2図を用いて詳
説する。なお、従来の技術と同一の部分は同じ符号を付
しその説明を省略する。
Next, one embodiment of the present invention will be explained in detail using FIGS. 1 and 2. Note that the same parts as in the prior art are given the same reference numerals, and the explanation thereof will be omitted.

第1図および第2図で示した実施例では媒体に水の代わ
シに水蒸気圧勾配の低い低濃度の蓄熱液(例えば塩化マ
グネシウムの薄い水溶液)を用い、蓄熱液に水蒸気圧勾
配の大きい高濃度の蓄熱液(塩化カルシウムの水溶液)
を用いている。したがって、前記第5図で示した媒体と
しての水の温度と水蒸気圧直線が第2図のおいて中間蓄
熱液の温度水蒸気圧直線になっている。
In the embodiment shown in FIGS. 1 and 2, a low-concentration heat storage liquid (for example, a dilute aqueous solution of magnesium chloride) with a low water vapor pressure gradient is used instead of water as the medium, and a high-concentration heat storage liquid with a large water vapor pressure gradient is used as the heat storage liquid. Concentrated heat storage liquid (aqueous solution of calcium chloride)
is used. Therefore, the straight line between the temperature and water vapor pressure of water as a medium shown in FIG. 5 becomes the straight line between the temperature and water vapor pressure of the intermediate heat storage liquid in FIG.

以下本実施例の蓄熱方法について冷熱発生を例にとシ説
明する。
The heat storage method of this embodiment will be explained below by taking cold heat generation as an example.

蓄熱操作は、第1図に示すように蓄熱液タンク500か
らポンプ21で送られた濃度へ′の希薄蓄熱液40が蓄
熱液熱交換器600の伝熱管610へ散布され温度TI
Kで加熱されて、水か煮気し濃度C3まで濃縮される。
In the heat storage operation, as shown in FIG. 1, the dilute heat storage liquid 40 sent by the pump 21 from the heat storage liquid tank 500 is sprayed onto the heat transfer tubes 610 of the heat storage liquid heat exchanger 600 until the temperature TI is reached.
It is heated with K, boiled with water, and concentrated to a concentration of C3.

そして、タンク500へ戻され貯蔵される(第2図のG
点)。発生した水蒸気30は、中間蓄熱液熱交換器40
0へ入り、そこで中間蓄熱液タンク800からポンプ8
1で送られた中間蓄熱液80と伝熱管410付近で接触
し中間蓄熱液に吸収される。そして、同時に中間蓄熱液
は希釈されて、タンク800へ戻される。
Then, it is returned to the tank 500 and stored (G
point). The generated water vapor 30 is transferred to an intermediate heat storage liquid heat exchanger 40
0, where the pump 8 is pumped from the intermediate heat storage liquid tank 800.
It comes into contact with the intermediate heat storage liquid 80 sent in step 1 near the heat transfer tube 410 and is absorbed by the intermediate heat storage liquid. At the same time, the intermediate heat storage liquid is diluted and returned to the tank 800.

そのとき発生する吸収熱(凝縮熱と希釈熱)は外気で冷
され、温度はTx、に保持される(第2図のA′点)。
The absorbed heat (condensation heat and dilution heat) generated at that time is cooled by the outside air, and the temperature is maintained at Tx (point A' in FIG. 2).

蓄熱時の圧力は希釈された中間蓄熱液の温度゛TLにお
ける水蒸気圧に等しくPi’となシ、第5図の場合に比
べ蓄熱圧力は低く (PHI’ <PIE )なり、蓄
熱液をより高濃度まで濃縮でき(C3〉C2)、蓄熱密
度が大きくなる。
The pressure during heat storage is Pi', which is equal to the water vapor pressure at the temperature of the diluted intermediate heat storage liquid (TL), and the heat storage pressure is lower than in the case of Fig. 5 (PHI'< PIE), and the heat storage liquid is heated to a higher temperature. It can be concentrated to a high concentration (C3>C2), increasing the heat storage density.

冷熱発生時は、タンク500よりボンプ21で、濃度C
3の濃厚蓄熱液40を熱交換器600内の伝熱管610
の表面に散布するとともに、外気で冷却する。すると蓄
熱液の水蒸気圧が低いので器内の水蒸気を吸収し、圧力
が下がる。一方タンク800よりボンプ81で希薄中間
蓄熱液80を熱交換器400内へ送ると、器内圧力が低
いため蒸発が起こシ中間蓄熱液は逆に濃縮されるととも
に、蒸発潜熱により温度が下がる。そのときの器内圧力
は、蓄熱液40の希釈後の濃度C,/の温度Tt。
When cold heat is generated, the concentration C is
The concentrated heat storage liquid 40 of No. 3 is transferred to the heat exchanger tube 610 in the heat exchanger 600.
spray on the surface and cool it with outside air. Then, since the water vapor pressure of the heat storage liquid is low, it absorbs the water vapor inside the vessel and the pressure decreases. On the other hand, when the dilute intermediate heat storage liquid 80 is sent from the tank 800 to the heat exchanger 400 by the pump 81, evaporation occurs due to the low internal pressure, and the intermediate heat storage liquid is condensed, and its temperature decreases due to the latent heat of vaporization. The internal pressure at that time is the temperature Tt of the diluted concentration C,/ of the heat storage liquid 40.

の水蒸気圧に等しく Pc’ (<Pc )となる(第
2図のA点)。したがって、得られる冷熱温度は、中間
蓄熱液の圧力Pa’における飽和温度Tc’ (第2図
のG′点)となり、第5図で示した場合に比べ大幅に低
温化(Tc’<Tc)を図ることができる。
is equal to the water vapor pressure of Pc'(<Pc) (point A in Figure 2). Therefore, the obtained cold temperature becomes the saturation temperature Tc' (point G' in Fig. 2) at the pressure Pa' of the intermediate heat storage liquid, which is significantly lower than the case shown in Fig. 5 (Tc'<Tc). can be achieved.

以上の実施例では、冷熱発生を例にとり説明したが温熱
発生でも、同様のシステムとすることが可能である。そ
の場合、蓄熱時と温熱発生時の操作圧力が近づくため、
水蒸気圧勾配の違いの効果は冷熱発生の場合に比べ少な
くなる。
Although the above embodiments have been explained by taking cold heat generation as an example, a similar system can also be used for hot heat generation. In that case, the operating pressures during heat storage and heat generation are close to each other,
The effect of the difference in water vapor pressure gradient is smaller than in the case of cold generation.

また第1図、第2図の実施例では水の代わシに中間蓄熱
液を用いたが、前記のごとく単体で勾配の大きいフレオ
ン等を用いても同様な効果が得られる。
Further, in the embodiments shown in FIGS. 1 and 2, an intermediate heat storage liquid is used instead of water, but the same effect can be obtained by using Freon or the like having a large gradient alone as described above.

さらに、液体蓄熱剤を用いて説明したが、本発明と同様
の水バ気圧特性を有する固体蓄熱剤でも同様の効果があ
る。
Further, although the explanation has been made using a liquid heat storage agent, a solid heat storage agent having the same water pressure characteristics as the present invention can also have similar effects.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る蓄熱方法によれば、蓄
熱剤をより高濃度まで濃縮できるため蓄熱密度が大きく
なる。したがって、比較的低温の熱が蓄熱でき、蓄熱量
あた9の蓄熱剤の量が少なくてすむので、装置のコンパ
クト化を図ることができる。
As explained above, according to the heat storage method according to the present invention, the heat storage agent can be concentrated to a higher concentration, thereby increasing the heat storage density. Therefore, relatively low-temperature heat can be stored, and the amount of heat storage agent per heat storage amount can be reduced, so that the device can be made more compact.

また、冷熱発生時の蒸気圧の異なる物質の蒸気圧差およ
び温度差が大きいことから、より低温の冷熱を発生する
ことができるという特有の効果を奏する。
Furthermore, since the difference in vapor pressure and temperature between substances having different vapor pressures when generating cold heat is large, it has the unique effect of being able to generate cold heat at a lower temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る蓄熱方法のシステムを示す系統図
、第2図は第1図で示す蓄熱システムの水蒸気圧線線図
、第3図は本発明の原理を示す水蒸気圧線図、第4図は
従来の蓄熱システムを示す系統図、第5図は第4図で示
した蓄熱システムの水蒸気圧線図である。 10・・・水、20・・・蓄熱液、30・・・水蒸気、
100・・・水タンク、200・・・水用熱交換器、2
10゜610・・・伝熱管、500・・・蓄熱液タンク
、600・・・蓄熱液用熱交換器。
FIG. 1 is a system diagram showing the system of the heat storage method according to the present invention, FIG. 2 is a water vapor pressure diagram of the heat storage system shown in FIG. 1, and FIG. 3 is a water vapor pressure diagram showing the principle of the present invention. FIG. 4 is a system diagram showing a conventional heat storage system, and FIG. 5 is a water vapor pressure diagram of the heat storage system shown in FIG. 10...Water, 20...Heat storage liquid, 30...Steam,
100...Water tank, 200...Water heat exchanger, 2
10°610... Heat exchanger tube, 500... Heat storage liquid tank, 600... Heat exchanger for heat storage liquid.

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気圧の低い物質と蒸気圧の高い物質の蒸気圧差に
基づく蒸気の移動により熱を貯蔵する蓄熱方法において
、前記蒸気圧の低い物質の温度変化に応じた蒸気圧の変
化率が、前記蒸気圧の高い物質の温度変化に応じた蒸気
圧の変化率より大きいことを特徴とする蓄熱方法。
1. In a heat storage method that stores heat by moving vapor based on a vapor pressure difference between a substance with a low vapor pressure and a substance with a high vapor pressure, the rate of change in vapor pressure in response to a temperature change of the substance with a low vapor pressure is A heat storage method characterized by a rate of change in vapor pressure that is greater than the rate of change in vapor pressure in response to temperature changes in substances with high vapor pressure.
JP60070640A 1985-04-03 1985-04-03 Method of storing heat Granted JPS61231078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070640A JPS61231078A (en) 1985-04-03 1985-04-03 Method of storing heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070640A JPS61231078A (en) 1985-04-03 1985-04-03 Method of storing heat

Publications (2)

Publication Number Publication Date
JPS61231078A true JPS61231078A (en) 1986-10-15
JPH0572952B2 JPH0572952B2 (en) 1993-10-13

Family

ID=13437446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070640A Granted JPS61231078A (en) 1985-04-03 1985-04-03 Method of storing heat

Country Status (1)

Country Link
JP (1) JPS61231078A (en)

Also Published As

Publication number Publication date
JPH0572952B2 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
JP2664506B2 (en) Cooling and / or heating device by solid-gas reaction
JPS61110852A (en) Absorption heat pump/refrigeration system
US4309980A (en) Closed vaporization heat transfer system
JPH09512332A (en) Absorption cooling device and method
JPS61110853A (en) Absorption heat pump/refrigeration system
CA2225335A1 (en) Compression absorption heat pump
CN112944726B (en) A high heat storage density open absorption heat heating system
CN101849147B (en) Non-vacuum absorption refrigeration
JPS61231078A (en) Method of storing heat
JP2007322028A (en) Absorption type refrigerating system
JPH02122169A (en) chemical heat pump
JP2678211B2 (en) Heat storage type cold / heat generator
JPH0237262A (en) Device for utilizing waste heat of fuel battery
KR200144045Y1 (en) Absorption Chiller
JPH0115783B2 (en)
JP2647487B2 (en) Solution heat exchange mechanism in absorption cycle
JPH0610566B2 (en) Heat storage / heat dissipation device
JPS5832301B2 (en) absorption refrigerator
JPS6232384B2 (en)
JPS6218935Y2 (en)
JP2000146349A (en) Absorption ice thermal storage refrigerator system
JPS61268961A (en) Self-exhaust heat recovery device
JPS58193061A (en) Two-stage absorption refrigerator
KR0137580Y1 (en) Liquid refrigerant chiller of absorption chiller, heater