[go: up one dir, main page]

JPS61222935A - Burner for producing fine glass particle - Google Patents

Burner for producing fine glass particle

Info

Publication number
JPS61222935A
JPS61222935A JP6288185A JP6288185A JPS61222935A JP S61222935 A JPS61222935 A JP S61222935A JP 6288185 A JP6288185 A JP 6288185A JP 6288185 A JP6288185 A JP 6288185A JP S61222935 A JPS61222935 A JP S61222935A
Authority
JP
Japan
Prior art keywords
pipe
burner
gas flow
flow path
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6288185A
Other languages
Japanese (ja)
Inventor
Hideyo Kawazoe
川添 英世
Toru Wakita
徹 脇田
Katsumi Orimo
折茂 勝巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6288185A priority Critical patent/JPS61222935A/en
Publication of JPS61222935A publication Critical patent/JPS61222935A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a glass preform having perfectly triangular refractive index distribution in high reproducibility, by using a burner for the formation of glass soot and composed of a plurality of concentric pipes wherein the tip of the innermost pipe is protruded from the tips of the other pipes. CONSTITUTION:A plurality of pipes made of quartz and having different diameters, i.e. the first pipe 11 placed at the center, the second pipe 12, the third pipe 13, the fourth pipe 14 and the outermost fifth pipe 15 are arranged concentrically to form a burner for the formation of glass soot. The tip of the first pipe 11 is protruded from the tips of the other pipes by a proper length (e.g. 3mm). The first channel 16 is supplied with GeCl4 and SiCl4, and the second channel 17, the third channel 18, the fourth channel 19 and the fifth channel 20 are supplied with SiCl4, H2, Ar and O2 respectively. Glass soot produced by the flame hydrolysis reaction is deposited in a prescribed form to obtain a porous glass preform, which is vitrified to a transparent glass. A glass preform having a triangular refractive index distribution free from the roundness at the center can be produced by this process.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明は通信用、光学用のガラス微粒子を生成するため
のバーナに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to a burner for producing glass fine particles for communication and optical applications.

r従来の技術J 各種光フアイバ用の多孔質ガラス母材、ロッドレンズ用
の多孔質ガラス母材を製造する手段として、WAD法が
知られている。
rPrior Art J The WAD method is known as a means for producing porous glass preforms for various optical fibers and porous glass preforms for rod lenses.

この1/AD法では、例えば火炎加水分解反応により生
成したガラス微粒子を所定の形状に堆積させて多孔質ガ
ラス母材を作製するが、この際のガラス微粒子生成時、
四重ないし1重管構造のバーナが用いられる。
In this 1/AD method, a porous glass base material is produced by depositing glass particles generated by, for example, a flame hydrolysis reaction in a predetermined shape.
A burner with a quadruple or single tube structure is used.

第4図は多重管構造バーナの従来例を示したものである
FIG. 4 shows a conventional example of a multi-tube structure burner.

第4図において、lは中心に位置する第一パイプ、2は
第二パイプ、3は第三パイプ、4は第四パイプ、5は最
外周にある第五パイプであり、これら各パイプ1〜5の
重合構成により、第一ガス流路(中心ガス流路)8、第
二ガス流路7、第三ガス流路8.第四ガス流路8、第五
ガス流路(最外側ガス流路) 10がそれぞれ形成され
ている。
In FIG. 4, l is the first pipe located at the center, 2 is the second pipe, 3 is the third pipe, 4 is the fourth pipe, and 5 is the fifth pipe located at the outermost periphery. 5, the first gas flow path (center gas flow path) 8, the second gas flow path 7, the third gas flow path 8. A fourth gas flow path 8 and a fifth gas flow path (outermost gas flow path) 10 are respectively formed.

上述したバーナを用いてWAD法により多孔質ガラス母
材を作製するとき、第一ガス流路B〜第五ガス流路10
には、それぞれ下記のガスを供給した。
When producing a porous glass base material by the WAD method using the burner described above, the first gas flow path B to the fifth gas flow path 10
The following gases were supplied respectively.

第一ガス流路θ : GeGIa (100cc/wi
n、−28℃)SiC1n (100cc/sin、−
40℃)第二ガス流路7 : 5iC14(200cc
/win、−23℃)第三ガス流路8 :H2(4,2
文/sin)第四ガス流路9 : Ar(1,91/m
1re)第五ガス流路10 : 02 (9,81/5
in)上記の条件で作製された多孔質ガラス母材を既知
の手段で透明ガラス化した。
First gas flow path θ: GeGIa (100cc/wi
n, -28°C) SiC1n (100cc/sin, -
40°C) Second gas flow path 7: 5iC14 (200cc
/win, -23°C) Third gas flow path 8: H2 (4,2
sentence/sin) Fourth gas flow path 9: Ar (1,91/m
1re) Fifth gas flow path 10: 02 (9,81/5
in) The porous glass base material produced under the above conditions was made into transparent glass by a known method.

上記透明ガラス化後のガラス母材につき、その屈折率分
布を非破壊測定手段で測定したところ、第5図のごとき
プロファイルを呈していた。
When the refractive index distribution of the glass base material after the transparent vitrification was measured using a non-destructive measuring means, it exhibited a profile as shown in FIG.

第5図で明らかなように、従来のバーナを介して作製さ
れた母材の場合、その屈折率プロファイルが中央に丸み
をもつ擬似三角形となる。
As is clear from FIG. 5, the refractive index profile of the base material produced through the conventional burner is a pseudo-triangle with a roundness in the center.

r発明が解決しようとする問題点1 ところで、通信、光学用として、三角形の屈折率分布を
もつガラス母材を製造するとき、従来のバーナでは、前
述した中央の丸みが生じるので所望屈折率分布の母材が
得られず、しかもバーナ自体がGI型底屈折率分布用し
て開発されたものであるため、無理に三角形屈折率分布
を形成しようとすると、多孔質ガラス母材の作製段階に
おいて該母材の中央部が偏平形状となってしまい、ガラ
スれる。
Problem 1 to be Solved by the Invention Incidentally, when manufacturing a glass base material with a triangular refractive index distribution for use in communications or optics, in conventional burners, the above-mentioned rounding of the center occurs, so the desired refractive index distribution cannot be achieved. However, since the burner itself was developed for a GI-type bottom refractive index distribution, if a triangular refractive index distribution was forcibly formed, it would be difficult to obtain a porous glass base material at the manufacturing stage. The central part of the base material becomes flat and glassy.

それゆえ、従来バーナでは三角形屈折率分布を形成する
際の条件設定がむずかしく、再現性も得がたい。
Therefore, with conventional burners, it is difficult to set conditions for forming a triangular refractive index distribution, and it is difficult to obtain reproducibility.

本発明は上記の問題点に鑑み、三角形の屈折率分布をも
つガラス母材が容易に作製できる新規なバーナを提供し
ようとするものである。
In view of the above-mentioned problems, the present invention aims to provide a novel burner in which a glass base material having a triangular refractive index distribution can be easily produced.

r問題点を解決するための手段j 本発明は、断面口径が互いに異なる複数本のパイプが同
心状に重ね合わされ、その中心位置にあるパイプ内と各
パイプの隣接部間にそれぞれガス流路が形成されている
ガラス微粒子生成用バーナにおいて、中心位置にあるパ
イプの先端が他のパイプ先端よりも突出していることを
特徴としている。
Means for Solving Problems j The present invention is characterized in that a plurality of pipes having different cross-sectional diameters are stacked concentrically, and a gas flow path is formed in the pipe at the center position and between adjacent parts of each pipe. The burner for producing glass particles is characterized in that the tip of the pipe located at the center is more protruding than the other pipe tips.

r作用】 本発明バーナを用いてガラス微粒子を生成し、そのガラ
ス微粒子を堆積させて多孔質ガラス母材を作製するとき
、バーナ中心位置の第一ガス流路には気相のガラス原料
と気相のドープ原料(屈折率高上用)を、第二ガス流路
には気相のガラス原料を、第三ガス流路には水素ガスを
、第四ガス流路には緩衝ガスを、第五ガス流路(最外側
ガス流路)には酸素ガスをそれぞれ供給する。
r Effect] When the burner of the present invention is used to generate glass fine particles and the glass fine particles are deposited to produce a porous glass base material, the first gas flow path located at the center of the burner is filled with gas phase glass raw material and gas. phase dope material (for increasing the refractive index), gas phase glass material in the second gas flow path, hydrogen gas in the third gas flow path, buffer gas in the fourth gas flow path, Oxygen gas is supplied to each of the five gas channels (outermost gas channel).

これらの混合ガスを燃焼してガラス微粒子を生成すると
き、第一ガス流路へのドープ原料供給量を適切に設定す
るのはもちろんである。
When these mixed gases are combusted to produce glass particles, it goes without saying that the amount of dope material supplied to the first gas flow path is appropriately set.

上述のごとくバーナが燃焼状態にあり、バーナ火炎が所
定堆積面へ指向している状態において、バーナ中央の第
一ガス流路からはドーパントを含むガラス微粒子が噴射
される。
As described above, when the burner is in a combustion state and the burner flame is directed toward a predetermined deposition surface, glass fine particles containing a dopant are injected from the first gas flow path in the center of the burner.

したがってバーナ火炎内では、その火炎中央のドーパン
ト濃度が最も高いが、当該バーナにあっては、第一ガス
流路の先端が他のそれよりも突出しているため拡散性が
抑えられ、火炎中央のドーパント濃度がより高くなり、
その火炎外周に向かうにしたがいドーパント濃度が低く
なる。
Therefore, in the burner flame, the dopant concentration is highest at the center of the flame, but in this burner, the tip of the first gas flow path is more protruding than the other, so diffusion is suppressed, and the concentration of dopant at the center of the flame is suppressed. The dopant concentration is higher,
The dopant concentration decreases toward the outer periphery of the flame.

ゆえに、当該バーナから噴射されたガラス微粒子を所定
堆積面へ噴射して多孔質ガラス棒を作製した場合、当該
母材中のドーパント濃度すなわち屈折率は、その中心が
最も高く、母材外周へ向かうにしたがい低くなる、いわ
ゆる三角形プロファイルとなり、もちろんこの三角形プ
ロファイルでは、第一ガス流路の先端が他のそれよりも
突出しているため、屈折率分布中央の丸みも生じない。
Therefore, when a porous glass rod is produced by injecting glass particles ejected from the burner onto a predetermined deposition surface, the dopant concentration in the base material, that is, the refractive index, is highest at the center and moves toward the outer periphery of the base material. This results in a so-called triangular profile in which the height decreases as the temperature decreases.Of course, in this triangular profile, the tip of the first gas flow path is more protruding than the other, so the center of the refractive index distribution does not become rounded.

その他、所定パイプの先端を突出させる手段により所望
屈折率分布が形成できるようにしているから、複雑なガ
ス流量制御が不要となり、再現性もよくなる。
In addition, since a desired refractive index distribution can be formed by means of protruding the tip of a predetermined pipe, complicated gas flow rate control is unnecessary and reproducibility is improved.

「実 施 例1 以下、本発明に係るバーナの実施例につき、図面を参照
して説明する。
Embodiment 1 Hereinafter, embodiments of the burner according to the present invention will be described with reference to the drawings.

本発明バーナの一実施例を示した第1図において、 1
1は中心に位置する第一パイプ、12は第二パイプ、1
3は第三パイプ、14は第四パイプ、15は最外周にあ
る第五パイプであり、これら各パイプ11〜15の重合
構成により、第一ガス流路(中心ガス流路)IB、第二
ガス流路17、第三ガス流路18、第四ガス流路18、
第五ガス流路(最外側ガス流路)20がそれぞれ形成さ
れている。
In FIG. 1 showing an embodiment of the burner of the present invention, 1
1 is the first pipe located in the center, 12 is the second pipe, 1
3 is a third pipe, 14 is a fourth pipe, and 15 is a fifth pipe located at the outermost periphery. Due to the superposition structure of each of these pipes 11 to 15, the first gas flow path (center gas flow path) IB, the second gas flow path gas flow path 17, third gas flow path 18, fourth gas flow path 18,
A fifth gas flow path (outermost gas flow path) 20 is formed, respectively.

本発明バーナでは、かかる構成において、第一パイプ1
1の先端が他のパイプ先端よりも適当寸法(例えば3■
鳳)だけ突出され、これにともない第一ガス流路16の
先端も上記と同一寸法だけ突出している。
In the burner of the present invention, in this configuration, the first pipe 1
The tip of pipe 1 has an appropriate size (for example, 3mm) than the other pipe tips.
Accordingly, the tip of the first gas flow path 16 also protrudes by the same dimension as above.

なお、各パイプ11〜15の材質としては、通常、石英
が採用される。
Note that quartz is usually employed as the material for each of the pipes 11 to 15.

上記実施例のバーナを用いてVAD法により多孔質ガラ
ス母材を作製するとき、従来例と同様、第一ガス流路1
6〜第五ガス流路20にはそれぞれ下記のガスを供給し
た。
When producing a porous glass base material by the VAD method using the burner of the above embodiment, as in the conventional example, the first gas flow path 1
The following gases were supplied to the 6th to 5th gas channels 20, respectively.

第一ガス流路18 : GeCl4 (100cc/w
in、−28℃)SiC14(100cc/sin、−
40℃)第二ガス流路17 : SiC1m(200c
c/sin、−23℃)第三ガス流路18 : H2(
4,2jL /gin)第四ガス流路19 : Ar(
1,9JL/5in)第五ガス流路20 : 02(9
,81/win)上記の条件で作製された多孔質ガラス
母材を既知の手段で透明ガラス化した。
First gas flow path 18: GeCl4 (100cc/w
in, -28℃) SiC14 (100cc/sin, -
40℃) Second gas flow path 17: SiC 1m (200℃
c/sin, -23°C) Third gas flow path 18: H2(
4,2jL/gin) Fourth gas flow path 19: Ar(
1,9JL/5in) Fifth gas flow path 20: 02(9
, 81/win) The porous glass base material produced under the above conditions was made into transparent glass by known means.

上記透明ガラス化後のガラス母材につき、その屈折率分
布を非破壊測定手段で測定したところ、第2図のごとき
プロファイルを呈していた。
When the refractive index distribution of the glass base material after the transparent vitrification was measured using a non-destructive measuring means, it exhibited a profile as shown in FIG.

第2図で明らかなように、上記バーナを介して作製され
た母材の場合、その屈折率プロファイルが三角形となっ
ており、該プロファイルの中央には丸みが生じていない
As is clear from FIG. 2, in the case of the base material produced through the burner, the refractive index profile is triangular, and the center of the profile is not rounded.

つぎに本発明バーナの他実施例につき、第3図を参照し
て説明する。
Next, another embodiment of the burner of the present invention will be described with reference to FIG.

この実施例のバーナでは、第五パイプ15に対して第四
パイプ14の先端が突出され、その第四パイプ14に対
して第三パイプ13の先端が突出され、以下同様に第二
パイプ12の先端、第一バイブ11の先端が順次突出さ
れたものであり、第一バイブ11の先端が最も突出して
いる。
In the burner of this embodiment, the tip of the fourth pipe 14 protrudes with respect to the fifth pipe 15, the tip of the third pipe 13 protrudes with respect to the fourth pipe 14, and the tip of the second pipe 12 protrudes with respect to the fourth pipe 14. The tip and the tip of the first vibrator 11 are successively protruded, with the tip of the first vibrator 11 protruding the most.

この場合、一方のパイプに対する他方のパイプの先端突
出長は前記と同様3mm程度でよいが、場合により、各
パイプの突出長に差をもたせてもよい。
In this case, the protruding length of the tip of one pipe relative to the other pipe may be about 3 mm as described above, but depending on the case, the protruding length of each pipe may be made different.

第3図のバーナを用いてVAD法により多孔質ガラス母
材を作製するとき、第一ガス流路16〜第五ガス流路2
0にはそれぞれ前記第1図の場合と同様のガスを供給し
た。
When producing a porous glass base material by the VAD method using the burner shown in FIG. 3, the first gas flow path 16 to the fifth gas flow path 2
0 was supplied with the same gas as in the case of FIG. 1, respectively.

上記の条件で作製された多孔質ガラス母材を既知の手段
で透明ガラス化し、その透明ガラス化母材の屈折率分布
を測定したところ、前記第2図と同様のプロファイルが
得られた。
When the porous glass base material produced under the above conditions was made into transparent vitrification by known means and the refractive index distribution of the transparent vitrified base material was measured, a profile similar to that shown in FIG. 2 was obtained.

なお、前記各実施例のバーナを用いて多孔質ガラス母材
を形成するとき、ドープ原料供給用のガス流路には、密
度1gz1以上の気体で搬送したドープ原料を供給する
のが望ましい。
In addition, when forming a porous glass base material using the burner of each of the above-mentioned Examples, it is desirable to supply the dope raw material transported by a gas having a density of 1 gz1 or more to the gas flow path for supplying the dope raw material.

図示されていないバーナ基端部には、第一、第二、第三
、第四、第五の各ガス流路18〜20と連通ずるガス供
給口がそれぞれ独立して設けられている。
At the base end of the burner (not shown), gas supply ports communicating with each of the first, second, third, fourth, and fifth gas flow paths 18 to 20 are independently provided.

第1図、第3図のバーナとも、パイプ数すなわち流路数
は必要に応じて増減される。
In both the burners shown in FIGS. 1 and 3, the number of pipes, that is, the number of channels can be increased or decreased as necessary.

前述した実施例の各パイプ断面形状は円形であるが、場
合により、各パイプ断面形状として角形を採用すること
がある。
Although the cross-sectional shape of each pipe in the above-described embodiments is circular, in some cases, the cross-sectional shape of each pipe may be rectangular.

「発明の効果j 以上説明した通り、本発明に係るガラス微粒子生成用バ
ーナによれば、中心位置にあるパイプの先端が他のパイ
プ先端よりも突出しているから、完全な三角形の屈折率
分布をもつガラス母材が問題なく、かつ、再現性よく製
造できる。
``Effects of the Inventionj'' As explained above, according to the burner for producing glass particles according to the present invention, since the tip of the pipe at the center position protrudes more than the other tips of the pipes, it is possible to obtain a completely triangular refractive index distribution. The glass base material can be manufactured without problems and with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明バーナの一実施例を示した要部断面図、
第2図は本発明バーナを介して作製したガラス母材の屈
折率分布図、第3図は本発明バーナの他実施例を示した
要部断面図、第4図は従来バーナの要部断面図、第5図
は従来バーナを介して作製したガラス母材の屈折率分布
図である。 11−φ拳第−パイブ 12一番・第二パイプ 13・・・第三パイプ 14・・瞥第四パイプ 15・・・第五パイプ 18壷011第一ガス流路 17・・e第二ガス流路 18・・−第三ガス流路 19・・・第四ガス流路 20・・・第五ガス流路 代理人 弁理士  斎 藤 義 雄 Ifr!lJ
FIG. 1 is a sectional view of essential parts showing an embodiment of the burner of the present invention;
Fig. 2 is a refractive index distribution diagram of the glass base material produced using the burner of the present invention, Fig. 3 is a cross-sectional view of the main part showing another embodiment of the burner of the present invention, and Fig. 4 is a cross-section of the main part of the conventional burner. FIG. 5 is a refractive index distribution diagram of a glass base material produced using a conventional burner. 11-φ fist pipe 12 first/second pipe 13...third pipe 14...fourth pipe 15...fifth pipe 18 jar 011 first gas flow path 17...e second gas Flow path 18...-Third gas flow path 19...Fourth gas flow path 20...Fifth gas flow path Agent Patent attorney Yoshio Saito Ifr! lJ

Claims (1)

【特許請求の範囲】[Claims] 断面口径が互いに異なる複数本のパイプが同心状に重ね
合わされ、その中心位置にあるパイプ内と各パイプの隣
接部間にそれぞれガス流路が形成されているガラス微粒
子生成用バーナにおいて、中心位置にあるパイプの先端
が他のパイプ先端よりも突出していることを特徴とする
ガラス微粒子生成用バーナ。
In a glass particulate generation burner, multiple pipes with different cross-sectional diameters are stacked concentrically, and a gas flow path is formed in the pipe at the center and between adjacent parts of each pipe. A burner for producing glass fine particles characterized by the tip of one pipe protruding from the tip of another pipe.
JP6288185A 1985-03-27 1985-03-27 Burner for producing fine glass particle Pending JPS61222935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6288185A JPS61222935A (en) 1985-03-27 1985-03-27 Burner for producing fine glass particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6288185A JPS61222935A (en) 1985-03-27 1985-03-27 Burner for producing fine glass particle

Publications (1)

Publication Number Publication Date
JPS61222935A true JPS61222935A (en) 1986-10-03

Family

ID=13213047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6288185A Pending JPS61222935A (en) 1985-03-27 1985-03-27 Burner for producing fine glass particle

Country Status (1)

Country Link
JP (1) JPS61222935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006049279A1 (en) * 2004-11-05 2008-05-29 株式会社フジクラ Optical fiber and transmission system and wavelength division multiplexing transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006049279A1 (en) * 2004-11-05 2008-05-29 株式会社フジクラ Optical fiber and transmission system and wavelength division multiplexing transmission system

Similar Documents

Publication Publication Date Title
US4810189A (en) Torch for fabricating optical fiber preform
JPS5927728B2 (en) Manufacturing method of sooty glass rod
EP0204461B1 (en) Burner for producing glass fine particles
GB2128982A (en) Fabrication method of optical fiber preforms
US4915717A (en) Method of fabricating optical fiber preforms
CN1807302B (en) Method for manufacturing glass rod
RU2284968C2 (en) Method of manufacture of the optical glass
JP3053320B2 (en) Method for producing porous glass preform for optical fiber
JPH0559053B2 (en)
JP2004331440A (en) Method for producing porous glass fine particle deposit and burner for glass synthesis used in the production method
JPS61222935A (en) Burner for producing fine glass particle
JPS6048456B2 (en) Method for manufacturing base material for optical fiber
JPS6259063B2 (en)
JPS60112636A (en) Burner for synthesizing fine glass particle
KR100630117B1 (en) Optical vapor deposition apparatus for optical preform
KR910010208A (en) Process for preparing preforms treated with metal oxides
JPS5795838A (en) Manufacture of oxide powder rod for optical fiber
JPS62162637A (en) Production of optical fiber preform
CN118604939A (en) Multi-mode, single-mode multi-core composite communication optical fiber and its preparation process
JP4185304B2 (en) Method for producing porous preform for optical fiber
JPS59232933A (en) Method for manufacturing optical fiber preform
JPS6131325A (en) Method for supplying gas in multi-walled pipe burner for forming pulverous particles of optical glass
JPS59232932A (en) Method for manufacturing optical fiber preform
JPH0733467A (en) Production of porous glass preform for optical fiber
JP2000007367A (en) Apparatus and process for producing glass preform for optical fiber