[go: up one dir, main page]

JPS61224217A - Manufacture of transparent electroconductive film for laser - Google Patents

Manufacture of transparent electroconductive film for laser

Info

Publication number
JPS61224217A
JPS61224217A JP6213585A JP6213585A JPS61224217A JP S61224217 A JPS61224217 A JP S61224217A JP 6213585 A JP6213585 A JP 6213585A JP 6213585 A JP6213585 A JP 6213585A JP S61224217 A JPS61224217 A JP S61224217A
Authority
JP
Japan
Prior art keywords
laser
film
transparent conductive
conductive film
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6213585A
Other languages
Japanese (ja)
Inventor
敏夫 宮川
朗 高橋
橋本 至
洋一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
NEC Corp
Original Assignee
NEC Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Research Development Corp of Japan filed Critical NEC Corp
Priority to JP6213585A priority Critical patent/JPS61224217A/en
Publication of JPS61224217A publication Critical patent/JPS61224217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Lasers (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ用の透明導電膜の製造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the production of transparent conductive films for lasers.

〔従来技術とその問題点〕[Prior art and its problems]

レーザ用ミラー、多層膜偏光板などのレーザ用薄膜製品
は、一般に誘電体(絶縁物)で作られるだめに、レーザ
照射によって帯電し、そのためにコンタミネーション(
ごみ、ちシ、水蒸気)の付着が起こシ、レーザ耐力が低
下する。そしてこのコンタミネーションの付着を防ぐた
めに、レーザ用薄膜製品の最上層に帯電防止のための透
明な導電膜を蒸着することが行われている。一般に透明
導電膜に用いられる蒸着物質は5rI02.In2O3
,In2O6にSnを添加したITOなどである。しか
しこれらの蒸着物質を真空蒸着で蒸着すると、基板加熱
温度や酸素分圧をあげても蒸着中の解離によって低級酸
化物しか得られず、酸素分圧を上げても吸収係数が0.
1%以上の吸収膜となってダメージスレショウルドが1
[J/z2:]以下となり、レーザ・ダメージを受けて
しまう。この吸収係数についてはあとの本発明の詳細な
説明において触れる。このため透明膜にするために蒸着
後02中での熱処理を行う。しかしこの熱処理は透明導
電層より下にあるレーザ用の薄膜製品への加熱や加熱に
よる酸化の影響を及ぼす。このためレーザ耐力最適蒸着
条件からのずれ、膜に入るクラック、光学特性のずれな
どによるレーザ耐力低下を引き起こす。
Thin film products for lasers, such as laser mirrors and multilayer polarizing plates, are generally made of dielectrics (insulators) and are charged by laser irradiation, resulting in contamination (
Dust, dust, water vapor) may adhere to the surface, reducing laser strength. In order to prevent this contamination from adhering, a transparent conductive film for antistatic purposes is deposited on the top layer of laser thin film products. The vapor deposition material generally used for transparent conductive films is 5rI02. In2O3
, ITO, which is In2O6 with Sn added. However, when these deposition substances are deposited by vacuum evaporation, only lower oxides are obtained due to dissociation during deposition even if the substrate heating temperature or oxygen partial pressure is increased, and even if the oxygen partial pressure is increased, the absorption coefficient remains 0.
The damage threshold becomes 1% or more and the absorption film becomes 1% or more.
[J/z2:] or less, resulting in laser damage. This absorption coefficient will be discussed later in the detailed description of the invention. Therefore, heat treatment in 02 is performed after vapor deposition to make the film transparent. However, this heat treatment affects the laser thin film product below the transparent conductive layer by heating and oxidation due to the heating. This causes a decrease in laser yield strength due to deviations from the optimum deposition conditions, cracks entering the film, deviations in optical properties, and the like.

第4図は透明導電膜下の誘電体膜のベーキングによる影
響をZnO2/S+02の2層無反射コートについて示
しだ図であって、ベーキング温度を昇げていくと、20
0℃まではほとんど変化がないが。
Figure 4 shows the influence of baking on the dielectric film under the transparent conductive film for a two-layer non-reflective coating of ZnO2/S+02.
There is almost no change down to 0°C.

300℃では光学特性やレーザ耐力の最適化条件で蒸着
した膜構造が変化してしまうために、15チ程度ダメー
ジ耐力が低下し、更に400℃以上になると膜にクラッ
クが入ってしまうために、レーザ耐力が70係程度低下
することを示している。
At 300°C, the structure of the deposited film changes due to the optimization conditions of optical properties and laser proof strength, resulting in a decrease in damage resistance of about 15 inches, and when the temperature exceeds 400°C, cracks appear in the film. This indicates that the laser proof strength decreases by about a factor of 70.

々お一般に透明導電膜のベーキングは350℃以上で行
なう。
Generally, baking of transparent conductive films is carried out at 350° C. or higher.

また、真空蒸着では、これらの蒸着物質は十分な機械的
な強度が得られ々いために取扱い中に膜面に傷が発生す
る。この傷の中に入シ込んだメタルやコミによシレーザ
光の吸収が生じ、この面からもレーザ・ダメージを受け
てしまう。
In addition, in vacuum deposition, these deposited substances cannot have sufficient mechanical strength, so that scratches occur on the film surface during handling. Laser light is absorbed by the metal or dust that has entered into these scratches, and laser damage is also caused from this surface.

〔発明の目的〕[Purpose of the invention]

したがって2本発明の目的は、上記欠点を改善してレー
ザ・ダメージを受けないレーザ川透明導電膜の製造法を
提供することである。
Therefore, it is an object of the present invention to provide a method for manufacturing a laser-transparent conductive film which overcomes the above-mentioned drawbacks and is free from laser damage.

〔発明の構成〕[Structure of the invention]

本発明は、上記の目的を達成するために、高周波イオン
ブレーティングを用いてレーザ用の透明導電膜を製造す
るようにしだものである。
In order to achieve the above object, the present invention is directed to manufacturing a transparent conductive film for a laser using high frequency ion blating.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1図は本発明の方法により製造したTTO膜の構成を
示した図であって、1はガラス、石英々どの基板、2は
誘電体多層膜、3は透明導電膜である。本実施例では基
板1にレーザ耐力最適蒸着条件により誘電体2を蒸着し
、その上に連続してまたは一旦装置を移して透明導電膜
3を高周波イオンブレーティングによって蒸着したもの
である。
FIG. 1 is a diagram showing the structure of a TTO film manufactured by the method of the present invention, in which 1 is a substrate such as glass or quartz, 2 is a dielectric multilayer film, and 3 is a transparent conductive film. In this example, a dielectric material 2 is deposited on a substrate 1 under the optimum deposition conditions for laser proof strength, and a transparent conductive film 3 is deposited thereon either continuously or by transferring the apparatus once by high-frequency ion blasting.

高周波イオンブレーティングはプラズマ中の蒸着である
ので蒸着物質と導入ガスの活性化が非常に進み、このた
め蒸着後の熱処理を行なわなくても透明な導電膜が得ら
れる。しだがって熱処理による誘電体多層膜2のレーザ
耐力最適蒸着条件からのずれ、膜のクラック、特性のず
れなどによるレーザ耐力の低下を与えること々く透明導
電膜3の吸収を取り除くことができ、透明かつ導電性の
高い膜を得られる。このことにより透明導電性膜3の吸
収によるレーザ・ダメージと、帯電によって付着するゴ
ミ、チリ、水蒸気々とのレーザ・ダメージを防ぐことが
でき、レーザ耐力を向上させる第2図はZrO2//5
1022層無反射コート上に蒸層上反射コート上高周波
イオンブレーティングを使用した場合と使用し々い場合
の高周波電力とダメージスレショウルドの関係を示す図
である。高周波イオンブレーティング電力0は高周波イ
オンブレーティングを使用しない場合である。この図か
ら明らかなように、高周波イオンブレーティングを使用
した場合は使用しない場合に比較してダメージスレショ
ウルドが改善されていることがわかる更に注目すべきは
、高周波イオンブレーティング電力を上げていくと30
0W付近まではダメージ下がってしまうことである。こ
の傾向は蒸着物質によっても変ってくるので、各物質で
つかむ必要がある。
Since high-frequency ion blating is vapor deposition in plasma, the activation of the vapor deposition substance and the introduced gas is extremely advanced, and therefore a transparent conductive film can be obtained without any heat treatment after vapor deposition. Therefore, it is possible to remove the absorption of the transparent conductive film 3, which often causes a decrease in the laser proof strength due to a deviation from the optimum deposition conditions for the laser proof strength of the dielectric multilayer film 2 due to heat treatment, cracks in the film, deviations in characteristics, etc. , a transparent and highly conductive film can be obtained. This can prevent laser damage caused by absorption of the transparent conductive film 3 and laser damage caused by dust, dust, and water vapor attached due to charging, and improves laser strength.
10 is a diagram showing the relationship between high frequency power and damage threshold when high frequency ion blating is used on a vaporized layer on a reflective coat on a 1022-layer non-reflective coat and when high frequency ion brating is used on a reflective coat. FIG. High frequency ion brating power of 0 is the case where high frequency ion brating is not used. As is clear from this figure, the damage threshold is improved when high-frequency ion blating is used compared to when it is not used. What is even more noteworthy is that when the high-frequency ion brating power is increased, the damage threshold is improved. Ikuto 30
The damage decreases until it reaches around 0W. This tendency changes depending on the deposited material, so it is necessary to understand it for each material.

第3図は基板温度100℃、蒸着レイト20A/see
 。
Figure 3 shows a substrate temperature of 100℃ and a deposition rate of 20A/see.
.

高周波出力300W(イオンシレーティング時)。High frequency output 300W (during ion silating).

導入ガス02においてITO膜の蒸着を、イオンブレー
ティングと真空蒸着で導入ガスである酸素分圧を変えて
行なった結果を示す図である。真空蒸着の場合は、02
ガスの量を増していっても、0.1%程度の吸収率が残
るが、イオンブレーティングの場合、2桁はど小さくレ
ーザ耐力に影響を与えるような吸収は起こらない。因み
に吸収係数が10−4程度以上あるとダメージスレショ
ウルドは3以下に下り使用に耐えられなくなる。
FIG. 7 is a diagram showing the results of vapor deposition of an ITO film using introduced gas 02 by changing the partial pressure of oxygen, which is the introduced gas, by ion blating and vacuum evaporation. For vacuum deposition, 02
Even if the amount of gas is increased, an absorption rate of about 0.1% remains, but in the case of ion blating, the absorption is two orders of magnitude smaller and does not affect the laser proof strength. Incidentally, if the absorption coefficient is about 10-4 or more, the damage threshold drops to 3 or less, making it unusable.

上記に加えて、高周波イオンブレーティングは蒸着物質
のイオン化により膜の結晶性の向上や緻密化が促進され
るので、導電性の向上と機械的々強度の向上が得られる
。導電性の向上により、帯電した電荷は一層逃げやすく
なるためにゴミ、チリ、水蒸気々どの付着が一層少なく
なるので、レーザ耐力を更に向上させるものである。
In addition to the above, high frequency ion blating promotes improved crystallinity and densification of the film by ionizing the deposited material, resulting in improved electrical conductivity and improved mechanical strength. The improved conductivity makes it easier for charged charges to escape, thereby reducing the adhesion of dust, dirt, water vapor, etc., thereby further improving the laser strength.

機械的な強度の向上は取扱中の傷を防ぐので。Improved mechanical strength prevents scratches during handling.

傷の中に入り込むメタルやコゝミなどの吸収によるレー
ザ・ダメージを防ぐことによってレーザ耐力レーティン
グをレーザ用透明導電性膜の製造に用いることによって
、透明導電性膜の下にある誘電体多層膜の性能を損なう
こと々く、透明導電性膜の透明性、導電性2機械的な強
度を向上させることによってレーザ耐力を向上させるも
のである。
By preventing laser damage caused by absorption of metal and metal particles that penetrate into scratches, laser strength ratings can be used to manufacture transparent conductive films for lasers, and the dielectric multilayer film underneath the transparent conductive film can be The purpose is to improve the laser proof strength by improving the transparency, conductivity, and mechanical strength of the transparent conductive film without impairing its performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で製造したITO膜の構成を示し
た図、第2図は高周波イオンブレーティング電力とダメ
ージスレショウルドの関係の一例を示す図、第3図はI
TO膜の本発明のイオンブレーティングと従来技術の真
空蒸着で酸素□分圧を変えたときの吸収係数を示す図、
第4図は従来技術に必要としだベーキングを行うときの
ベーキング温□ 度とスレショウルドの関係を示す図で
ある。 記号の説明=1はガラス、石英などの基板、2は誘電体
多層膜、3は透明導電性膜をそれぞれあられしている。 代理人(77幻)弁理士池田憲保 3−透明導電性腺 溌恐仙榊
FIG. 1 is a diagram showing the structure of an ITO film manufactured by the method of the present invention, FIG. 2 is a diagram showing an example of the relationship between high frequency ion blating power and damage threshold, and FIG.
A diagram showing the absorption coefficient when the oxygen □ partial pressure is changed in the ion blating of the present invention and the conventional vacuum evaporation of the TO film,
FIG. 4 is a diagram showing the relationship between baking temperature and threshold when performing the baking required in the prior art. Explanation of symbols: 1 represents a substrate made of glass or quartz, 2 represents a dielectric multilayer film, and 3 represents a transparent conductive film. Agent (77 illusion) Patent attorney Noriyasu Ikeda 3 - Transparent conductive gland Kosensakaki

Claims (1)

【特許請求の範囲】[Claims] レーザ用透明導電膜の製造において、高周波イオンプレ
ーティングを用いることを特徴とするレーザ用透明導電
膜の製造法。
A method for producing a transparent conductive film for lasers, characterized in that high frequency ion plating is used in the production of the transparent conductive film for lasers.
JP6213585A 1985-03-28 1985-03-28 Manufacture of transparent electroconductive film for laser Pending JPS61224217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6213585A JPS61224217A (en) 1985-03-28 1985-03-28 Manufacture of transparent electroconductive film for laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6213585A JPS61224217A (en) 1985-03-28 1985-03-28 Manufacture of transparent electroconductive film for laser

Publications (1)

Publication Number Publication Date
JPS61224217A true JPS61224217A (en) 1986-10-04

Family

ID=13191332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6213585A Pending JPS61224217A (en) 1985-03-28 1985-03-28 Manufacture of transparent electroconductive film for laser

Country Status (1)

Country Link
JP (1) JPS61224217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243261A (en) * 1987-03-31 1988-10-11 Nok Corp Production of electrically conductive transparent film having low resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133703A (en) * 1979-04-06 1980-10-17 Nippon Electric Co Method of producing transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133703A (en) * 1979-04-06 1980-10-17 Nippon Electric Co Method of producing transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243261A (en) * 1987-03-31 1988-10-11 Nok Corp Production of electrically conductive transparent film having low resistance

Similar Documents

Publication Publication Date Title
US4345000A (en) Transparent electrically conductive film
JP4087447B2 (en) Sputtering target and manufacturing method thereof
US2886502A (en) Cathodic sputtering of metal and dielectric films
JP2003151358A (en) Transparent conductive film and touch panel
CN111356665B (en) Glass sheet with transparent conductive film, glass roll with transparent conductive film, and method for producing same
JPS61224217A (en) Manufacture of transparent electroconductive film for laser
CN108193179A (en) A kind of multi-layered infrared transparent conductive film and preparation method thereof
JPH08144052A (en) ITO sputtering target
EP3554191B1 (en) Heating device using hyper heat accelerator and method for manufacturing the same
JPH02221365A (en) Production of transparent conductive laminate
JP3501819B2 (en) Transparent conductive film with excellent flatness
JPS60156001A (en) Reflection preventive film of plastic optical parts
JPS6155205B2 (en)
JP3058509B2 (en) Manufacturing method of liquid crystal display element
JPS6241788A (en) Far infrared heater and its manufacturing method
JPS6260213A (en) Lead glass thin film dielectric material
JPH05307914A (en) Transparent electrical conductive film and its manufacturing method
JP2586012B2 (en) Method of forming tin thin film
JPH0465023A (en) Transparent conductive film and manufacture thereof
JPH0384816A (en) Treatment of transparent conductive film
JPH0370328B2 (en)
WO2021001691A4 (en) Transparent conductive film
JPS58112375A (en) Manufacture of photovoltaic device
JPS6231913A (en) Lead oxide thin film dielectric material
JPH0266179A (en) Production of electrically conductive transparent film