[go: up one dir, main page]

JPS61225603A - liner thickness measuring device - Google Patents

liner thickness measuring device

Info

Publication number
JPS61225603A
JPS61225603A JP6699985A JP6699985A JPS61225603A JP S61225603 A JPS61225603 A JP S61225603A JP 6699985 A JP6699985 A JP 6699985A JP 6699985 A JP6699985 A JP 6699985A JP S61225603 A JPS61225603 A JP S61225603A
Authority
JP
Japan
Prior art keywords
measured
liner
liner thickness
tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6699985A
Other languages
Japanese (ja)
Inventor
Takahide Sakamoto
隆秀 坂本
Yasuhiro Shimauchi
嶋内 康博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6699985A priority Critical patent/JPS61225603A/en
Publication of JPS61225603A publication Critical patent/JPS61225603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はライナ管のライナ厚さを非破壊で測定する装置
に係り、・特に原子炉炉心部に使用して核分裂生成物で
あるヨウ素を含む環境下の応力腐食割れを防止するため
のジルコニラ人台金管の内面にジルコニウムライナを施
した管のライナ厚さ測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for non-destructively measuring the liner thickness of a liner tube, and is particularly used in the core of a nuclear reactor to measure iodine, a fission product. The present invention relates to a liner thickness measuring device for a pipe in which a zirconium liner is applied to the inner surface of a zirconium metal pipe in order to prevent stress corrosion cracking in an environment containing zirconium metal.

〔従来技術〕[Prior art]

原子炉の炉心部には核燃料を収容した燃料被覆管が設け
られている。この燃料被覆管は核燃料の核分裂により発
生した核分裂生成物を周囲の冷却媒体中に逸出させるの
を防止することを主な機能としており、その素材には、
比較的高温まで強靭でしかも極めて高い安全性を有する
、ジルカロイ−2、ジルカロイ−4などのジルコニウム
合金が広く用いられている。このジルコニウム合金は延
展性も良好で冷却媒体に非反応性である等の優れた性質
を有するが、ジルコニウム合金からなル燃料被覆管は、
原子炉の炉出力を急激に上昇させた場合、核燃料との相
互作用により破損が生じる恐れがあつた。この破損の原
因として、燃料被覆管と核燃料との間の熱膨張率の差な
どに基づく機械的相互作用と、核分裂生成物に含、まれ
る腐食性生成物による腐食作用との重畳作用に劣る応力
腐食割れが考えられている。
A fuel cladding tube containing nuclear fuel is provided in the core of a nuclear reactor. The main function of this fuel cladding is to prevent fission products generated by nuclear fission of nuclear fuel from escaping into the surrounding cooling medium, and its material includes:
Zirconium alloys such as Zircaloy-2 and Zircaloy-4, which are strong up to relatively high temperatures and extremely safe, are widely used. This zirconium alloy has excellent properties such as good ductility and non-reactivity with cooling media, but fuel cladding made of zirconium alloy has
If the power of a nuclear reactor was suddenly increased, there was a risk that damage would occur due to interaction with the nuclear fuel. The cause of this damage is thought to be due to a combination of mechanical interaction based on the difference in coefficient of thermal expansion between the fuel cladding and the nuclear fuel, and the corrosive effects of corrosive products contained in nuclear fission products. Stress corrosion cracking is thought to be the cause.

燃料被覆管の応力腐食割れを防止するために、ジルコニ
ウムライナ管が開発されている。このジルコニウムライ
ナ管は、ジルコニウム合金製の被覆管本体の内周に純ジ
ルコニウム被覆を施したものである。被覆管本体に、ジ
ルコニウム合金より軟質の純ジルコニウムで内張すして
ジルコニウムライナ層を設けることにより、このジルコ
ニウムライナ層で燃料被覆管に作用する応力を緩和し、
また腐食性核分裂生成物の被覆管本体への直接接触を阻
止して応力腐食割れによるジルコニウムライナ管の破損
を抑制している。
Zirconium liner tubes have been developed to prevent stress corrosion cracking of fuel cladding tubes. This zirconium liner tube has a pure zirconium coating on the inner periphery of a zirconium alloy cladding tube body. By providing a zirconium liner layer on the cladding tube body by lining it with pure zirconium, which is softer than zirconium alloy, this zirconium liner layer relieves the stress acting on the fuel cladding tube.
It also prevents corrosive fission products from coming into direct contact with the cladding tube body, thereby suppressing damage to the zirconium liner tube due to stress corrosion cracking.

しかるに、ジルコニウムライナ管の破損抑制機能を保証
するためには、ジルコニウムライナ管の全周かつ全長に
わたって所定の被覆厚の純ジルコニウムが内張すされて
いることが要求される。
However, in order to guarantee the damage prevention function of the zirconium liner tube, it is required that the zirconium liner tube be lined with pure zirconium at a predetermined coating thickness over the entire circumference and entire length of the zirconium liner tube.

さて、ジルコニウムライナ管のライナ厚さ測定には測定
用コイルを管内部に挿入してライナ部と被覆管本体との
抵抗差に基づくインピーダンス変化を捉える電磁誘導法
により測定する方法が提案されている(例えば特開昭5
9−67405号)。
To measure the liner thickness of zirconium liner tubes, a method has been proposed in which a measuring coil is inserted into the tube and the measurement is performed using an electromagnetic induction method that captures impedance changes based on the resistance difference between the liner section and the cladding tube body. (For example, JP-A No. 5
No. 9-67405).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

斯かる方法により例えばジルコニウムライナ管のライナ
厚さを測定する場合、測定環境例えば環境温度が変化す
ると測定用コイルのインピーダンスが変わり、また被測
定管たるジルコニウムライナ管夫々の測定時の管温度が
異なると夫々の場合で管自身の比抵抗が変わるため測定
誤差が生じる場合があった。
When measuring the liner thickness of, for example, a zirconium liner pipe using such a method, the impedance of the measuring coil changes when the measurement environment, for example, the environmental temperature changes, and the pipe temperature at the time of measurement of each zirconium liner pipe to be measured differs. In each case, measurement errors may occur because the specific resistance of the tube itself changes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであり、所定
のライナ厚さを有する標準管を用いてその厚さを測定し
、その測定値と、予め測定しておいた同標準管のライナ
厚さ測定値との偏差を求め、被測定管のライナ厚さ測定
値より前記偏差を減算して被測定管のライナ厚さ測定値
を所定の環境温度でのライナ厚さ測定値に補正すること
により、環境温度に影響を受けずにライナ厚さを正確に
測定し得るライナ厚さ測定装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and involves measuring the thickness using a standard tube having a predetermined liner thickness, and comparing the measured value with the liner of the same standard tube that has been measured in advance. Determine the deviation from the measured thickness value, and subtract the deviation from the measured liner thickness value of the pipe to be measured to correct the measured liner thickness value of the pipe to be measured to the liner thickness measurement value at a predetermined environmental temperature. Accordingly, it is an object of the present invention to provide a liner thickness measuring device that can accurately measure liner thickness without being affected by environmental temperature.

本発明に斯かるライナ厚さ測定装置は、金属管の表面に
ライナを施した被測定管のライナ厚さを電磁誘導法によ
り測定する装置において、所定ライナ厚さの標準管につ
いて予め測定しておいたライナ厚さ測定値と、被測定管
のライナ厚さを測定する際における標準管のライナ厚さ
測定値との偏差を算出する偏差算出手段と、被測定管の
ライナ厚さ測定値から、前記偏差算出手段にて算出され
た偏差を減算して被測定管のライナ厚さ測定値を補正す
る演算手段とを具備することを特徴とする。
The liner thickness measuring device according to the present invention is a device for measuring the liner thickness of a pipe to be measured in which a liner is applied to the surface of a metal pipe by an electromagnetic induction method, and is capable of measuring a standard pipe having a predetermined liner thickness in advance. a deviation calculating means for calculating the deviation between the measured liner thickness value of the liner placed on the pipe and the measured liner thickness value of the standard pipe when measuring the liner thickness of the pipe to be measured; and calculation means for subtracting the deviation calculated by the deviation calculation means to correct the liner thickness measurement value of the pipe to be measured.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明の装置(以下本発明装置という)の全体
を略示する側面図であって、図中1は測定対象のジルコ
ニウムライナ管を示す、ジルコニウムライナ管(以下こ
れを被測定管という) 1は定盤2上に複数列立設され
た被測定管1の支持具3゜3・・・と、エアーシリンダ
4.4・・・にて上下する管押え治具5.5・・・にて
水平に固定されている。また、定112上には、被測定
管lの先端側(図において左側)に感度較正ta6が設
置され、その内部に挿入ガイド管7及び感度較正試験片
(図示せず)が取付けられている。被測定管1の基端側
(図にて右側)には管連接支持具32を介して、・被測
定管lと内、外径同一の標準管31の一端が連接されて
おり、標準管31は同−軸心状に同様の支持具3゜3・
・・及び管押え治具5,5・・・にて水平に固設されて
いる。
FIG. 1 is a side view schematically showing the entire apparatus of the present invention (hereinafter referred to as the apparatus of the present invention), in which numeral 1 indicates a zirconium liner tube to be measured. 1 is a support tool 3.3 for the tubes to be measured 1 that are set up in multiple rows on a surface plate 2, and a tube holding jig 5.5 that is moved up and down by air cylinders 4.4. It is fixed horizontally at... Further, on the holder 112, a sensitivity calibration ta6 is installed on the distal end side (left side in the figure) of the tube to be measured l, and an insertion guide tube 7 and a sensitivity calibration test piece (not shown) are installed inside it. . One end of a standard tube 31 having the same inner and outer diameters as the tube to be measured 1 is connected to the proximal end side (right side in the figure) of the tube to be measured 1 via a tube connecting support 32. 31 is a similar support 3°3 on the same axis.
... and pipe holding jigs 5, 5... are fixed horizontally.

8は弾丸状のコイルホルダ9を先端に取付け、内部に信
号線を収納した筒状の挿入杆であって、その腹部には一
定ピンチ毎に前記コイルホルダ9と同径のソロパン玉形
状のスペーサ10を取付けである。この挿入杆8は定盤
2に近接配置した定盤11にその長手方向を被測定管1
0軸長方向とするようにして張設した無端のチェーン1
2に立設した挿入杆支持具13にて水平に支承され、被
測定管1と軸心が一致するように配されている。なおチ
ェーン12は自由回転する。
Reference numeral 8 denotes a cylindrical insertion rod with a bullet-shaped coil holder 9 attached to its tip and a signal line housed inside, and a solo bread ball-shaped spacer with the same diameter as the coil holder 9 is inserted into the abdomen at regular pinch intervals. 10 is installation. This insertion rod 8 is attached to a surface plate 11 disposed close to the surface plate 2 so that its longitudinal direction is connected to the pipe to be measured 1.
Endless chain 1 stretched so that the 0-axis length direction
It is supported horizontally by an insertion rod support 13 erected at 2, and arranged so that its axis coincides with the tube to be measured 1. Note that the chain 12 rotates freely.

挿入杆8の後端(図にて左側)には、定盤11上のレー
ル14上に配された測定器台車15に搭載されたパルス
モータ16が配設され、該パルスモータ16の正逆転に
てチェーン12が挿入杆支持具13を介して連動するこ
とによりこの挿入杆8が前進、後退作動される。そして
挿入杆支持具13は感度較正機6側端部に到達すると挿
入杆8の拘束を解くようになっている。また測定器台車
15上にはインピーダンス測定器17が取付けられてお
り、インピーダンス測定器17の出力はケーブルベア1
8に設けられた信号線によりA/D変換器101へ与え
られてここでアナログ/ディジタル変換され、演算制御
装置100に入力される。
A pulse motor 16 mounted on a measuring instrument trolley 15 arranged on a rail 14 on a surface plate 11 is disposed at the rear end of the insertion rod 8 (on the left side in the figure), and the pulse motor 16 can be rotated in forward and reverse directions. As the chain 12 is interlocked with the insertion rod support 13, the insertion rod 8 is moved forward and backward. When the insertion rod support 13 reaches the end on the side of the sensitivity calibrator 6, the insertion rod 8 is released. Further, an impedance measuring device 17 is installed on the measuring device trolley 15, and the output of the impedance measuring device 17 is transmitted to the cable carrier 1.
The signal is supplied to the A/D converter 101 through a signal line provided at 8, where it is analog/digitally converted and input to the arithmetic and control unit 100.

パルスモータ駆動回路19はパルス駆動電流をケーブル
ベア内ケーブルを介してパルスモータ16に給電し、パ
ルス数に応じた量だけパルスモータ16を正逆回転させ
、またコイルホルダ9を進退させる。演算制御装置10
0はパルスモータ駆動回路19に対し、出力パルス数及
び回転方向を定める位相情報を発する。
The pulse motor drive circuit 19 supplies a pulse drive current to the pulse motor 16 via the cable inside the cable carrier, rotates the pulse motor 16 in forward and reverse directions by an amount corresponding to the number of pulses, and moves the coil holder 9 forward and backward. Arithmetic control device 10
0 issues phase information to the pulse motor drive circuit 19 that determines the number of output pulses and the direction of rotation.

コイルホルダ9には第2図に示すように4個の測定用コ
イル22・・・が周方向に4等配されており、各コイル
22・・・は被測定管l内側のライナ層23の厚み又は
標準管31内側のライナ層の厚みを周方向4点で同時に
測定できるようになっている。
As shown in FIG. 2, the coil holder 9 has four measurement coils 22 arranged at equal intervals in the circumferential direction, each coil 22... The thickness or the thickness of the liner layer inside the standard tube 31 can be measured simultaneously at four points in the circumferential direction.

コイル22・・・にて検出され、インピーダンス測定器
17より出力される被測定管1又は標準管31のライナ
厚さ等に関する信号はA/D変換器101にてアナログ
/ディジタル変換されて演算制御装置100へ入力され
、ここでライナ厚さ等が算出され、算出値は記憶器10
2に記憶される。演算制御装置100はその算出値を表
示器21に表示させ、また算出値が異常である場合には
警報器2oにて警報を発する。
Signals related to the liner thickness of the tube under test 1 or the standard tube 31 detected by the coils 22 and output from the impedance measuring device 17 are converted into analog/digital signals by the A/D converter 101 and subjected to calculation control. It is input to the device 100, where the liner thickness etc. are calculated, and the calculated values are stored in the memory 10.
2 is stored. The arithmetic and control unit 100 displays the calculated value on the display 21, and if the calculated value is abnormal, the alarm 2o issues an alarm.

このように構成された本発明装置にてライナ厚さを測定
する場合の手順について以下に説明する。
The procedure for measuring the liner thickness using the apparatus of the present invention configured as described above will be described below.

まず演算制御装置100は所定のパルス数をパルスモー
タ駆動回路19へ出力してパルスモータ16を駆動して
定盤11上方の定位置にあるコイルホルダ9を感度較正
fi6の位置にまで挿入する。この位置で各コイル22
・・・にて検出され、インピーダンス測定器17から出
力された信号に基づき演算制御装置100は感度較正を
行う。
First, the arithmetic and control unit 100 outputs a predetermined number of pulses to the pulse motor drive circuit 19 to drive the pulse motor 16 to insert the coil holder 9, which is in a fixed position above the surface plate 11, to the sensitivity calibration position fi6. At this position, each coil 22
The arithmetic control device 100 performs sensitivity calibration based on the signal detected by the impedance measuring device 17.

感度較正は、各コイル22・・・と前記感度較正機6の
内側にコイルに対向するように設けた感度較正試験片(
図示せず)との距離変動量、つまりリフトオフ量に基づ
き行う。
Sensitivity calibration is performed using a sensitivity calibration test piece (
(not shown), that is, based on the amount of lift-off.

ある1つのコイル22においてリフトオフ量がT^μm
から78μmに変化した場合、その変化の前後に測定さ
れたインピーダンス夫々を、第3図〔横軸に正規化した
実数部((R−Ro ) /wLoをとり縦軸に正規化
した虚数部(wL/wLo )をとっている)の複素平
面上でπ、OB、!:して示すものとする。演算制御装
置100は、その2つのインピーダンスの変化量つまり
i−■(−ΔZjt、)の絶対値1Δzzt  1と、
その実数成分軸(横軸)とのなす角度α1を求める。そ
して同様にして残り3つの各コイル22・・・のインピ
ーダンス変化量の絶対びα2.α3.α番を求め、4つ
のコイル22・・・についてのインピーダンス変化量の
絶対値1ΔZItl(i−1〜4)が等しくなる夫々の
増幅率A1゜A2 、 A3 、 A4  (−1/ 
lΔZl、l)を求める。
The lift-off amount in one coil 22 is T^μm
When the impedance changes from 78 μm to 78 μm, the impedance measured before and after the change is shown in Figure 3. wL/wLo ) on the complex plane of π, OB,! : shall be indicated. The arithmetic and control device 100 calculates the amount of change in the two impedances, that is, the absolute value 1Δzzt 1 of i−■(−ΔZjt,),
The angle α1 formed with the real number component axis (horizontal axis) is determined. Then, in the same way, the absolute value α2 of the impedance change amount of each of the remaining three coils 22... α3. The α number is determined, and the amplification factors A1°A2, A3, A4 (-1/
Find lΔZl, l).

これにより演算制御装置100はコイル22・・・にて
検出された信号のレベル調整、換言すればコイルの感度
較正が可能である。
This allows the arithmetic and control device 100 to adjust the level of the signals detected by the coils 22, . . ., or in other words, calibrate the sensitivity of the coils.

一方、Zllの方向はリフトオフによるインピーダンス
変化方向であり、これと直交する方向はライナ厚さのみ
に係るインピーダンスの変化である。従ってリフトオフ
によるインピーダンス変化方向vyとこれに直交するV
xの方向をα区にて決定し、測定値からこの方向の成分
を求め、これに各A+  (i−1〜4)を乗すること
により、コイル間に感度差なくライナ厚さが測定できる
。即ち、感度較正機6はライナ厚さが一定でリフトオフ
量が異なる既知試験片にて上述の較正を行うためのもの
であり、AI+  α五を計算した演算制御装置100
は記憶器102に記憶する。なお、リフトオフに伴うイ
ンピーダンスの変化方向vyは縦軸上の(0,1)の点
に向かうことは言うまでもない。
On the other hand, the direction Zll is the impedance change direction due to lift-off, and the direction perpendicular to this is the impedance change only due to the liner thickness. Therefore, the impedance change direction vy due to lift-off and V perpendicular to this
By determining the x direction in the α section, finding the component in this direction from the measured value, and multiplying it by each A+ (i-1 to 4), the liner thickness can be measured without sensitivity difference between coils. . That is, the sensitivity calibrator 6 is used to perform the above-mentioned calibration using known test pieces with constant liner thickness and different lift-off amounts, and the sensitivity calibrator 6 is used to perform the above-mentioned calibration using known test pieces with constant liner thickness and different lift-off amounts.
is stored in the storage device 102. It goes without saying that the direction of impedance change vy due to lift-off is toward the point (0, 1) on the vertical axis.

斯かる4つのコイルに関するA1及びα量(i−1〜4
)は演算制御装置100にて算出され、記憶器102に
記憶されており、演算制御装置100は標準管31.被
測定管1の各ライナ厚さを測定する際、AI+  α1
を記憶器102から取込んでインピーダンス測定器17
から入力される信号をA I + α1により変更補正
するようになっている。
A1 and α quantities for these four coils (i-1 to 4
) is calculated by the arithmetic and control device 100 and stored in the memory 102, and the arithmetic and control device 100 calculates the standard tube 31. When measuring the thickness of each liner of the pipe to be measured 1, AI + α1
is taken in from the memory 102 and the impedance measuring device 17
The signal inputted from the controller is changed and corrected by A I + α1.

叙上のような感度較正が終了すると、演算制御装置10
0は標準管31.被測定管1のライナ厚さを測定すべく
、第4図に示すように演算、制御を行う。
When the sensitivity calibration as described above is completed, the arithmetic and control unit 10
0 is standard tube 31. In order to measure the liner thickness of the pipe to be measured 1, calculations and controls are performed as shown in FIG.

第4図は演算制御装置100の演算、制御内容を示すフ
ローチャートを示す。まず測定準備のために演算制御装
置100はパルスモータ駆動電源19へ所定のパルス数
を出力し、挿入杆8を更に進出させてコイルホルダ9を
標準管31内に位置せしめる。
FIG. 4 shows a flowchart showing the calculation and control contents of the calculation and control device 100. First, in preparation for measurement, the arithmetic and control unit 100 outputs a predetermined number of pulses to the pulse motor drive power source 19, and further advances the insertion rod 8 to position the coil holder 9 within the standard tube 31.

これによりコイル22・・・は標準管31のライナ厚さ
を検出し、演算制御装置100は入力されたその検出値
に関する信号をA i Hα1により変更補正し、その
変更補正された測定値Ms+(1−1〜4)を標準値と
して記憶a102に記憶させておく。この測定値Msl
については、標準管31の軸長方向の複数個所を測定し
、平均値として求める。これにより測定の信頼性が高ま
る。
As a result, the coils 22... detect the liner thickness of the standard tube 31, and the arithmetic and control unit 100 changes and corrects the input signal related to the detected value using A i Hα1, and outputs the corrected measured value Ms+( 1-1 to 4) are stored in the memory a102 as standard values. This measured value Msl
For this, measurements are taken at multiple locations in the axial direction of the standard tube 31, and the average value is determined. This increases the reliability of the measurements.

斯かる測定準備が終了すると演算制御装置100は測定
を開始する。この測定は被測定管lを測定する都度、例
えばその測定前に標準管31のライナ厚さを測定する。
When such measurement preparation is completed, the arithmetic and control device 100 starts measurement. In this measurement, each time the pipe to be measured l is measured, for example, the liner thickness of the standard pipe 31 is measured before the measurement.

演算制御装置100は所定のパルス数をパルスモータ駆
動電源19へ出力してコイルホルダ9をその定位置より
標準管31内へ進出させ、コイル22・・・により検出
して入力された信号をAI。
The arithmetic and control unit 100 outputs a predetermined number of pulses to the pulse motor drive power source 19 to advance the coil holder 9 from its home position into the standard tube 31, and input signals detected by the coils 22 to the AI. .

α1に基づき変更補正し、得られた測定値MsI’(i
−1〜4)を記憶器102に記憶させると共に以下の演
算を行う。
The measured value MsI'(i
-1 to 4) are stored in the storage device 102, and the following calculations are performed.

演算制御装置100はこの測定値Msl’から、先に測
定した値Mslを減算して偏差の絶対値1ΔMs+を求
め、予め設定されている偏差許容上限Kをこの偏差の絶
対値が外れる場合には測定異常として警報器20にて警
報を発し、オペレータへ知らせる。
The arithmetic and control unit 100 subtracts the previously measured value Msl from this measured value Msl' to obtain the absolute value of the deviation 1ΔMs+, and if the absolute value of the deviation deviates from the preset deviation tolerance upper limit K, An alarm is issued by the alarm device 20 as a measurement abnormality, and the operator is notified.

オペレータは新たに感度較正を行う、これにより環境温
度がどのように変化しても正確な測定が可能である。な
お、上記偏差許容上限にはコイル22のインピーダンス
が変化して測定を正確に行えなくなる値に定める。そし
て偏差の絶対値がKよりも小さい場合には次の測定を行
う。即ち、演算制御装置100は所定のパルス数をパル
スモータ駆動電源19へ出力してコイルホルダ9を標準
管31内から被測定管1内へ後退させ、コイル22・・
・により検出して入力された信号を同様にAI、α量に
基づき変更補正し、測定値MI I (i−1〜4)を
求める。
The operator performs a new sensitivity calibration, which ensures accurate measurements no matter how the environmental temperature changes. Note that the above-mentioned upper limit of allowable deviation is set to a value at which the impedance of the coil 22 changes and measurement cannot be performed accurately. If the absolute value of the deviation is smaller than K, the next measurement is performed. That is, the arithmetic and control device 100 outputs a predetermined number of pulses to the pulse motor drive power source 19 to move the coil holder 9 back from inside the standard tube 31 into the tube to be measured 1, and the coil 22...
Similarly, the detected and input signal is changed and corrected based on the AI and α amount, and the measured values MI I (i-1 to 4) are obtained.

そして、演算制御装置100には後に説明する理由に基
づき得られる下記+1+式が設定されており、演算制御
装置100はこの+1)式、上記測定値Mll及び記憶
器102からの取込値MSi + MsI’に基づき環
境温度の影響がない真のライナ厚さMtl(i−1〜4
)を求めることができ、このMt、を表示器21に表示
させる。
Then, the following +1+ formula obtained based on the reason explained later is set in the arithmetic and control device 100, and the arithmetic and control device 100 uses this +1) formula, the above measured value Mll, and the acquired value MSi + from the memory 102. The true liner thickness Mtl (i-1 to 4
) can be determined, and this Mt is displayed on the display 21.

MtI−MJI −CM3I′ Msl)  −(1)
このようにして真のライナ厚さを測定できるのは、被測
定管1を測定する時の環境温度とその測定値M1i!、
との間には次のような関係があるからである。
MtI-MJI-CM3I'Msl)-(1)
In this way, the true liner thickness can be measured based on the environmental temperature when measuring the pipe 1 to be measured and its measured value M1i! ,
This is because there is the following relationship between them.

第5図はその関係を、横軸に環境温度Tをとり、また縦
軸にライナ厚さ測定値(Mll)をとって示したグラフ
であり、図中実線はライナ厚さが80μmのジルコニウ
ムライナ管を環境温度Tが異なるときに測定した結果を
まとめたものであり、また破線はライナ厚さ60μmの
ジルコニウムライナ管を環境温度Tが同一範囲で変化し
たときの測定結果をまとめたものである。この図より理
解される如く、実線、破線は共に直線であり、またその
傾きは同一である。
Figure 5 is a graph showing this relationship, with the horizontal axis representing the environmental temperature T and the vertical axis representing the measured liner thickness (Mll). This is a summary of the results of measurements taken when the tube was subjected to different environmental temperatures T, and the broken line is a summary of the results of measurements made when the environmental temperature T was varied within the same range for a zirconium liner tube with a liner thickness of 60 μm. . As can be understood from this figure, both the solid line and the broken line are straight lines, and their slopes are the same.

従って測定値MN、は環境温度Tの高低に拘わらず、+
11式にて表わされるように、基準環境温度To  (
1点鎖線にて示す)のときに測定したライナ厚さとして
みなされる真のライナ厚さMIに補正できるので測定時
の環境温度に関係なく一定の基準環境温度Toにおける
真のライナ厚さMt、として測定することが可能である
からである。
Therefore, the measured value MN, is +
As expressed by equation 11, the standard environmental temperature To (
Since it can be corrected to the true liner thickness MI, which is regarded as the liner thickness measured when This is because it can be measured as .

なお、上記実施例ではジルコニウムライナ管に対してコ
イルホルダを周方向に回転させず前進。
In the above embodiment, the coil holder moves forward without rotating in the circumferential direction relative to the zirconium liner tube.

後退させて測定するようにしているが、本発明はこのよ
うに測定する場合に限らず、コイルホルダをジルコニウ
ムライナ管に相対的に回転させつつ前進、後退させて測
定する構成としてもよいことは勿論である。
Although measurements are taken by moving the coil holder backwards, the present invention is not limited to measuring in this way; it is also possible to adopt a configuration in which the coil holder is moved forward and backward while rotating relative to the zirconium liner tube. Of course.

また、上記実施例ではジルコニウムライナ管についての
ライナ厚さを測定しているが、本発明はジルコニウムラ
イナ管に限らず、他の材質の金属管にライナを施した管
をも同様にしてライナ厚さを測定できることは勿論であ
る。
Furthermore, although the liner thickness of a zirconium liner tube is measured in the above embodiment, the present invention is not limited to measuring the liner thickness of a zirconium liner tube, but can also be applied to a tube lined with a metal tube made of other materials. Of course, it is possible to measure the

〔効果〕〔effect〕

以上詳述した如く本発明は所定のライナ厚さを有する標
準管を用いてその厚さを測定し、その測定値と、予め測
定しておいた同標準管のライナ厚さ測定値との偏差を求
め、被測定管のライナ厚さ測定値より前記偏差を減算し
て被測定管のライナ厚さ測定値を所定の環境温度でのラ
イナ厚さ測定値に補正するので、環境温度に影響を受け
ることがなく、このためライナ厚さを正確に測定でき、
また上記偏差に基°づいて測定異常を測定中に判定でき
ミこれにより常に正確な測定が可能となる等優れた効果
を奏する。
As detailed above, the present invention measures the thickness of a standard tube having a predetermined liner thickness, and the deviation between the measured value and the liner thickness measurement value of the standard tube measured in advance. is calculated, and the deviation is subtracted from the measured liner thickness of the pipe under test to correct the measured liner thickness of the pipe under test to the measured liner thickness at a predetermined environmental temperature, so there is no influence on the environmental temperature. This allows accurate measurement of liner thickness.
Furthermore, measurement abnormalities can be determined during measurement based on the above-mentioned deviations, which provides excellent effects such as always being able to perform accurate measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す模式図、第2図は測定用
コイルの配置を示す模式的断面図、第3図はインピーダ
ンス測定値よりライナ厚さに係るインピーダンス成分の
みをコイル感度に関係せずに取出すことのできる信号処
理内容の説明図、第4図は演算制御装置の演算、制御内
容を示すフローチャート、第5図は環境温度とライナ厚
さ測定値との関係を示すグラフである。 1・・・ジルコニウムライナ管 6・・・感度較正機3
1・・・標準管 100・・・演算制御装置時 許 出
願人  住友金属工業株式会社代理人 弁理士  河 
 野  登  夫′:!、3 図 xi嬶3A&(T) 篤 5 図 6斗め
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a schematic sectional view showing the arrangement of the measurement coil, and Fig. 3 is a coil sensitivity based on only the impedance component related to the liner thickness based on the impedance measurement value. Figure 4 is a flowchart showing the calculations and control contents of the arithmetic and control unit, and Figure 5 is a graph showing the relationship between environmental temperature and liner thickness measurements. be. 1... Zirconium liner tube 6... Sensitivity calibrator 3
1...Standard tube 100...Arithmetic and control device Hsu Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Kawa
Noboru':! , 3 Figure xi 3A & (T) Atsushi 5 Figure 6 Tomome

Claims (1)

【特許請求の範囲】 1、金属管の表面にライナを施した被測定管のライナ厚
さを電磁誘導法により測定する装置において、 所定ライナ厚さの標準管について予め測定 しておいたライナ厚さ測定値と、被測定管のライナ厚さ
を測定する際における標準管のライナ厚さ測定値との偏
差を算出する偏差算出手段と、 被測定管のライナ厚さ測定値から、前記偏 差算出手段にて算出された偏差を減算して被測定管のラ
イナ厚さ測定値を補正する演算手段と を具備することを特徴とするライナ厚さ測 定装置。 2、前記標準管を被測定管と同一軸心上に配置せしめて
あり、該被測定管のライナ厚さ測定の都度、標準管のラ
イナ厚さの測定が可能になされていることを特徴とする
特許請求の範囲第1項記載のライナ厚さ測定装置。
[Claims] 1. In an apparatus for measuring the liner thickness of a pipe to be measured in which a liner is applied to the surface of the metal pipe by electromagnetic induction method, the liner thickness is measured in advance for a standard pipe with a predetermined liner thickness. deviation calculating means for calculating the deviation between the liner thickness measurement value of the standard pipe and the liner thickness measurement value of the standard pipe when measuring the liner thickness of the pipe to be measured; 1. A liner thickness measuring device comprising: arithmetic means for correcting a liner thickness measurement value of a pipe to be measured by subtracting the deviation calculated by the means. 2. The standard tube is arranged on the same axis as the tube to be measured, and the liner thickness of the standard tube can be measured each time the liner thickness of the tube to be measured is measured. A liner thickness measuring device according to claim 1.
JP6699985A 1985-03-29 1985-03-29 liner thickness measuring device Pending JPS61225603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6699985A JPS61225603A (en) 1985-03-29 1985-03-29 liner thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6699985A JPS61225603A (en) 1985-03-29 1985-03-29 liner thickness measuring device

Publications (1)

Publication Number Publication Date
JPS61225603A true JPS61225603A (en) 1986-10-07

Family

ID=13332210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6699985A Pending JPS61225603A (en) 1985-03-29 1985-03-29 liner thickness measuring device

Country Status (1)

Country Link
JP (1) JPS61225603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500605A (en) * 2005-06-29 2009-01-08 ラム リサーチ コーポレーション Method and apparatus for optimizing the electrical response of a conductive layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539144A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Calibration of thickness gauge
JPS5967405A (en) * 1982-09-30 1984-04-17 Sumitomo Metal Ind Ltd Liner thickness measurement method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539144A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Calibration of thickness gauge
JPS5967405A (en) * 1982-09-30 1984-04-17 Sumitomo Metal Ind Ltd Liner thickness measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500605A (en) * 2005-06-29 2009-01-08 ラム リサーチ コーポレーション Method and apparatus for optimizing the electrical response of a conductive layer

Similar Documents

Publication Publication Date Title
US4673877A (en) Zirconium liner thickness measuring method and an apparatus therefor for a zirconium alloy tube
JPH01503733A (en) Workpiece inspection method and device
US4567747A (en) Self-calibration system for ultrasonic inspection apparatus
EP1066501A1 (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
GB2088059A (en) Pig monitors internal surface of pipeline
EP0664435A2 (en) Determining thickness
EP1898177A1 (en) Caliper Gauge
JPS5866809A (en) Measuring probe for inner surface form of pipe
US4505323A (en) Apparatus for inspecting heat exchanger tubes
JP4870685B2 (en) Method and apparatus for improving the accuracy of wind tunnel measurement by correcting the influence of suspension system
US5171517A (en) Method for monitoring corrosion on a member in a nuclear reactor core
US5596508A (en) High resolution measurement of a thickness using ultrasound
JPS61225603A (en) liner thickness measuring device
JP2653532B2 (en) Surface defect inspection equipment
US5114665A (en) Autonormalizing reactimeter
JP2000193783A (en) Method and apparatus for measuring non-homogeneity of the surface of a reactor structural component
CN107024256B (en) Device and method for measuring liquid level of nuclear reactor container
JPS6035005B2 (en) Spiral tube circumference measuring device
JPS5876714A (en) Detector for form of inside wall of pipe
US3099746A (en) Thickness measuring apparatus utilizing gamma radiation
JPH05340708A (en) Remote automatic film thickness measuring device in small diameter pipe
JPS63157047A (en) Instrument for measuring thermal deformation
JP2816212B2 (en) Ultrasonic testing
JP2000171231A (en) Method and apparatus for measuring form of pipe
KR101510003B1 (en) The Coordinate Measurement Apparatus for Pressure Vessel Nozzle Weld