JPS61228172A - Insensitive zone time shortening device in directional control valve - Google Patents
Insensitive zone time shortening device in directional control valveInfo
- Publication number
- JPS61228172A JPS61228172A JP6710985A JP6710985A JPS61228172A JP S61228172 A JPS61228172 A JP S61228172A JP 6710985 A JP6710985 A JP 6710985A JP 6710985 A JP6710985 A JP 6710985A JP S61228172 A JPS61228172 A JP S61228172A
- Authority
- JP
- Japan
- Prior art keywords
- spool
- spring
- compression coil
- coil spring
- directional control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004904 shortening Methods 0.000 title description 2
- 230000006835 compression Effects 0.000 claims abstract description 29
- 238000007906 compression Methods 0.000 claims abstract description 29
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 230000004044 response Effects 0.000 abstract description 10
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 2
- 235000005658 Spondias pinnata Nutrition 0.000 description 1
- 244000025012 Spondias pinnata Species 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Landscapes
- Multiple-Way Valves (AREA)
Abstract
Description
【発明の詳細な説明】
発明の目的
(産業上の利用分野)
この発明は各種方向制御弁のうちスプール弁に係り、そ
の不感帯域時間を短縮する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a spool valve among various directional control valves, and relates to a device for shortening the dead zone time thereof.
(従来の技術及び発明が解決しようとする問題点)従来
、この種の弁として、例えば、第11〜13図に示すよ
うに、クローズドセンタ4ボート3位置スプリングセン
タパイロット式方向切換弁が周知となっており、向弁に
は通常漏れを防止するためにオーバーラツプ量ΔLを持
たせである。このオーバーラツプ量ΔLの間はスプール
1が摺動しても流体の流れる方向が切り換わらない不感
帯域となり、それ以後は流れの方向が切り換わった実作
動域となる。この場合、スプール変位L(film)と
応答時間t(sec)との関係は第13図に示すように
なり、不感帯域時間t1及び実作動域時8t2−t1を
要し、スプール1が一定変位し2まで摺動するのに要す
る応答時間はこれらの和すなわちt2となる。この応答
時間t2が長いと、方向切換弁に切り換え信号を与えた
後向弁の流れの方向が完全に切り換わってシリンダ等に
流体が供給されるまでの応答性が悪くなる必然的欠点が
ある。この欠点を解消するには、不感帯域時間t1をで
きる限り短くして応答性を良くすることが必要であるが
、この不感帯域時間t1を短くするためにオーバーラツ
プ量Δしを少なくすると、逆に漏れ量が増加する問題が
あった。(Prior Art and Problems to be Solved by the Invention) Conventionally, as this type of valve, for example, a closed center 4 boat 3 position spring center pilot type directional control valve is well known, as shown in FIGS. 11 to 13. The facing valve is normally provided with an overlap amount ΔL to prevent leakage. During this overlap amount ΔL, there is a dead zone in which the direction of fluid flow does not change even if the spool 1 slides, and after that, it becomes an actual operating region where the direction of flow is changed. In this case, the relationship between the spool displacement L (film) and the response time t (sec) is as shown in FIG. The response time required to slide up to 2 is the sum of these values, ie, t2. If this response time t2 is long, there is an inevitable drawback that the responsiveness until the flow direction of the backward valve that gives the switching signal to the directional switching valve is completely switched and fluid is supplied to the cylinder etc. will be poor. . In order to eliminate this drawback, it is necessary to shorten the dead band time t1 as much as possible to improve responsiveness. However, if the overlap amount Δ is reduced in order to shorten the dead band time t1, There was a problem that the amount of leakage increased.
そこで、スプールの端部に特殊なスプリングを装着する
ことにより、オーバーラツプ量な少なくすることなく、
不感帯域時間のみを短くしたものが本発明である。Therefore, by installing a special spring at the end of the spool, we can reduce the amount of overlap without reducing the amount of overlap.
The present invention shortens only the dead band time.
発明の構成
(問題点を解決するための手段Lts4γ円)すなわち
、本発明は円周溝を形成したスプールを弁孔に対しその
軸心方向へ摺動可能に嵌合し、この弁孔に連通したボー
トに対しスプールの円周溝をその摺動に伴い開閉可能に
し、スプールによるボートの#lJ塞時にこれらの間に
オーバーラツプ部を持たせた方向制御弁において、前記
オーバーラツプ部による不感帯域では小さいばね定数で
働くとともに前記ボートが開く実作動域では大きいばね
定数で働くスプリングをスプールの端部に装着したもの
であり、同スプリングのはね定数の変化により、不感帯
域でのスプールの震動速度が実作動域での摺動速度より
も速くなる。Structure of the Invention (Means for Solving the Problem Lts4γ Circle) That is, the present invention has a spool formed with a circumferential groove that is slidably fitted in the axial direction of the valve hole and communicates with the valve hole. In this directional control valve, the circumferential groove of the spool can be opened and closed as the spool slides, and an overlap part is provided between them when the spool is blocking the #lJ of the boat. A spring is attached to the end of the spool that works at a spring constant and has a large spring constant in the actual operating range when the boat opens, and changes in the spring constant change the vibration speed of the spool in the dead zone. The sliding speed will be faster than the actual operating range.
(第一実施例)
まず、本発明をスプール弁形式の方向切換弁に具体化し
た第一実施例を第1〜8図に従って説明する。(First Embodiment) First, a first embodiment in which the present invention is embodied in a spool valve type directional control valve will be described with reference to FIGS. 1 to 8.
第1図及び第2図に示す方向切換弁りはクローズドセン
タ4ボート3位置スプリングセンタパイロット式のもの
であり、円周溝18を形成したスプール1が弁孔2に対
しその軸心方向へ震動可能に嵌合され、この弁孔2に連
通したボートP、T。The directional control valve shown in Figs. 1 and 2 is a closed center 4 boat 3 position spring center pilot type, in which a spool 1 with a circumferential groove 18 vibrates against the valve hole 2 in the direction of its axis. Boats P and T are able to be fitted together and communicated with this valve hole 2.
A、8に対しスプール1の円周溝1aがその摺動に伴い
開閉可能になっている。そして、スプール1によるボー
トP、T、A、Bの閉塞時にはこれらの間に漏れ防止用
のオーバーラツプ部(例えば第1図中オーバーラツプ量
ΔL)を持たせている。A, 8, the circumferential groove 1a of the spool 1 can be opened and closed as it slides. When the boats P, T, A, and B are closed by the spool 1, an overlap portion (for example, an overlap amount ΔL in FIG. 1) is provided between them to prevent leakage.
特に、本実施例においては、第1図に示すようにスプー
ル1の両端部に対応する両制御!3a 。In particular, in this embodiment, both controls corresponding to both ends of the spool 1 as shown in FIG. 3a.
3bにそれぞれ自由長さの異なる一対の円筒圧縮コイル
ばね4,5が同心状に並列して装着されている。すなわ
ち、第3図に示すように、内側の円筒圧縮コ゛イルばね
4はスプール1の端部に形成された凹部6と制御室3a
、3bの対向内面との間に挾持され、常にはスプール1
を圧接している。A pair of cylindrical compression coil springs 4 and 5 having different free lengths are mounted concentrically in parallel to the spring 3b. That is, as shown in FIG.
, 3b, and is always held between the opposing inner surfaces of spool 1.
are pressed together.
又、外側の円筒圧縮コイルばね5はスプール1の端部外
周に嵌着されたワッシャ7と制御苗38 。Further, the outer cylindrical compression coil spring 5 has a washer 7 fitted to the outer periphery of the end of the spool 1 and a control seedling 38.
3bの対向内面との間に介装され、常にはワッシャ7と
の間に前記オーバーラツプ量Δしにほぼ等しい隙間Sが
生ずるようになっている。しかも、前記内側の円筒圧縮
コイルばね4は外側の円筒圧縮コイルばね5に比較して
小さいばね定数となっている。例えば、本実施例におい
ては、内側の円筒圧縮コイルばね4は第4図のばね特性
線図(力Fka、ばね長さamra、ばね定数に=1k
a/mm)に示すように、セット時σ1=12mm、σ
max=2Qmm、密着時cy2=25mm、自由長さ
く73=30mmとなり、又外側の円筒圧縮コイルばね
5は第5図のばね特性線図(力Fk(1、ばね長さσn
+m、ばね定数K = 10 kMmm)に示すように
、crmax=6m1m、密着時σ2=8111O11
自由長さcy3=2Qmmとなっている。そして、これ
らのばね4,5による並列組合わせばねのばね特性線図
は第6図に示すようになり(力Fまたねみろ)、内側の
円筒圧縮コイルばね4のたわみδが前記隙間Sすなわち
オ−バーラップ量ΔLに等しくなったとき、変換点Cを
境にしてばね定数が変わる。3b and the opposing inner surface of the washer 7, so that a gap S that is approximately equal to the overlap amount Δ is always created between the washer 7 and the washer 7. Furthermore, the inner cylindrical compression coil spring 4 has a smaller spring constant than the outer cylindrical compression coil spring 5. For example, in this embodiment, the inner cylindrical compression coil spring 4 has a spring characteristic diagram (force Fka, spring length amra, spring constant = 1k) shown in FIG.
a/mm), when set σ1=12mm, σ
max = 2Qmm, cy2 = 25mm when in close contact, free length 73 = 30mm, and the outer cylindrical compression coil spring 5 has the spring characteristic diagram (force Fk (1, spring length σn) shown in Figure 5).
+m, spring constant K = 10 kmMmm), crmax = 6m1m, σ2 = 8111O11 when in close contact
The free length cy3=2Qmm. The spring characteristic diagram of the parallel combination spring of these springs 4 and 5 is as shown in FIG. When it becomes equal to the overlap amount ΔL, the spring constant changes with the conversion point C as a boundary.
この方向切換弁りは例えば第7図に示すようにフォーク
リフト等の油圧制御回路に応用される。This directional control valve is applied, for example, to a hydraulic control circuit for a forklift or the like, as shown in FIG.
同回路においては、油圧メインポンプ8がメインリリー
フ弁9及び方向切換弁りを介して油圧シリンダ10に接
続されるとともに、方向切換弁りの両制御室3a、3b
にパイロット圧用油圧ポンプ11がパイロットリリーフ
弁12及び絞り13を介して接続されている。又、この
両制御室3a。In this circuit, a hydraulic main pump 8 is connected to a hydraulic cylinder 10 via a main relief valve 9 and a directional valve, and both control chambers 3a, 3b of the directional valve
A pilot pressure hydraulic pump 11 is connected to the hydraulic pump 11 via a pilot relief valve 12 and a throttle 13. Also, both control rooms 3a.
3bはポペット弁14a、14bを介してタンク15に
接続されている。この両ポペット弁14a。3b is connected to the tank 15 via poppet valves 14a, 14b. Both poppet valves 14a.
14bは操作ボックス16からの信号をコントローラ1
7を介して受け、この信号により開閉されるようになっ
ている。14b transmits the signal from the operation box 16 to the controller 1.
7, and is opened and closed by this signal.
同回路中の方向切換弁りが中立位置にあるときには、油
圧メインポンプ8から吐出される油は同切換弁りのボー
トPで止まって油圧シリンダ10に供給されず、メイン
リリーフ弁9からタンク15へ逃げる。一方、パイロッ
ト圧用油圧ポンプ11から吐出される油は同切換弁りの
両制御室3a。When the directional switching valve in the same circuit is in the neutral position, the oil discharged from the hydraulic main pump 8 stops at the boat P of the switching valve and is not supplied to the hydraulic cylinder 10, but from the main relief valve 9 to the tank 15. run away to On the other hand, oil discharged from the pilot pressure hydraulic pump 11 is supplied to both control chambers 3a of the same switching valve.
3bに導かれて閉状態のポペット弁14a、14bで止
まり、所定圧以上になったときパイロット・リリーフ弁
12からタンク15へ逃げ、両制御室3a 、3bのパ
イロット圧が一定に保持される。3b and stops at the closed poppet valves 14a and 14b, and when the pressure exceeds a predetermined pressure, it escapes from the pilot relief valve 12 to the tank 15, and the pilot pressure in both control chambers 3a and 3b is maintained constant.
この状態で、同切換弁りのスプール1はその開制御W3
a 、3bにおける内側の円筒圧縮コイルばね4及びパ
イロット圧により圧力バランスが取られて中立位置で保
持される。In this state, the spool 1 of the switching valve is controlled to open by W3.
The pressure is balanced by the inner cylindrical compression coil springs 4 and the pilot pressure at a and 3b and held at the neutral position.
操作ボックス16からのデユーティ信号により一方のポ
ペット弁14bのみが開になると、一方の制御室3bの
油がタンク15へ逃げて、スプール1の圧力バランスが
くずれ、スプール1が摺動して一定変位で停止し、ボー
トPとB及びボートAとTが連通する。従って、油圧メ
インポンプ8から吐出される油は油圧シリンダ10へ導
かれ、そのピストンロッド10aが前進する。又、他方
のポペット弁14aのみが開になると、同様にスプール
1が摺動してボートPとA及びボートBと王が連通し、
ピストンロッド10aが後退する。When only one poppet valve 14b is opened by the duty signal from the operation box 16, the oil in one control chamber 3b escapes to the tank 15, the pressure balance of the spool 1 is disrupted, and the spool 1 slides and undergoes a constant displacement. Boats P and B and boats A and T communicate with each other. Therefore, oil discharged from the hydraulic main pump 8 is guided to the hydraulic cylinder 10, and its piston rod 10a moves forward. Moreover, when only the other poppet valve 14a is opened, the spool 1 similarly slides and the boats P and A and the boat B and the king are connected.
The piston rod 10a retreats.
前述したスプール1の摺動当初は、小さいばね定数を持
つ内側の円筒圧縮コイルばね4のみがスプール1に対し
働くため(第6図の変換点Cまで)、スプール1の摺動
速度が速くなる。次いで、スプール1がオーバーラツプ
量ΔL(前記隙間S)だけ摺動すると、大きいばね定゛
数を持つ外側の円筒圧縮コイルばね5もスプール1に対
し働くため(第6図の変換点C以後)、スプール1の摺
動速度が遅くなる。すなわち、スプール変位L(Ill
)と応答時間t(sec)との関係は第8図に示すよう
になり、スプール1が摺動しても流体の流れの方向が切
り換わらない不感帯域(オーバーラツプ量ΔLの範囲)
では通過時間t1′を要し、又流れの方向が切り換わっ
た後スプール1が一定変位L2だけ摺動するまでの実作
動域では通過時間t2=を要する。そこで、前述した従
来技術のものと本実施例のものとを通過時間tについて
比較すると、実作動域での通過時間tが両者共同じ(t
2− tl=t2−−tl−)であっても、不感帯域で
の通過時間tについては本実施例の方が短<(ti>ロ
ー)なり、結局同じスプール変位し2を得るにも本実施
例の方が短時間(t2>t2=)で良い。これを前記油
圧制御回路に当てはめると、操作ボックス16の指令に
より方向切換弁りの流れの方向が完全に切り換わるまで
の応答時間t2′が短くて済む。従って、入力信号が一
定でも、不感帯域でのスプール1の摺動速度が速いため
、スプール1の応答性、ひいては油圧シリンダ10の応
答性が向上する。At the beginning of the sliding of the spool 1 mentioned above, only the inner cylindrical compression coil spring 4 with a small spring constant acts on the spool 1 (up to the conversion point C in Fig. 6), so the sliding speed of the spool 1 becomes faster. . Next, when the spool 1 slides by the overlap amount ΔL (the gap S), the outer cylindrical compression coil spring 5 having a large spring constant also acts on the spool 1 (after the conversion point C in FIG. 6). The sliding speed of the spool 1 becomes slower. That is, the spool displacement L(Ill
) and the response time t (sec) is shown in Figure 8, and there is a dead zone (range of overlap amount ΔL) in which the direction of fluid flow does not change even if the spool 1 slides.
In this case, a passing time t1' is required, and a passing time t2= is required in the actual operating range until the spool 1 slides by a constant displacement L2 after the flow direction is switched. Therefore, when comparing the transit time t between the prior art described above and the embodiment, the transit time t in the actual operating range is the same for both (t
2-tl=t2--tl-), the passing time t in the dead band is shorter in this embodiment <(ti>low), and in the end it is difficult to obtain 2 with the same spool displacement. The embodiment requires a shorter time (t2>t2=). When this is applied to the hydraulic control circuit, the response time t2' required for the flow direction of the directional control valve to be completely switched in response to a command from the operation box 16 can be shortened. Therefore, even if the input signal is constant, the sliding speed of the spool 1 in the dead zone is fast, so the responsiveness of the spool 1 and, by extension, the responsiveness of the hydraulic cylinder 10 are improved.
ところが、従来のもので不感帯域時間を短縮させるには
、例えば、スプールの位置を検出してそれをポペット弁
の入力信号にフィードバックし、不感帯域のみ入力信号
を変化させてスプールを速(摺動させる手段が必要とな
り、システムが複雑になる。その点、本実施例はばね定
数の変化を利用しているため、構造上簡単である。However, in order to shorten the dead band time with conventional devices, for example, the spool position is detected and fed back to the input signal of the poppet valve, and the input signal is changed only in the dead band to speed up the spool (sliding speed). This requires a means for adjusting the spring constant, which makes the system complicated.In this respect, this embodiment uses a change in the spring constant, so it is structurally simple.
なお、この第一実施例は2種類の円筒圧縮コイルばね4
,5を利用した並列組み合わせ圧縮コイルばねを例示し
たが、3種類以上の円筒圧縮コイルばねを利用すること
もできる。Note that this first embodiment uses two types of cylindrical compression coil springs 4.
, 5 has been exemplified, but three or more types of cylindrical compression coil springs may also be used.
(第二実施例)
次に、本発明の第二実施例を第9.10図に従って説明
する。(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. 9.10.
この第二実施例は前記第一実施例において開制御室3a
、3bの円筒圧縮コイルばね4,5を変更したもので
あり、変位に応じてはね定数が変化する圧縮コイルばね
を利用している。This second embodiment is different from the first embodiment in that the open control room 3a is
This is a modification of the cylindrical compression coil springs 4 and 5 of , 3b, and utilizes a compression coil spring whose spring constant changes according to displacement.
例えば、この第二実施例では、円錐圧縮コイルばね18
がスプール1の端部と制御室3a、3bの対向内面との
間に装着されている。なお、同ばね18の向きはいずれ
であってもよい。同ばね18のばね特性線図は第一実施
例において第6図で示した場合と同様に変換点Cを境に
してばね定数が大きくなるため、不感帯域では変換点C
までの小さいばね定数で働くとともに実作動域では変換
点C以後の大きいばね定数で働くように設定すれば、第
一実施例の場合と同様な機能を1個のスプリングだけで
果たすことができる。For example, in this second embodiment, the conical compression coil spring 18
are mounted between the end of the spool 1 and the opposing inner surfaces of the control chambers 3a, 3b. Note that the spring 18 may be oriented in any direction. The spring characteristic diagram of the spring 18 is similar to the case shown in FIG. 6 in the first embodiment, since the spring constant increases with the conversion point C as the border, so in the dead zone, the conversion point C
By setting the spring constant so that it works with a small spring constant up to the point C and a large spring constant after the conversion point C in the actual operating range, the same function as in the first embodiment can be achieved with just one spring.
なお、同様な機能を果たす圧縮コイルばねとしては、そ
のほかに、つづみ形圧縮コイルばねなどがある。In addition, there are other compression coil springs that perform a similar function, such as a chain-shaped compression coil spring.
発明の効果
要するに本発明によれば、オーバーラツプ量を少なくす
ることなく、不感帯域時間のみを短くすることができる
ので、漏れを確実に防止することができるばかりではな
く、応答性も向上する。Effects of the Invention In short, according to the present invention, only the dead band time can be shortened without reducing the amount of overlap, so that not only can leakage be reliably prevented, but also responsiveness can be improved.
第1〜8図は本発明の第一実施例を示し、第1図は方向
切換弁を示す断面図、第2図はその表示記号図、第3図
は第1図の要部断面図、第4図及び第5図は各円筒圧縮
コイルばねのばね特性線図、第6図は同ばねを組合わせ
た並列組合わせばねのばね特性線図、第7図は本実施例
の方向切換弁を利用したフォークリフト等の油圧制御回
路図、第8図は同回路においてスプール変位と応答時間
との関係を示す線図、第9図は第二実施例である方向切
換弁の要部断面図、第10図は同実施例に利用された円
錐圧縮コイルばねのばね特性線図、第11〜13図は従
来例を示し、第11図は方向切換弁を示す断面図、第1
2図はその表示記号図、第13図はスプール変位と応答
時間を示す線図である。
1はスプール、3a 、3bは制御室、4,5は円筒圧
縮コイルばね、18は円錐圧縮コイルばね、ΔLはオー
バーラツプ量、Sは隙間て゛ある。
特許出願人 株式会社豊田自動織機製作所代 理
人 弁理士 恩1)博宣第4図 第5図
第6図
第9図
′M10図1 to 8 show a first embodiment of the present invention, FIG. 1 is a sectional view showing a directional control valve, FIG. 2 is a symbol diagram thereof, and FIG. 3 is a sectional view of the main part of FIG. Figures 4 and 5 are spring characteristic diagrams of each cylindrical compression coil spring, Figure 6 is a spring characteristic diagram of a parallel combination spring made by combining the same springs, and Figure 7 is a directional control valve of this embodiment. Fig. 8 is a diagram showing the relationship between spool displacement and response time in the same circuit, Fig. 9 is a sectional view of the main part of a directional control valve according to the second embodiment, Fig. 10 is a spring characteristic diagram of the conical compression coil spring used in the same embodiment, Figs. 11 to 13 show the conventional example, Fig. 11 is a sectional view showing the directional control valve, and Fig.
FIG. 2 is a symbol diagram thereof, and FIG. 13 is a diagram showing spool displacement and response time. 1 is a spool, 3a and 3b are control chambers, 4 and 5 are cylindrical compression coil springs, 18 is a conical compression coil spring, ΔL is an overlap amount, and S is a gap. Patent Applicant Toyota Industries Corporation Representative
Person Patent Attorney On 1) Hironobu Figure 4 Figure 5 Figure 6 Figure 9'M10 Figure
Claims (1)
向へ摺動可能に嵌合し、この弁孔に連通したポートに対
しスプールの円周溝をその摺動に伴い開閉可能にし、ス
プールによるポートの閉塞時にこれらの間にオーバーラ
ップ部を持たせた方向制御弁において、 前記オーバーラップ部による不感帯域でのスプールの摺
動速度を、前記ポートが開く実作動域での摺動速度より
も速くするように、不感帯域では小さいばね定数で働く
とともに実作動域では大きいばね定数で働くスプリング
を、スプールの端部に装着したことを特徴とする方向制
御弁における不感帯域時間短縮装置。 2、スプリングは自由長さの異なる2種類以上の円筒圧
縮コイルばねを組合わせた並列組み合わせ圧縮コイルば
ねであり、不感帯域では一方の円筒圧縮コイルばねのみ
をスプールの端部に圧接させるとともに、他方の円筒圧
縮コイルばねとスプールの端部との間にオーバーラップ
量にほぼ等しい隙間を持たせ、実作動域ではこの他方の
円筒圧縮コイルばねをもスプールの端部に圧接させた特
許請求の範囲第1項に記載の方向制御弁における不感帯
域時間短縮装置。 3、スプリングは変位に応じてばね定数が変化する円錐
圧縮コイルばね等の圧縮コイルばねである特許請求の範
囲第1項に記載の方向制御弁における不感帯域時間短縮
装置。[Claims] 1. A spool with a circumferential groove formed therein is fitted into a valve hole so as to be slidable in the axial direction thereof, and the circumferential groove of the spool is slidably fitted into a port communicating with the valve hole. In a directional control valve that can be opened and closed when the port is closed by the spool, and has an overlapping part between them when the port is closed by the spool, the sliding speed of the spool in the dead zone due to the overlap part is determined by the actual opening of the port. A directional control valve characterized in that a spring is attached to the end of the spool, which operates with a small spring constant in the dead zone and with a large spring constant in the actual operating region, so as to make the sliding speed faster than the sliding speed in the operating region. Dead band time reduction device. 2. The spring is a parallel combination compression coil spring that combines two or more types of cylindrical compression coil springs with different free lengths. In the dead zone, only one cylindrical compression coil spring is pressed against the end of the spool, while the other A gap approximately equal to the amount of overlap is provided between the cylindrical compression coil spring and the end of the spool, and the other cylindrical compression coil spring is also pressed against the end of the spool in the actual operating range. A dead band time reduction device in a directional control valve according to item 1. 3. The dead band time reduction device in a directional control valve according to claim 1, wherein the spring is a compression coil spring such as a conical compression coil spring whose spring constant changes according to displacement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6710985A JPS61228172A (en) | 1985-03-29 | 1985-03-29 | Insensitive zone time shortening device in directional control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6710985A JPS61228172A (en) | 1985-03-29 | 1985-03-29 | Insensitive zone time shortening device in directional control valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61228172A true JPS61228172A (en) | 1986-10-11 |
Family
ID=13335396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6710985A Pending JPS61228172A (en) | 1985-03-29 | 1985-03-29 | Insensitive zone time shortening device in directional control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61228172A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0744362U (en) * | 1993-06-11 | 1995-11-14 | 甲南電機株式会社 | Solenoid valve for adsorption-type oxygen concentrator |
JP2002195425A (en) * | 2000-12-28 | 2002-07-10 | Kayaba Ind Co Ltd | Hydraulic control valve |
JP2011169276A (en) * | 2010-02-19 | 2011-09-01 | Honda Motor Co Ltd | Evaporative fuel processing device |
JP2011169275A (en) * | 2010-02-19 | 2011-09-01 | Honda Motor Co Ltd | Evaporative fuel processing device and plug-in hybrid vehicle |
US8627802B2 (en) | 2010-02-19 | 2014-01-14 | Honda Motor Co., Ltd. | Evaporated fuel treatment apparatus and method of detecting failure in control valve |
JP6067953B1 (en) * | 2016-07-28 | 2017-01-25 | 住友精密工業株式会社 | Flow control valve |
-
1985
- 1985-03-29 JP JP6710985A patent/JPS61228172A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0744362U (en) * | 1993-06-11 | 1995-11-14 | 甲南電機株式会社 | Solenoid valve for adsorption-type oxygen concentrator |
JP2002195425A (en) * | 2000-12-28 | 2002-07-10 | Kayaba Ind Co Ltd | Hydraulic control valve |
JP2011169276A (en) * | 2010-02-19 | 2011-09-01 | Honda Motor Co Ltd | Evaporative fuel processing device |
JP2011169275A (en) * | 2010-02-19 | 2011-09-01 | Honda Motor Co Ltd | Evaporative fuel processing device and plug-in hybrid vehicle |
US8627802B2 (en) | 2010-02-19 | 2014-01-14 | Honda Motor Co., Ltd. | Evaporated fuel treatment apparatus and method of detecting failure in control valve |
JP6067953B1 (en) * | 2016-07-28 | 2017-01-25 | 住友精密工業株式会社 | Flow control valve |
WO2018020642A1 (en) * | 2016-07-28 | 2018-02-01 | 住友精密工業株式会社 | Flow control valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3981478A (en) | Fluid flow control valve | |
US5567123A (en) | Pump displacement control for a variable displacement pump | |
US3854382A (en) | Hydraulic actuator controls | |
JP2000516885A (en) | Electro-hydraulic control device | |
JPS61228172A (en) | Insensitive zone time shortening device in directional control valve | |
JPH04248002A (en) | Hydraulic circuit with pressure compensating valve | |
US3960170A (en) | Pressure regulating valve | |
JPH05134766A (en) | Proportion and pressure regulating valve | |
JPH08177899A (en) | Brake device for hydraulic motor | |
JP4960646B2 (en) | Load sensing hydraulic controller | |
JPS63210448A (en) | Pilot valve enclosing type actuator | |
US4152896A (en) | Hydraulic power system with a load-sensing and a cutoff control valve | |
US5562424A (en) | Pump displacement control for a variable displacement pump | |
JP3457595B2 (en) | Valve device | |
JP2848900B2 (en) | Load pressure compensation pump discharge flow control circuit | |
JPH0235162B2 (en) | SAISEIOYOBYUSENKENYOYUATSUSEIGYOSOCHI | |
JPH0262405A (en) | Hydraulic control device | |
JPS6113762Y2 (en) | ||
US4622883A (en) | Apparatus for positioning a movable member | |
JPH0744773Y2 (en) | Control device for variable displacement hydraulic pump | |
JPH0717898Y2 (en) | Proportional solenoid pressure control valve | |
JPS59113379A (en) | Counterbalance valve | |
US2460664A (en) | Hydraulic pressure control means | |
JPH0241641B2 (en) | ||
JP2527732Y2 (en) | Accumulator for hydraulic control unit |