JPS61229481A - High temperature and high pressure steam turbine and welding method - Google Patents
High temperature and high pressure steam turbine and welding methodInfo
- Publication number
- JPS61229481A JPS61229481A JP6843585A JP6843585A JPS61229481A JP S61229481 A JPS61229481 A JP S61229481A JP 6843585 A JP6843585 A JP 6843585A JP 6843585 A JP6843585 A JP 6843585A JP S61229481 A JPS61229481 A JP S61229481A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- weld
- welded
- temperature
- peening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims description 107
- 238000000034 method Methods 0.000 title claims description 34
- 229910001208 Crucible steel Inorganic materials 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 23
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 10
- 238000005336 cracking Methods 0.000 description 25
- 238000012360 testing method Methods 0.000 description 17
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
- Arc Welding In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、例えば温度600〜650℃、圧力50 Q
ヘ550 kg7cm”の蒸気を使用する高温高圧タ
ービン、及びその溶接部の形成に利用すると特に好適な
、新らしい溶接方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is applicable to a temperature of 600 to 650° C. and a pressure of 50 Q.
The present invention relates to a high-temperature, high-pressure turbine that uses steam of 550 kg and 7 cm, and a new welding method that is particularly suitable for forming welds therein.
蒸気タービンに、従来538℃の主蒸気を便用し、Or
−MQ−V鋳鋼、2−C!r−IMo鋼、又ハ27Or
−Mo−V鋼によシケーシング及び主蒸気管を形成して
いた。しかし、発電プラントの効率向上化の要請によシ
、主蒸気の温度が例えば600℃以上の高温高圧発電プ
ラントが検討されている。Traditionally, main steam at 538°C is used in the steam turbine, and
-MQ-V cast steel, 2-C! r-IMo steel, also Ha27Or
-The casing and main steam pipe were made of Mo-V steel. However, in response to demands for improved efficiency of power plants, high-temperature, high-pressure power plants in which the main steam temperature is, for example, 600° C. or higher are being considered.
第1図は、蒸気温度600〜650℃、圧力300〜5
50 kL4/cm”用蒸気タービンの断面図である。Figure 1 shows steam temperature of 600 to 650℃ and pressure of 300 to 5℃.
50 kL4/cm" steam turbine; FIG.
第1図において、符号1に生蒸気管、2は伸縮管、5は
ブレード、4はロータシャフト、5は内部ケーシング、
6は外部ケーシング、7は異材溶接部、8は同材溶接部
を意味する。In FIG. 1, numeral 1 is a live steam pipe, 2 is a telescopic tube, 5 is a blade, 4 is a rotor shaft, 5 is an internal casing,
6 means the outer casing, 7 means a dissimilar material welding part, and 8 means a same material welding part.
第1図において、例えば650℃の主蒸気は、主蒸気管
1、伸縮管2を経てブレード3に当ってロータシャフト
4を回転させる。その時の外部ケーシング6FX550
℃でめる。In FIG. 1, main steam at, for example, 650° C. passes through a main steam pipe 1 and an expansion pipe 2, hits a blade 3, and rotates a rotor shaft 4. External casing 6FX550 at that time
Melt in °C.
主蒸気管1の材料、内部ケーシング5及び弁ケーシング
などには高温強度及び耐酸化性の点からオーステナイト
ステンレス系鋼(例えば8U8516 )が使用される
。Austenitic stainless steel (for example, 8U8516) is used for the main steam pipe 1, internal casing 5, valve casing, etc. from the viewpoint of high temperature strength and oxidation resistance.
他方、外部ケーシング6にはその温度が約550℃と低
い九め、クリープ強度及び経済性を考慮するとフェライ
ト系鋳鋼(又は鍛鋼)である低合金鋳鋼の適用が有望で
ある。On the other hand, for the outer casing 6, considering its low temperature of about 550° C., creep strength, and economical efficiency, it is promising to use low-alloy cast steel, which is ferritic cast steel (or forged steel).
したがって、650℃、352ゆ/m=用蒸気タービン
の溶接としてはオーステナイト系鋳鋼同志の溶接(主蒸
気管の溶接、主塞止弁と加減弁の溶接など)とオーステ
ナイト系鋳鋼と低合金鋳鋼との溶接がある。Therefore, welding of austenitic cast steels (main steam pipe welding, main stop valve and control valve welding, etc.) for welding austenitic cast steels and welding of austenitic cast steels and low alloy cast steels for 650°C, 352 Y/m steam turbines is recommended. There is welding.
しかしながら、オーステナイト鋳鋼は一般に述べられて
いるごとく凝固後のオーステナイト組織が、常温に達し
ても組織変態することなく、著しく成長したデンドライ
ト組織がそのまt残る〔参考文献、例えは日本学術振興
会、耐熱金属材料研究第125委員会、研究報告 33
15巻、第2号、第79〜91頁(昭47年)〕。However, as is generally stated, in austenitic cast steel, the austenite structure after solidification does not undergo structural transformation even when it reaches room temperature, and the significantly grown dendrite structure remains as it is [References, for example, the Japan Society for the Promotion of Science, 125th Committee on Research on Heat-Resistant Metallic Materials, Research Report 33
Volume 15, No. 2, pp. 79-91 (1972)].
この著しい粗大組織は1000−1200℃の高温まで
加熱する溶体化熱処理を施しても、再結晶して微細化す
ることはない。This extremely coarse structure will not recrystallize and become finer even if it is subjected to solution heat treatment to a high temperature of 1000-1200°C.
しかるに、結晶粒径が大きいもの程、結晶界への低融点
不純物(P及びSなど)の偏析量が多くなる。したがっ
てこのような材料は低融点不純物の粒界偏析に起因する
溶接高温割れ感受性が著しく高い。そこで一般のオース
テナイト系ステンレス鋳鋼では高温割れを防止するため
に、デルタフェライトを10数チ含ませるような化学成
分にしている。しかしながら、溶接過程で高温割れが防
止できても、デルタフェライトt−10数チ含む材料は
600℃以上で長時間加熱するとシグマ相が析出し、脆
化を起す。したがって高温高圧蒸気タービンには適用で
きない。However, the larger the crystal grain size, the greater the amount of low melting point impurities (such as P and S) segregated into the crystal boundaries. Therefore, such materials are extremely susceptible to weld hot cracking due to grain boundary segregation of low melting point impurities. Therefore, in order to prevent hot cracking in general austenitic cast stainless steel, the chemical composition is such that it contains more than 10 grams of delta ferrite. However, even if high-temperature cracking can be prevented during the welding process, a material containing several tens of delta ferrites will precipitate a sigma phase and become brittle if heated at 600° C. or higher for a long period of time. Therefore, it cannot be applied to high-temperature, high-pressure steam turbines.
そして、高温割れに高い抵抗性を持つ溶接部を形成でき
る溶接方法は、従来開発されていなかった。A welding method that can form a welded part with high resistance to hot cracking has not been developed so far.
本発明の目的は、主蒸気600〜650℃、圧力500
〜s s o h/l−の高温高圧の蒸気の使用を可能
にすることができる蒸気タービンを提供することにある
。The purpose of the present invention is to maintain main steam at 600 to 650°C and a pressure of 500°C.
An object of the present invention is to provide a steam turbine that can use high-temperature, high-pressure steam of ~s s oh/l-.
また本発明の他の目的は、高温割れを発生せず強度の高
い溶接部を形成することができる溶接方法を提供するこ
とにある。Another object of the present invention is to provide a welding method that can form a welded part with high strength without causing hot cracking.
本発明上概説すれば、本発明の第1の発明は高温高圧蒸
気タービンに関する発明であって、ロータ、内部ケーシ
ング、外部ケーシング、及び主蒸気管を備え、かつ該内
部ケーシング及び主蒸気管がオーステナイトステンレス
鋳鋼にエフ構成さ九た高温高圧蒸気タービンにおいて、
その少なくとも一方がオーステナイトステンレス鋳鋼で
ある同材又は異材の継手溶接部及び/又は補修溶接部に
おける溶接熱影響部の組織が、微細な再結晶組織である
ことを特徴とする。To summarize the present invention, the first invention of the present invention relates to a high-temperature and high-pressure steam turbine, which comprises a rotor, an inner casing, an outer casing, and a main steam pipe, and the inner casing and the main steam pipe are made of austenite. In a high-temperature, high-pressure steam turbine constructed of stainless steel cast steel,
The structure of the weld heat affected zone in a joint weld and/or repair weld of the same or different materials, at least one of which is austenitic stainless steel cast steel, is characterized by a fine recrystallized structure.
また本発明の第2の発明な溶接方法に関する発明であっ
て、少なくとも一方がオーステナイトステンレス鋳鋼で
ある被溶接材を溶接する方法において、その溶接開先面
を冷間塑性加工する工程、及び該加工後溶接を行う工程
の各工程を包含することを特徴とする。A second invention of the present invention relates to a welding method, which includes a step of cold plastic working a welding groove surface of the welding groove surface, and a step of cold plastic working the weld groove surface, in the method of welding workpieces, at least one of which is austenitic stainless steel cast steel. It is characterized in that it includes each step of the process of performing post-welding.
本発明者等は、オーステナイト系ステンレス鋳鋼の組織
が著しく粗大化し、しかもデルタフェライトが約50−
以下であっても高温割れが防止できること全実験的に見
出し九。The present inventors have discovered that the structure of austenitic cast stainless steel is significantly coarsened, and that delta ferrite is about 50-
Finding 9 from all experiments shows that high temperature cracking can be prevented even under the following conditions.
すなわち、本発明ではオーステナイトステンレス鋳鋼の
溶接が施される溶接開先面をあらかじめ機械的な衝撃を
加え、開先面を塑性変形させるものでおる。しかるに、
開先面に塑性変形を加えることKよシ、その後の溶接に
おいて、その塑性変形部が溶接熱によって再結晶上越し
、著しく微細組織とな夛、高温割れが防止できる。That is, in the present invention, a mechanical impact is applied in advance to the weld groove surface where austenitic stainless steel cast steel is to be welded, thereby plastically deforming the groove surface. However,
By applying plastic deformation to the groove surface, during subsequent welding, the plastic deformation portion recrystallizes due to the welding heat, resulting in a significant increase in microstructure and preventing hot cracking.
その深さは、溶接境界ニジα05−以上が有効でおる。As for the depth, it is effective to set the welding boundary to α05- or more.
冷間塑性加工を加える方法は溶接開先面に塑性変形が残
るものであればいかなる方法でも↓い。特にエアーハン
マによるタガネピーニングなどは簡便で、効果を十分発
揮する。Cold plastic working can be applied to any method that leaves plastic deformation on the weld groove surface. In particular, chisel peening using an air hammer is simple and highly effective.
第2図は、本発明のlW液接部1例の金属組織の顕微伊
写真である。すなわち、第2図線、オーステナイトステ
ンレス鋳鋼(8US 516 )の溶接開先面にエアー
ハンマによるピーニング処理を施した後に8U8516
系の被覆アーク溶接棒音用いて溶接した溶接部の金属組
織の顕微鎗写真、第3図は、従来法のピーニング処理を
施さずに溶接音節した後の溶接部の顕微鐘組織を示す。FIG. 2 is a micrograph of the metal structure of an example of the IW liquid contacting part of the present invention. In other words, as shown in the second diagram, after the welding groove surface of austenitic stainless cast steel (8US 516) is peened with an air hammer, 8U8516
Fig. 3 is a microscopic photograph of the metal structure of a welded part welded using a coated arc welding rod sound system, and shows the microscopic structure of the welded part after welding without peening treatment using the conventional method.
両者を比較して明らかなごとく、溶接前にあらかじめ溶
接開先面にピーニング処理を施した第2図の本発明の溶
接熱影響部の組織は微llBな再結晶組織を呈している
。もちろん、高温割れも認められない。それに対して、
第3図の従来法の溶接熱影響部の組織は第2図のL5な
微細組織は認められない。また第3図では溶接熱影響部
と溶接金属に高温割れが発生している。As is clear from comparing the two, the structure of the weld heat affected zone of the present invention shown in FIG. 2, in which the weld groove surface was peened before welding, exhibits a slight llB recrystallized structure. Of course, high temperature cracking is also not recognized. On the other hand,
In the structure of the heat-affected zone of the conventional welding method shown in FIG. 3, the L5 microstructure shown in FIG. 2 is not recognized. Furthermore, in Fig. 3, hot cracking occurs in the weld heat affected zone and the weld metal.
次に本発明の溶接方法を適用した高温用(温度600〜
650、圧力500〜350時f/−)蒸気タービンケ
ーシングの溶接構造と溶接施工について説明する。Next, we applied the welding method of the present invention to high-temperature (temperature 600~
650, pressure 500 to 350 hours f/-) The welding structure and welding construction of the steam turbine casing will be explained.
主蒸気管の溶接は、オーステナイトステンレス鋳鋼であ
るため、オーステナイトステンレス鋳鋼同志の溶接構造
となる。主蒸気管は重量で0(105%11%、8i
a b −1,5’In、Mn 1〜2%、Ni11〜
16%、0r14〜20%、MO2〜5%及び残部?・
、又はこれにT1α1〜114チ、Nl)α05−cL
5%、 B I Q 〜60 ppm。Since the main steam pipe is made of austenitic cast stainless steel, the main steam pipe is welded with austenitic cast stainless steel. The main steam pipe is 0 (105% 11%, 8i
a b -1,5'In, Mn 1-2%, Ni11-
16%, 0r14~20%, MO2~5% and the rest?・
, or this with T1α1-114chi, Nl) α05-cL
5%, B IQ ~60 ppm.
ム、ICLO10〜α06%の1s以上を含むことが好
ましい。この溶接施工は初めに溶接熱が加わる開先面全
面を塑性加工上節す。塑性加工は圧縮空気を用い次タガ
ネピーニング法が好ましい。ショットピーニング法も好
ましい。It is preferable to include 1 s or more of 1 s or more of ICLO 10 to α 06%. In this welding process, the entire surface of the groove, to which welding heat is applied, is first subjected to plastic processing. The plastic working is preferably performed using a chisel peening method using compressed air. Shot peening is also preferred.
次に開先面に塑性加工を施した後に、開先部を2〜5層
程度肉盛溶接を施す。あらかじめ、肉盛溶接會施すのは
溶接境界付近の割れなどの欠陥の有無を検査する際に、
検査が容易にする九めである。開先肉盛溶接後は継手溶
接上実施する。Next, after performing plastic working on the groove surface, approximately 2 to 5 layers of overlay welding are performed on the groove portion. The overlay welding process is carried out in advance to inspect for defects such as cracks near the weld boundary.
This is the ninth point that makes inspection easier. After groove overlay welding, perform joint welding.
第4図は本発明の方法による溶接継手構造の1例を示す
概要図である。ここで符号20は被溶接材、9は肉盛溶
接部、10は継手溶接部會意味する。FIG. 4 is a schematic diagram showing an example of a welded joint structure according to the method of the present invention. Here, the reference numeral 20 means the material to be welded, 9 means the overlay welding part, and 10 means the joint welding part.
溶接棒はツボライトを数チ含む、オーステナイトステン
レス系の使用が好ましい。肉l&溶接及び継手溶接用溶
接41Nは同一のものが好ましい。It is preferable to use an austenitic stainless steel welding rod containing several pieces of tubolite. It is preferable that the meat l & weld and the weld 41N for joint welding be the same.
予熱は施さないことが好ましい。溶接バス間温度1lc
150℃以下が好ましい。溶接後は600〜650℃の
応力除去節なまし処理音節すのが好ましい。Preferably, no preheating is performed. Welding bath temperature 1lc
The temperature is preferably 150°C or lower. After welding, it is preferable to perform stress relief annealing treatment at 600-650°C.
次に外部ケーシングと主蒸気管との溶接について説明す
る。Next, welding between the outer casing and the main steam pipe will be explained.
第5図は、本発明の溶接方法を適用した溶接継手構造の
1例會示す概要図である。第5図において、符号1と6
仁第1図と同義であり、11は主蒸気管1の開先面の肉
盛溶接部、12は外部ケーシング6の開先面の肉感溶接
部、13は継手溶接部を意味する。FIG. 5 is a schematic diagram showing an example of a welded joint structure to which the welding method of the present invention is applied. In Figure 5, symbols 1 and 6
It has the same meaning as in FIG. 1, and 11 means a built-up weld on the groove surface of the main steam pipe 1, 12 means a texture weld on the groove surface of the outer casing 6, and 13 means a joint weld.
主蒸気管1は前述し九化学成分である。外部ケーシング
6は重量でOα08S1116%、811、11 %以
下、Mn (15〜1.5%、N115%以下crα8
〜1.8%、MO18〜1.5%、711〜13%、そ
の他Ajα01%以下、T1α001〜α02%及び1
5〜10ppm’(1−含み、残部F′eからなるもの
が好ましい。不純物としてOuが入って来るがα4%以
下が好ましい。The main steam pipe 1 has the nine chemical components mentioned above. The outer casing 6 is Oα08S1116%, 811, 11% or less, Mn (15 to 1.5%, N115% or less crα8) by weight.
~1.8%, MO18~1.5%, 711~13%, other Ajα01% or less, T1α001~α02% and 1
5 to 10 ppm' (contains 1 and the remainder is preferably F'e.Ou is included as an impurity, but α4% or less is preferable.
更に、本発明の溶接継手構造は外部ケーシング6の開先
面にニッケル基系肉盛溶接部12を有し、主蒸気管1の
開先面にニッケル基果肉盛溶接部11を有し、更に肉盛
溶接部12と11の間にN1基系継手溶接部13を有す
る。Furthermore, the welded joint structure of the present invention has a nickel-based overlay weld 12 on the groove surface of the outer casing 6, a nickel-based overlay weld 11 on the groove surface of the main steam pipe 1, and further An N1 base joint weld 13 is provided between the overlay welds 12 and 11.
外部ケーシングの開先面にN1基系肉盛溶接12七施す
のは、オーステナイト系ステンレス溶接棒の中でも特に
炭化物の安定性に優れているためであり、フェライト系
鋼に溶接してもその溶接境界部には脱炭層や浸炭層は形
成しない。The reason why N1-based overlay welding 127 is performed on the groove surface of the outer casing is that the stability of carbides is particularly excellent among austenitic stainless steel welding rods, and even when welding to ferritic steel, the weld boundary No decarburized or carburized layer is formed in this area.
次に本発明の溶接継手構造における溶接施工法について
以下に説明する。Next, a welding method for the welded joint structure of the present invention will be explained below.
最初に生蒸気管1及び外部ケーシング6の開先面に肉盛
溶接11及び12を施す。生蒸気管1の開先部の肉盛溶
接11に際しては、先に述べたごとく、溶接割れ防止の
ために、あらかじめ、開先面全面に塑性加工を施す。塑
性加工はタガネピーニングが好ましい。ピーニング加工
後rzニッケル基系溶接棒會用いて、肉感溶接11をす
る。他方、外部ケーシング側の肉盛溶接12に対しては
、予熱及びバス間温度は100〜200℃が好ましい。First, overlay welds 11 and 12 are applied to the groove surfaces of the live steam pipe 1 and the outer casing 6. When overlaying the groove 11 of the live steam pipe 1, as described above, plastic working is applied to the entire surface of the groove in advance to prevent weld cracking. Chisel peening is preferable for plastic working. After the peening process, sensuous welding 11 is performed using an RZ nickel-based welding rod. On the other hand, for the overlay welding 12 on the outer casing side, the preheating and inter-bath temperatures are preferably 100 to 200°C.
上記溶接後は残留応力除去及び溶接熱影響部の靭性向上
のために応力除去部なまし処理を施す。なお、応力除去
部なまし処理前の温度は100℃以上が好ましい。また
、応力除去部なまし処理前に400℃、30分間保保持
度の脱水素処理金施しても工い。応力除去部なまし処理
は650〜700℃、1時間以上の条件であることが好
ましい。以上の肉盛溶接11及び12が終了後は継手溶
接13を実施する。継手溶接な肉盛溶接11及び12で
用いた溶接棒と同じものが好ましい。予熱は必要とせず
、バス間温度は150℃以下が好ましい。After the above-mentioned welding, stress relief zone smoothing treatment is performed to eliminate residual stress and improve the toughness of the weld heat affected zone. Note that the temperature before the stress relief portion annealing treatment is preferably 100° C. or higher. It is also possible to perform dehydrogenation treatment at 400°C for 30 minutes before annealing the stress relief part. The stress relief part annealing treatment is preferably performed at 650 to 700°C for 1 hour or more. After the above overlay welds 11 and 12 are completed, joint welding 13 is performed. The same welding rod used in overlay welding 11 and 12, which is joint welding, is preferable. Preheating is not required, and the inter-bath temperature is preferably 150°C or less.
次に、主蒸気管の鋳造欠陥の溶接補修について説明する
。鋳造欠陥は実機稼動中にき裂へ進展する恐れがあるの
で、検査を十分行い除去する必要がある。第6図は欠陥
部の本発明の溶接方法による補修溶接構造の1例を示す
概要図でるる。Next, welding repair of casting defects in the main steam pipe will be explained. Casting defects may develop into cracks during actual machine operation, so they must be thoroughly inspected and removed. FIG. 6 is a schematic diagram showing an example of a repair welding structure for a defective part by the welding method of the present invention.
I!6図において、符号1は主蒸気管、1−4は補修溶
接部を意味する。I! In Fig. 6, the reference numeral 1 indicates the main steam pipe, and 1-4 indicates the repair welded portion.
本発明の補修溶接に際しては初めに、溶接熱実験に用い
た試験片形状は板厚100111m、板幅150mm、
長さ400mである。溶接は試験片全面を全気圧による
タガネピーニング処理後2層肉盛溶接で行った。なお、
予熱はせず、パス間温度は100℃以下である。In the repair welding of the present invention, the shape of the test piece used for the welding heat experiment was 100111 m in thickness, 150 mm in width,
It is 400m long. Welding was performed by two-layer overlay welding after chisel peening the entire surface of the test piece at full atmospheric pressure. In addition,
Preheating is not performed, and the interpass temperature is 100° C. or less.
第7図はピーニング時間(秒/−1横軸)及び圧力(I
Q/3” 、縦軸)と溶接高温割れとの関係を示すグラ
フである。ピーニング時間が5IQ/cm”と高くても
ピーニング時間がCL5秒75m”では高温割れが発生
していた。割れは第3図に示し次ごとく、溶接金属と母
材にま危がった高温割れであった。他方、ピーニング時
間がα5秒乙ザ以上であれば高温割れは認められなかっ
た。溶接部のミクロ組織は第2図に示したが、溶接熱影
響部はピーニング処理により塑性変形を受け、その後の
溶接熱によって再結晶していることが明らかである。Figure 7 shows peening time (sec/-1 horizontal axis) and pressure (I
Q/3", vertical axis) and weld hot cracking. Even if the peening time was as high as 5 IQ/cm", hot cracking occurred when the peening time was CL5 seconds and 75 m. As shown in Figure 3, hot cracking occurred between the weld metal and the base metal.On the other hand, if the peening time was α5 seconds or longer, no hot cracking was observed. The structure is shown in FIG. 2, and it is clear that the weld heat affected zone undergoes plastic deformation due to the peening treatment and is recrystallized by the subsequent welding heat.
以上の結果、本発明によれば#接棒が8UB316L及
びN1基系共にピーニング時間を(L5秒/cm”以上
施せば溶接割れは防止できることが明らかである。From the above results, it is clear that according to the present invention, weld cracking can be prevented if the peening time is applied to both the 8UB316L and N1-based connecting rods for a length of L5 seconds/cm'' or more.
l!8図はピーニング加工に伴って生じる再結晶深さく
一1縦軸)及びピーニング時間(秒/38、横軸)と割
れとの関係を示すグラフである。l! FIG. 8 is a graph showing the relationship between the recrystallization depth (vertical axis) and peening time (seconds/38, horizontal axis) and cracking caused by peening.
この結果、割れは再結晶深さが105■以上であれば発
生しない。すなわち、本発明の溶接割れを防止するため
には、溶接熱影響部の再結晶深さyaos−以上にさせ
るよう被溶接材開先面を塑性加工すればよいことが明ら
かである。As a result, cracks do not occur if the recrystallization depth is 10 5 square meters or more. That is, it is clear that in order to prevent weld cracking according to the present invention, it is sufficient to plastically work the groove surface of the welded material so that the recrystallization depth of the weld heat-affected zone is greater than or equal to yaos-.
実A伺2 次に本発明の継手溶接部の継手強度試験1r実施した。Real A visit 2 Next, a 1r joint strength test of the joint welded portion of the present invention was conducted.
供試材としては第1我に示した化学成分の+3U851
6鋳鋼と第5懺に示す化学成分のar−M□−v鋳鋼を
用いた。The test material was +3U851 with the chemical composition shown in Part 1.
No. 6 cast steel and ar-M□-v cast steel having the chemical composition shown in No. 5 were used.
溶接継手試験片の形状は板厚50m、板幅100■、長
さ500−である。開先形状は45−とじた。The shape of the welded joint test piece was 50 m thick, 100 mm wide, and 500 mm long. The groove shape was 45-.
溶接方法はまず第3我に示したcr−u□−v鋳鋼の開
先部罠第2樅で示したN1基溶接棒を用いて、S/Iの
肉感溶接を行った。その時の予熱及びパス藺温度な15
0℃でらる。溶接径線690℃、8時間保持の応力除去
焼なまし処理を実施した。As for the welding method, S/I physical feel welding was first performed using the cr-u□-v cast steel groove trap shown in Part 3 and the N1 group welding rod shown in Part 2. The preheating and pass temperature at that time is 15
It's 0℃. Stress-relief annealing treatment was performed at the weld radius at 690°C for 8 hours.
他方、第1表のRUB 516鋳鋼の開先面の肉感溶接
施工法は、まず初めに溶接開先面全面をタガネピーニン
グを施した後に、N1基溶接棒を用いて、5層肉盛溶接
を行った。ピーニングは圧カニ 5 K9/an”及び
ピーニング時間3秒/薗2の条件で実施した。肉盛溶接
は予熱は施さず、パス間温度100℃以下で実施した。On the other hand, the method of welding the groove surface of RUB 516 cast steel in Table 1 involves first applying chisel peening to the entire surface of the weld groove, and then performing 5-layer overlay welding using an N1 welding rod. went. Peening was carried out under the conditions of pressure crab 5 K9/an'' and peening time 3 seconds/field 2. Overlay welding was carried out at an interpass temperature of 100° C. or lower without preheating.
次に両者の肉盛溶接後、継手溶接を行つ九。継手溶接に
用いた溶接棒は上記肉盛溶接に適用したものと同じN1
茶系溶接棒である。溶接施工は予熱を施さず、バス間
温度150℃以下で実施した。Next, after overlaying both parts, joint welding is performed.9. The welding rod used for joint welding is the same N1 as used for overlay welding above.
It is a brown welding rod. The welding work was carried out without preheating and at a bath temperature of 150°C or less.
以上の溶接試験片より、継手溶接断面検査用の試験片を
採取し、顕微鏡にLり割れの有無を検査した。その結果
、本発明の溶接継手には割れは認められなかつ良。From the above welded test pieces, test pieces for joint weld cross-sectional inspection were taken and examined under a microscope for the presence or absence of L cracks. As a result, the welded joint of the present invention had no cracks and was found to be in good condition.
次に、継手溶接部の継手溶接クリープ試験を実施した。Next, a joint weld creep test was conducted on the joint weld.
試験片の形状な平行部直径10φ及び長さ50■で7b
〕、平行部内K Or−Mo−7鋳鋼、溶接金属及び8
tJ8516鋳鋼が入る工うにした。The diameter of the parallel part of the test piece is 10φ and the length is 50mm.
], parallel part K Or-Mo-7 cast steel, welded metal and 8
It was designed to accommodate tJ8516 cast steel.
クリープ破断試験の結果、破断位置は全てOr−MO−
V鋳鋼母材であった。5soc、10分9Jaクリープ
破断応力は1α5暗/−であった。As a result of the creep rupture test, all fracture positions were Or-MO-
The base material was V-cast steel. 5 soc, 10 minutes 9 Ja creep rupture stress was 1α5 dark/-.
実機のOr−Mo−V鋳鋼の溶接継手付近の温度は55
0℃であり、その所の設計クリープ破断応力は550℃
、10万時間で1o騙/霞工である。The temperature near the welded joint of Or-Mo-V cast steel in the actual machine is 55
0℃, and the design creep rupture stress at that point is 550℃.
, 100,000 hours and 1 o deception/kasumi.
本結果は設計応力を満足している。This result satisfies the design stress.
以上の結果、本発明の異材溶接構造及び接合方法1;J
BUB516系鋼王蒸気管材トOr−Mo−V鋳鋼外部
ケーシングの溶接に適していることが明らかである。t
た、本発明によれば蒸気タービンの作動源として温度6
00〜650 C1圧カ552 q/cm”の高温蒸気
タービン罠適していることが明らかである。As a result of the above, dissimilar metal welding structure and joining method 1 of the present invention; J
It is clear that the BUB516 series steel steam pipe material is suitable for welding the Or-Mo-V cast steel outer casing. t
In addition, according to the present invention, the operating source of the steam turbine has a temperature of 6
It is clear that a high temperature steam turbine trap with a C1 pressure of 552 q/cm'' is suitable.
なお、高温部材にピーニング処理を施す方法は既に特開
昭56−148602号で開示されている。しかし、そ
の方法はOr−Mo−V銅系ロータ材のキー溝内にピー
ニングを施して異面に圧縮残留応力を発生させて応力腐
食割れを防止する方法で、1)、本発明のステンレス鋳
鋼の溶接開先面をピーニング処理を施し、溶接熱影響部
を再結晶組織にさせて、高温割れを防止する方法とは根
本的(異なる。Incidentally, a method of subjecting a high-temperature member to peening treatment has already been disclosed in Japanese Patent Laid-Open No. 148602/1983. However, this method involves peening the inside of the keyway of the Or-Mo-V copper rotor material to generate compressive residual stress on different surfaces to prevent stress corrosion cracking. This is fundamentally different from the method of peening the weld groove surface to create a recrystallized structure in the weld heat-affected zone to prevent hot cracking.
実施例3
次に本発明の主蒸気管の継手溶接構造の実験を実施した
。継手溶接母材は第1表の808516系鋼の継手でI
Sシ、溶接棒には市販の8118316L溶接棒を用い
友。試験片の形状は、前記の実施例と同一である。溶接
方法として、1つは一般に行われている溶接のごとく、
直接80B!116鋳鋼を8tr8516 L溶接棒で
溶接するものである。もう1つは本発明の溶接構造であ
り、実施例1の溶接割れの防止できる発明条件で実施し
たものである。すなわち、本発明の実施例に、溶接熱が
加わる溶接開先面に塑性変形を加えるためにタガネピー
ニングを施し、その後両溶接開先面に5層の肉盛溶接を
施してから継手溶接を行つ九。ピーニング条件は圧カニ
3 K97cm”、時間=3秒/cm”である。肉盛
溶接及び継手溶接は予熱を施さず、パス間温度150℃
以下で行った。 ゛
以上の溶接試験片ニジ、継手溶接継面検査用の試験片を
採取し、顕微鐘にエフ割れの有無を検査した。その結果
、本発明の溶接部には全く溶接割れ法認められなかった
。しかし、本発明との比較溶接材には溶接境界部に割れ
が認められた。Example 3 Next, an experiment was conducted on the main steam pipe joint welding structure of the present invention. The joint welding base material is a joint of 808516 series steel shown in Table 1.
S, I used a commercially available 8118316L welding rod for the welding rod. The shape of the test piece is the same as in the previous example. One of the welding methods is commonly used welding,
80B directly! 116 cast steel is welded with an 8tr8516L welding rod. The other is the welded structure of the present invention, which was carried out under the conditions of the invention that can prevent weld cracking as in Example 1. That is, in the embodiment of the present invention, chisel peening is performed to apply plastic deformation to the welding groove surface to which welding heat is applied, and then five layers of overlay welding are performed on both welding groove surfaces, and then joint welding is performed. Nineteen. The peening conditions were: pressure crab 3K97cm'', time = 3 seconds/cm''. Overlay welding and joint welding do not require preheating, and the interpass temperature is 150°C.
I did the following. The above welding test pieces and test pieces for joint weld joint surface inspection were taken and examined under a microscope for the presence or absence of F cracks. As a result, no weld cracking was observed in the welds of the present invention. However, cracks were observed in the welded material compared to the present invention at the weld boundary.
次に継手溶接部のクリープ破断試験を実施した。なお、
本発明との比較溶接材においては溶接割れのない位置よ
り、継手クリープ試験片を採取した。第4表にそのクリ
ープ破断試験結果を示す。Next, a creep rupture test was conducted on the welded joint. In addition,
A joint creep test piece was taken from a position where there was no weld cracking in the welded material for comparison with the present invention. Table 4 shows the results of the creep rupture test.
第 4 表
その結果、本発明の650℃、105時間クリープ破断
強度は1(L8騙/鴫冨である。本溶接継手部の650
℃、108時間クリープ破断強度の設計要求値は10
kg/’s++”以上である。本発明の溶接継手構造は
それを満足している。他方、本発明の比軟材は7.5ゆ
/−で、設計要求値を満足しない。なお、試験片の破断
位置は本発明材が溶接金属であ〕るのに対して、比較材
は溶接境界部からであつ九。本発明材の破断位置が溶接
境界部からでなかった要因は、あらかじめ溶接開先部に
ピーニングによる塑性加工を加えたことにより、その後
の溶接熱により熱影響部が微細な再結晶組織となるため
、溶接境界部が強化されたものと推定される。Table 4 As a result, the creep rupture strength of the present invention at 650°C for 105 hours is 1 (L8 / Shizuka).
The design requirement for creep rupture strength for 108 hours at ℃ is 10
kg/'s++" or more. The welded joint structure of the present invention satisfies this. On the other hand, the soft material of the present invention has a specific softness of 7.5 Y/-, which does not satisfy the design requirement. The fracture position of the inventive material was from the welded metal, whereas the comparative material was from the welded boundary.9 The reason why the fractured position of the invented material was not from the welded boundary is that the welded metal was It is presumed that by adding plastic working to the groove by peening, the heat-affected zone becomes a fine recrystallized structure due to the subsequent welding heat, which strengthens the weld boundary.
以上のように、本発明の溶接継手は溶接割れがなく、ク
リープ破断強度が著しく高いため信頼性が高く、実機へ
の適用に対して好適であることが明らかである。As described above, it is clear that the welded joint of the present invention is free from weld cracking and has extremely high creep rupture strength, so it is highly reliable and suitable for application to actual machines.
本発明によれば、溶接割れが発生せず、蒸気温度600
〜650℃、圧力500−552kl//cIn”の高
温高圧下にさらされる蒸気タービンにおいて溶接部の組
織が安定で強度が高い優れた効果が発揮される。According to the present invention, welding cracks do not occur and the steam temperature is 600.
In steam turbines exposed to high temperatures and pressures of ~650°C and pressures of 500-552 kl//cIn'', the excellent effects of stable weld structure and high strength are exhibited.
更に本発明のオーステナイトステンレス鋳鋼の溶接割れ
を防止するための、ららかしめ開先部に塑性加工を施す
方法においては、蒸気タービンの溶接構造物はかシでな
く、必要であれば原子力、水力、化学機器の溶接構造に
使用してもなんら問題ない。Furthermore, in the method of applying plastic working to the caulking groove in order to prevent weld cracking of austenitic stainless steel cast steel according to the present invention, the welded structure of the steam turbine is not made of oak, but is made of nuclear power, hydraulic power, etc. if necessary. There is no problem when used in welded structures of chemical equipment.
第1図は蒸気温度600〜650℃、圧力500−55
0 IC9/cm”用蒸気タービンの断面図、第2図は
本発明の、第3図は従来法の各溶接部01例の各金属組
織の顕微鐘写真、第4図及び第5図は本発明の溶接方法
を適用した溶接継手構造の1例を示す概要図、第6図は
欠陥部に本発明の溶接方法を適用した補修溶接構造の1
例を示す概要図、第7図及び第8図に本発明及び比較例
の溶接部の高温割れ試験の結果を示すグラフである。
1:生蒸気管、2:伸縮管、3ニブレード、4:ロータ
シャフト、5:内部ケーシング、6:外部ケーシング、
7:異材溶接部、8:同材溶接部、9.11及び12:
肉盛溶接部、10及び13:継手溶接部、14:補修溶
接部、20:被溶接材Figure 1 shows steam temperature of 600-650℃ and pressure of 500-55℃.
0 IC9/cm'' steam turbine, Figure 2 is a microscopic photograph of each metal structure of each welded part 01 of the present invention, Figure 3 is a conventional method, and Figures 4 and 5 are of this invention. A schematic diagram showing an example of a welded joint structure to which the welding method of the invention is applied, FIG.
A schematic diagram showing an example, and FIGS. 7 and 8 are graphs showing the results of hot cracking tests of welded parts of the present invention and comparative examples. 1: Live steam pipe, 2: Telescopic pipe, 3 Ni blades, 4: Rotor shaft, 5: Internal casing, 6: External casing,
7: Welded parts of different materials, 8: Welded parts of same materials, 9.11 and 12:
Overlay welding part, 10 and 13: Joint welding part, 14: Repair welding part, 20: Material to be welded
Claims (1)
蒸気管を備え、かつ該内部ケーシング及び主気管がオー
ステナイトステンレス鋳鋼により構成された高温高圧蒸
気タービンにおいて、その少なくとも一方がオーステナ
イトステンレス鋳鋼である同材又は異材の継手溶接部及
び/又は補修溶接部における溶接熱影響部の組織が、微
細な再結晶組織であることを特徴とする高温高圧蒸気タ
ービン。 2、少なくとも一方がオーステナイトステンレス鋳鋼で
ある被溶接材を溶接する方法において、その溶接開先面
を冷間塑性加工する工程、及び該加工後溶接を行う工程
の各工程を包含することを特徴とする溶接方法。 3、該溶接を行う工程が、該塑性加工を施した溶接開先
面に肉盛溶接層を設ける工程、次いで溶接材により溶接
する工程を含むものである特許請求の範囲第2項記載の
溶接方法。4、該塑性加工が、ピーニング加工である特
許請求の範囲第2項又は第3項記載の溶接方法。 5、該ピーニング加工が、溶接開先面の単位面積当り0
.5秒/cm^2でピーニングを施すものである特許請
求の範囲第4項記載の溶接方法。[Claims] 1. A high-temperature, high-pressure steam turbine comprising a rotor, an inner casing, an outer casing, and a main steam pipe, the inner casing and the main steam pipe being made of austenitic stainless steel cast steel, at least one of which is made of austenitic stainless steel. A high-temperature, high-pressure steam turbine characterized in that the structure of a weld heat-affected zone in a joint weld and/or repair weld of cast steel of the same or different materials is a fine recrystallized structure. 2. A method for welding materials to be welded, at least one of which is made of austenitic stainless steel cast steel, characterized by including the steps of cold plastic working the weld groove surface, and performing welding after said working. welding method. 3. The welding method according to claim 2, wherein the welding step includes a step of providing an overlay weld layer on the plastically worked weld groove surface, and then welding with a welding material. 4. The welding method according to claim 2 or 3, wherein the plastic working is peening. 5. The peening process is performed at a rate of 0 per unit area of the weld groove surface.
.. The welding method according to claim 4, wherein peening is performed at a rate of 5 seconds/cm^2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6843585A JPH0724938B2 (en) | 1985-04-02 | 1985-04-02 | High temperature and high pressure steam turbine and welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6843585A JPH0724938B2 (en) | 1985-04-02 | 1985-04-02 | High temperature and high pressure steam turbine and welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61229481A true JPS61229481A (en) | 1986-10-13 |
JPH0724938B2 JPH0724938B2 (en) | 1995-03-22 |
Family
ID=13373622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6843585A Expired - Lifetime JPH0724938B2 (en) | 1985-04-02 | 1985-04-02 | High temperature and high pressure steam turbine and welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0724938B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344097B1 (en) * | 2000-05-26 | 2002-02-05 | Integran Technologies Inc. | Surface treatment of austenitic Ni-Fe-Cr-based alloys for improved resistance to intergranular-corrosion and-cracking |
JP2009039734A (en) * | 2007-08-07 | 2009-02-26 | Hitachi-Ge Nuclear Energy Ltd | Build-up welding method of piping |
WO2010086146A1 (en) * | 2009-01-27 | 2010-08-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for joining at least two metal components |
JP2015093289A (en) * | 2013-11-11 | 2015-05-18 | Jfeスチール株式会社 | Weld joint having heat-affected zone excellent in toughness, welding method of the same and welded structure |
JP2020097894A (en) * | 2018-12-17 | 2020-06-25 | 東芝エネルギーシステムズ株式会社 | Turbine cabin |
JP2020097893A (en) * | 2018-12-17 | 2020-06-25 | 東芝エネルギーシステムズ株式会社 | Turbine cabin manufacturing method |
CN113953624A (en) * | 2021-11-19 | 2022-01-21 | 攀钢集团工程技术有限公司 | A method for repairing cracks in steel parts by welding |
-
1985
- 1985-04-02 JP JP6843585A patent/JPH0724938B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344097B1 (en) * | 2000-05-26 | 2002-02-05 | Integran Technologies Inc. | Surface treatment of austenitic Ni-Fe-Cr-based alloys for improved resistance to intergranular-corrosion and-cracking |
US6610154B2 (en) * | 2000-05-26 | 2003-08-26 | Integran Technologies Inc. | Surface treatment of austenitic Ni-Fe-Cr based alloys for improved resistance to intergranular corrosion and intergranular cracking |
JP2009039734A (en) * | 2007-08-07 | 2009-02-26 | Hitachi-Ge Nuclear Energy Ltd | Build-up welding method of piping |
WO2010086146A1 (en) * | 2009-01-27 | 2010-08-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for joining at least two metal components |
JP2015093289A (en) * | 2013-11-11 | 2015-05-18 | Jfeスチール株式会社 | Weld joint having heat-affected zone excellent in toughness, welding method of the same and welded structure |
JP2020097894A (en) * | 2018-12-17 | 2020-06-25 | 東芝エネルギーシステムズ株式会社 | Turbine cabin |
JP2020097893A (en) * | 2018-12-17 | 2020-06-25 | 東芝エネルギーシステムズ株式会社 | Turbine cabin manufacturing method |
US11319879B2 (en) | 2018-12-17 | 2022-05-03 | Toshiba Energy Systems & Solutions Corporation | Manufacturing method of turbine casing |
CN113953624A (en) * | 2021-11-19 | 2022-01-21 | 攀钢集团工程技术有限公司 | A method for repairing cracks in steel parts by welding |
Also Published As
Publication number | Publication date |
---|---|
JPH0724938B2 (en) | 1995-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2635688C2 (en) | Method for repair and manufacture of gas turbine engine components and gas turbine engine components repaired or manufactured with its use | |
JP3175109B2 (en) | Repair methods for turbine component wear surfaces. | |
KR100535828B1 (en) | Metallurgical method for processing nickel- and iron-based superalloys | |
CN100548557C (en) | Prolong steel alloy welding point method of life by eliminating and reducing the heat affected area | |
EP3520946B1 (en) | Method for producing ferritic heat-resistant steel weld structure, and ferritic heat-resistant steel weld structure | |
EP3520947B1 (en) | Method for producing ferritic heat-resistant steel weld structure, and ferritic heat-resistant steel weld structure | |
EP1473106A1 (en) | Electron beam welding method providing post-weld heat treatment | |
Khajuria et al. | Impression creep studies on simulated reheated HAZ of P91 and P91B steels | |
US20100059572A1 (en) | Weld repair process and article repaired thereby | |
JPH0772530B2 (en) | Water turbine runner manufacturing method | |
JPS61229481A (en) | High temperature and high pressure steam turbine and welding method | |
Khajuria et al. | Effect of boron modified microstructure on impression creep behaviour of simulated multi-pass heat affected zone of P91 steel | |
Chilton et al. | Creep deformation and local strain distributions in dissimilar metal vvelds betvveen AISI type 316 and 2–25Cr–1 Mo steels made vvith 17Cr–8Ni–2Mo weld metal | |
Bhaduri et al. | Optimised post-weld heat treatment procedures and heat input for welding 17–4PH stainless steel | |
GB2048146A (en) | Process for treating weldments | |
CA2466829C (en) | Surface treatment of austenitic ni-fe-cr based alloys | |
JP4283380B2 (en) | Dissimilar material welded turbine rotor and method of manufacturing the same | |
JPH0510191B2 (en) | ||
KR20150037480A (en) | Welding material for welding of superalloys | |
JPS6142492A (en) | Welded structure of main steam pipe and casing of steam turbine | |
Caughey et al. | Material Selection and Fabrication, Main Steam Piping for Eddystone No. 1, 1200-F and 5000-Psi Service | |
JPS6142493A (en) | Welded structure between steam turbine main steam pipe and casing | |
JP2849496B2 (en) | Manufacturing method of high and low pressure integrated rotor | |
JPS60238423A (en) | Improvement of corrosion resistance in weld zone of two-phase stainless steel | |
JPH0128815B2 (en) |