JPS61227127A - Method for hot working high ni steel - Google Patents
Method for hot working high ni steelInfo
- Publication number
- JPS61227127A JPS61227127A JP6770685A JP6770685A JPS61227127A JP S61227127 A JPS61227127 A JP S61227127A JP 6770685 A JP6770685 A JP 6770685A JP 6770685 A JP6770685 A JP 6770685A JP S61227127 A JPS61227127 A JP S61227127A
- Authority
- JP
- Japan
- Prior art keywords
- ingot
- heated
- temperature
- heating
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は熱間加工性の悪い高Ni wI4@塊の熱+1
fl加工において割れ発生を抑えて歩留りを向上し、且
つ生産性をも改善する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention deals with high Ni wI4@lump heat +1 which has poor hot workability.
The present invention relates to a method for suppressing the occurrence of cracks in fl processing, improving yield, and improving productivity.
(従来の技術)
Niを30%程度以上を含む高Ni鋼鋳塊は熱間加工性
が悪く、圧鍛時に表面に割れが発生し易いということは
よ(知られている。従つで熱間加工に際しては加熱昇温
速度、加工開始温度、圧下率、加工速度、終止温度等を
きわめて厳密に管理して行うが、それでも尚往々にして
割れを発生し1歩留りを下げていた。(Prior art) It is well known that high-Ni steel ingots containing about 30% or more of Ni have poor hot workability and are prone to cracking on the surface during rolling. Although the heating temperature increase rate, processing start temperature, rolling reduction rate, processing speed, final temperature, etc. are very strictly controlled during interworking, cracks still often occur and the yield is reduced.
例えばNi 40%を含む5トン鋳塊の場合、最高表面
昇温速度100℃7’hr で1200℃ まで約2
0時間かけてゆっくり加熱し、これを合計加工度が20
%になるまでは1パスの圧下率を3%という、きわめて
小さい加工度で行い、その後lパス加工率を5%に上げ
て加工し、表面温度が950℃になったら加工を止め再
加熱するという、きわめて非能率な工程をとっていた。For example, in the case of a 5 ton ingot containing 40% Ni, the maximum surface temperature increase rate is 100°C 7'hr until it reaches 1200°C.
Slowly heated over 0 hours, with a total processing degree of 20
%, the reduction rate per pass is 3%, which is extremely small, and then the 1-pass reduction rate is increased to 5%, and when the surface temperature reaches 950℃, processing is stopped and reheated. This was an extremely inefficient process.
従来の方法はこのように加熱と加工に時間がかかる為、
熱効率と生産性が著しく低いものであった。Conventional methods require time for heating and processing, so
Thermal efficiency and productivity were extremely low.
(解決すべき問題点)
上述の如く、従来の方法は、きわめて熱効率と生産性に
劣る上記に、往々にして加工中に割れが発生し、歩留り
を低下させていた。(Problems to be Solved) As described above, the conventional methods have extremely poor thermal efficiency and productivity, and often cracks occur during processing, reducing yield.
そこでより生産性の高い、且つ割れ発生の少い加工方法
の開発が望まれていた。Therefore, it has been desired to develop a processing method that is more productive and less likely to cause cracks.
(解決の手段)
本発明は上記問題点を解決する為になされたもので、そ
の要旨とするところはN i 35J!r−50%、
Mn10%以下、8iLO%以下、C60,05xその
他年可避の不純物を含み残部Feからなる高Ni鋼の鋳
塊の加熱に際し、鋳塊の表面温度が少くとも300℃〜
500℃の間を70’C/h r以下の加熱速度で昇温
し、その他の温度範囲は最適経済、昇温速度で圧鍛温度
まで昇温し、次いで合計加工度が少くとも2.0%に達
するまでは1パスの圧下率を4%以下で圧鍛することを
特徴とする高Ni @ @塊の圧鍛方法である。(Means for Solving) The present invention has been made to solve the above problems, and its gist is N i 35J! r-50%,
When heating a high Ni steel ingot consisting of Mn 10% or less, 8iLO% or less, C60,05x and other unavoidable impurities, and the balance being Fe, the surface temperature of the ingot should be at least 300°C or higher.
500°C at a heating rate of 70'C/hr or less, the rest of the temperature range is optimally economical, heating at a heating rate up to the rolling temperature, and then the total working degree is at least 2.0 This is a rolling method for high Ni @ @ lumps, which is characterized by rolling at a rolling reduction rate of 4% or less in one pass until reaching 4%.
次に本発明において上記の如く、工程を限定した理由を
述べる。Next, the reason for limiting the steps as described above in the present invention will be described.
成分について:本発明において成分を特許請求の範囲の
とおりに限定したのは、少くともこの範囲であれば本発
明を適用して効果が顕著だからである。Regarding components: The reason why the components in the present invention are limited as specified in the claims is that the present invention can be applied to achieve significant effects within at least this range.
ゆっくりした速度で昇温する。これは対象鋼種を実際に
処理した従来の多数の昇温曲線と圧鍛割れの成績を解析
して得た結果(第1図を超えて早い昇温を行うと割れが
発生することを示している。このことは圧鍛において如
何に注意しても避けるのが困難であった。この理由は明
確ではないが、この間におけるFe−Ni金属間化合物
の挙動と関連があるのかも知れない。300℃未満ある
いは500℃を越せば通常の最大経済昇温速度で昇温し
ても、圧鍛において慎重に作業を行えば割れを避けるこ
とができる。Raise the temperature at a slow rate. This is the result obtained by analyzing a number of conventional temperature rise curves and rolling cracking results obtained by actually processing the target steel (Fig. This was difficult to avoid no matter how careful we were during rolling. The reason for this is not clear, but it may be related to the behavior of the Fe-Ni intermetallic compound during this time. 300 If the temperature is below ℃ or above 500℃, even if the temperature is raised at the normal maximum economical heating rate, cracking can be avoided if the forging process is carried out carefully.
初期加工度について:本発明では、初期の加工(加工度
20%まで)を1パス4%以下の圧下率に規制したが、
これは従来、の1パス当りの加工度が3%以下であった
のに対して、大幅に向上はしているが、尚第2図に示す
如。Regarding initial machining degree: In the present invention, initial machining (machining degree up to 20%) is regulated to a reduction rate of 4% or less per pass, but
Although this is a significant improvement over the conventional machining rate of less than 3% per pass, as shown in Figure 2.
く1バス当りの加工度が4%以上になると割れが起こる
確率が大きくなるので避けなければならないことがわか
る。It can be seen that if the degree of processing per bus is 4% or more, the probability of cracking increases and must be avoided.
(作 用)
本発明においては、Niを35150%含む鉄合金鋳塊
の加熱に際し、特に表面温度が300℃〜500℃の範
囲を70℃/hr以下で除熱することにより、その間で
起こるFe −N i 化合物の析出挙動に何らかの
好ましい影響を与えるものと想像される。(Function) In the present invention, when heating an iron alloy ingot containing 35,150% Ni, heat is removed at a rate of 70°C/hr or less especially in the range of surface temperature from 300°C to 500°C, thereby reducing the amount of Fe generated therebetween. It is imagined that -N i has some favorable influence on the precipitation behavior of the compound.
(!l!施例)
N+4096を含む第1表に示す成分の5トン鋳塊を軽
油を燃料とする鍛造加熱炉に入れ300℃までを表面昇
温速度600℃/11rで加熱、その後500℃までを
約50℃/hrで徐加熱し、その後1000℃まで平杓
鋳塊表面加熱速度約250℃/11r で急速加熱し
、更に1200℃まで昇温均熱を含めて8時間加熱を行
った。次に加熱された鋳塊を炬から取り出し、 3,0
OOL高速鍛造プレスで1回゛(lバス)の圧下量を2
011j(平均圧下率3%に相当)合計圧下量が18(
m(合計圧下比1g96)をこ達したところで、1回の
圧下量を3Q*g(平均圧下率6%に相当)に上げ、以
後表面温度が950℃になるまで合計圧下率36蜘鍛造
を行ない、950℃に至って再加熱の為に加熱炉に戻し
た。この加工において従来性々にして発生した特に隅角
部の割れ、あるいは面の表面割れは全く発生しなかった
。また、合計加熱時間は、従来の20時間に対し、本実
施例の場合15時間に短縮され、その分生産性と熱効率
が向上した。(!l!Example) A 5 ton ingot of the components shown in Table 1, including N+4096, was placed in a forging heating furnace fueled by light oil and heated to 300°C at a surface temperature increase rate of 600°C/11r, and then heated to 500°C. The ingot was heated slowly at a rate of about 50°C/hr until 1000°C, then rapidly heated to 1000°C at a surface heating rate of about 250°C/11r, and further heated to 1200°C for 8 hours including soaking. . Next, the heated ingot was removed from the kettle and heated to 3.0
With OOL high-speed forging press, the reduction amount per ゛ (l bath) is 2.
011j (equivalent to an average reduction rate of 3%) The total reduction amount is 18 (
m (total reduction ratio of 1g96), the amount of reduction per round was increased to 3Q*g (equivalent to an average reduction ratio of 6%), and from then on, the total reduction ratio of 36g was forged until the surface temperature reached 950℃. When the temperature reached 950°C, it was returned to the heating furnace for reheating. During this processing, no cracks, especially at the corners, or surface cracks, which have conventionally occurred, occurred. In addition, the total heating time was shortened to 15 hours in this example, compared to 20 hours in the conventional case, and productivity and thermal efficiency were improved accordingly.
(効 果)
本発明の実施によりて高Ni鋼の鍛造における割れ不良
発生率は本数率で従来の約70%からio、s%に低減
し、生産性は約40%、加熱の原単位は25%に向上し
た。(Effects) By implementing the present invention, the crack failure rate in forging high Ni steel has been reduced from about 70% in the past to IO, s%, the productivity has been reduced to about 40%, and the heating unit has been reduced to This has improved to 25%.
第1図は鋳塊の加熱速度と鋳塊表面温度と圧鍛割れの関
係を示す図、第2図は合計加工度と1バス当り圧下率と
圧鍛割れの関係を示す図である。
第 1 図
第2図
合110n1!LFIG. 1 is a diagram showing the relationship between the heating rate of the ingot, the surface temperature of the ingot, and rolling cracks, and FIG. 2 is a diagram showing the relationship between the total working degree, the rolling reduction rate per bath, and rolling cracks. Figure 1 Figure 2 110n1! L
Claims (1)
以下、C≦0.05%その他不可避の不純物を含み残部
Feからなる高Ni鋼の鋳塊の加熱に際し、鋳塊の表面
温度が少くとも300℃〜500℃の間を70℃/hr
以下の加熱速度で昇温し、その他の温度範囲は最適経済
昇温速度で圧鍛温度まで昇温し、次いで合計加工度が少
くとも20%に達するまでは1バスの圧下率を4%以下
で圧鍛することを特徴とする高Ni鋼鋳塊の圧鍛方法。Ni 35% to 50%, Mn 1.0% or less, Si 1.0%
Hereinafter, when heating a high Ni steel ingot that contains C≦0.05% and other unavoidable impurities and the balance is Fe, the surface temperature of the ingot is at least 300°C to 500°C at 70°C/hr.
Raise the temperature at the following heating rate, and for the rest of the temperature range, raise the temperature to the rolling temperature at the optimal economic heating rate, then reduce the reduction rate of 1 bath to 4% or less until the total degree of reduction reaches at least 20%. A method for forging a high-Ni steel ingot, which is characterized by forging a high Ni steel ingot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6770685A JPS61227127A (en) | 1985-03-29 | 1985-03-29 | Method for hot working high ni steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6770685A JPS61227127A (en) | 1985-03-29 | 1985-03-29 | Method for hot working high ni steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61227127A true JPS61227127A (en) | 1986-10-09 |
Family
ID=13352670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6770685A Pending JPS61227127A (en) | 1985-03-29 | 1985-03-29 | Method for hot working high ni steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61227127A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2637614A1 (en) * | 1988-10-07 | 1990-04-13 | Nippon Yakin Kogyo Co Ltd | PROCESS FOR PRODUCING FE-NI SERIES ALLOYS HAVING IMPROVED EFFECT TO LIMIT SCRATCHES DURING ENGRAVING |
JP2003027203A (en) * | 2001-07-11 | 2003-01-29 | Nippon Steel Corp | Heating method of steel sheet for thermoforming |
-
1985
- 1985-03-29 JP JP6770685A patent/JPS61227127A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2637614A1 (en) * | 1988-10-07 | 1990-04-13 | Nippon Yakin Kogyo Co Ltd | PROCESS FOR PRODUCING FE-NI SERIES ALLOYS HAVING IMPROVED EFFECT TO LIMIT SCRATCHES DURING ENGRAVING |
JP2003027203A (en) * | 2001-07-11 | 2003-01-29 | Nippon Steel Corp | Heating method of steel sheet for thermoforming |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0683242B1 (en) | Method for making titanium alloy products | |
US4838958A (en) | Aluminum-alloy rolled sheet and production method therefor | |
JPS6289855A (en) | High-strength Ti alloy material with excellent workability and manufacturing method thereof | |
JPH07116577B2 (en) | Method of manufacturing titanium alloy member and member manufactured by the method | |
CN115896419B (en) | Preparation method and application of GH2132 alloy bar | |
CN111304566B (en) | Heat treatment method of hard GH5605 superalloy cold-rolled strip | |
JPS6053099B2 (en) | Method of manufacturing hot-processed titanium products | |
US3701694A (en) | Heat treatment method for ferrite-pearlite steel | |
CN112692204B (en) | Preparation method of large-size corrosion-resistant Ti35 alloy forging | |
CN114101556A (en) | A processing method for preparing TB8 titanium alloy sheet in a short process | |
JPH03236452A (en) | Manufacturing method for magnesium alloy forged wheels | |
JPS61227127A (en) | Method for hot working high ni steel | |
CN114959488B (en) | Industrial pure iron medium plate and production method thereof | |
CN116200645A (en) | Low-iron-loss non-oriented electrical steel and preparation method thereof | |
CN111850349B (en) | Hot processing method of cobalt-based high-temperature alloy | |
JPS63162811A (en) | Manufacture of precipitation-hardening steel | |
JP3481428B2 (en) | Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy | |
US2245166A (en) | Cold worked aluminum base alloy and method of producing it | |
JPH05339688A (en) | Production of molding material for casting metal | |
CN114032375A (en) | Processing method of super 13Cr stainless steel forged material | |
JPH11117019A (en) | Production of heat resistant parts | |
JPS6135249B2 (en) | ||
JPH08232051A (en) | Production of aluminum alloy forged product | |
CN118291878A (en) | A kind of high manganese steel and preparation method thereof | |
JPH0236669B2 (en) |