[go: up one dir, main page]

JPS6122012B2 - - Google Patents

Info

Publication number
JPS6122012B2
JPS6122012B2 JP19784883A JP19784883A JPS6122012B2 JP S6122012 B2 JPS6122012 B2 JP S6122012B2 JP 19784883 A JP19784883 A JP 19784883A JP 19784883 A JP19784883 A JP 19784883A JP S6122012 B2 JPS6122012 B2 JP S6122012B2
Authority
JP
Japan
Prior art keywords
gas
molten aluminum
aluminum
atmosphere
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19784883A
Other languages
Japanese (ja)
Other versions
JPS6089528A (en
Inventor
Yoshitatsu Ootsuka
Shigemi Tanimoto
Kazuo Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP19784883A priority Critical patent/JPS6089528A/en
Priority to DE8484112667T priority patent/DE3480855D1/en
Priority to EP84112667A priority patent/EP0142727B1/en
Priority to US06/663,056 priority patent/US4556419A/en
Priority to AU34545/84A priority patent/AU549799B2/en
Publication of JPS6089528A publication Critical patent/JPS6089528A/en
Publication of JPS6122012B2 publication Critical patent/JPS6122012B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はアルミニウム溶湯の処理方法に関す
る。 鋳造前のアルミニウム溶湯には、水素ガスなど
の有害ガスや、アルミニウムおよびマグネシウム
の酸化物などの非金属介在物が含まれている。上
記水素ガスおよび非金属介在物は、得られた鋳塊
およびこの鋳塊を材料として得られた製品に欠陥
を生じさせる原因となる。そのため、水素ガスお
よび非金属介在物を除去する必要がある。そこで
従来、これらを除去する方法として、アルミニウ
ム溶湯中に、チツ素ガス、アルゴンガス等の不活
性ガスや塩素ガスを気泡状態で吹込む方法が採用
されている。ところが、大気中には水分が含まれ
ているため、アルミニウム溶湯の表面でアルミニ
ウムと大気中の水分とが反応し(2Al+3H2O→
Al2O3+3H2)、その結果発生する水素が溶湯中に
侵入するという問題がある。したがつて、不活性
ガスおよび塩素ガスを吹込むことによる水素ガス
除去効率がきわめて悪くなる。 そこで、上記処理を不活性ガス雰囲気中で行な
う方法が考えられたが、この方法でも雰囲気中の
水分量を0.5mg/以下とすることは不可能であ
る。水分量が0.5mg/以下とならなければ、ア
ルミニウムと反応して生成されてアルミニウム溶
湯中に浸入する水素ガスの量はあまり減らず、不
活性ガスおよび塩素ガス吹込みによる水素ガス除
去効率はいまだ不十分である。 この発明は上記実情に鑑みてなされたものであ
つて、雰囲気中の水分とアルミニウムとの反応に
より発生した水素のアルミニウム溶湯中へ侵入を
防止することが可能となり、従来の方法に比べて
水素ガス除去効率を大幅に高めることが可能な処
理方法を提供することを目的とする。 この明細書において、「アルミニウム」という
語は、純アルミニウムのほかにアルミニウム合金
も含む意味で用いられる。 この発明によるアルミニウム溶湯の処理方法
は、処理槽内に入れられたアルミニウム溶湯中に
処理ガスを気泡状態で吹込んで、アルミニウム溶
湯中から水素ガスおよび非金属介在物を除去する
アルミニウム溶湯の処理方法において、上記処理
槽におけるアルミニウム溶湯の表面に、予め硼弗
化塩を散布し、この硼弗化塩をアルミニウム溶湯
の有する熱により分解させてBF3ガスを発生さ
せ、処理槽における溶湯表面よりも上方の雰囲気
をBF3ガス含有雰囲気としておいて上記処理を行
なうことを特徴とするものである。 上記において、アルミニウム溶湯中に気泡状態
で吹込む処理ガスとしては、チツ素ガス、アルゴ
ンガス、ヘリウムガスおよびこれらの混合ガスな
どの不活性ガス、ならびに塩素ガスなど、アルミ
ニウム溶湯中に含まれる水素ガスおよび非金属介
在物の除去に有効なすべてのガスが用いられる。 また、上記において、アルミニウム溶湯の表面
に予め硼弗化塩を散布し、この硼弗化塩をアルミ
ニウム溶湯の有する熱により分解させてBF3ガス
を発生させ、処理槽における溶湯表面よりも上方
の雰囲気をBF3ガス含有雰囲気としておくのは、
このようにしておくと、上記雰囲気中の水分とア
ルミニウムとの反応が著しく抑止されるからであ
る。上記水分とアルミニウムとの反応が抑止され
るメカニズムは明らかではないが、以下のように
推定される。すなわち、処理槽における溶湯表面
よりも上方の雰囲気をBF3ガス含有雰囲気として
おくと、BF3とアルミニウムとが反応してBと
AlF3とが生じ(BF3+Al→B+AlF3)、このうち
のBが上記雰囲気中の酸素と反応して酸化ホウ素
が生じる(4B+3O2→2B2O3)。そして、この
B2O3がアルミニウムと上記雰囲気中の水分との
反応を抑止し、両者の反応(Al+3H2O→AlO3
3H2)により生じる水素のアルミニウム溶湯中へ
の侵入を防止すると考えられる。 硼弗化塩としては、NaBF4,KBF4、LiBF4
NH4BF4などが用いられる。散布する硼弗化塩の
量は、アルミニウム溶湯の表面積に対して0.005
g/cm2以上とするが好ましく、とくに0.01g/cm2
以上がよい。 さらに、アルミニウム溶湯の表面に、硼弗化塩
とともにアルカリ金属またはアルカリ土類金属の
ハロゲン化物(塩化物、弗化物等)を添加してお
いてもよい。この場合、硼弗化塩を添加する効果
は一層向上し、水素ガス除去効率が一層高まる。
また、上記ハロゲン化物の添加量は、アルミニウ
ム溶湯の表面積1cm2当たり0.003g以上とするの
が好ましく、とくに0.06g以上とするのがよい。 この発明によるアルミニウム溶湯の処理方法は
上述のように構成されているので、処理槽におけ
る溶湯よりも上方の雰囲気に含まれる水分とアル
ミニウムとの反応が抑止され、この反応の結果生
じる水素のアルミニウム溶湯への侵入は防止され
る。したがつて、水素ガス除去効率は従来の方法
に比べて飛躍的に高まる。 以下この発明の実施例を比較例とともに図面を
参照しながら説明する。 実施例および比較例1〜4 この実施例および比較例は第1図に示す装置を
用いて行なつたものである。第1図において、処
理すべきアルミニウム溶湯1は溶湯処理槽2内
に、溶湯1表面が槽2の上端よりも若干下方にく
るように、入れられている。処理槽2の上端開口
は蓋3で閉塞されている。蓋3の中央には孔4が
あけられており、この孔4に上方から処理ガス供
給管5が挿通されている。処理ガス供給管5の下
端部は処理槽2内の底部近くまで伸びており、そ
の先端に気泡状処理ガス放出部材6が取付けられ
ている。また、処理ガス供給管5はモータ7によ
り回転させられるようになつている。処理ガス放
出部材6は円板状で、中央部に処理ガス通過孔
(図示略)が形成され、かつ周面に円周方向に所
定間隔をおいて複数の縦溝6aが形成されてい
る。また、蓋3を貫通してN2ガス供給管8と、
排気管9とが取付けられている。排気管9は、処
理ガス、N2ガス、少量のBF3ガス、少量のHFお
よび少量のAlF3等を排出するためのものであ
る。そして処理ガス供給管5を流れてきた処理ガ
スは、処理ガス通過孔の下端開口から放出部材6
の底面に供給される。すると、放出部材6の回転
により生じる遠心力および縦溝6aの作用によつ
て、小さな処理ガスの気泡が槽2全体にいきわた
るように放出される。 このような装置を使用し、溶湯1を70〜730℃
に保持し、その表面に硼弗化塩を散布した後、ま
たは散布せずに、処理槽2における溶湯1の表面
よりも上方の雰囲気中に供給管8からN2ガスを
供給しつつ、または供給せずに第1表に示す条件
で純度99.99wt%のアルミニウム溶湯500Kgに水素
ガス除去処理を施した。処理ガスとしてはArガ
スを使用し、これを20/minの割合で溶湯1中
に吹込んだ。また、処理ガス供給管5の回転数は
650r.p.mとした。各溶湯200gを赤熱した鉄製容
器に採取し、2Torrの真空減圧下で凝固完了まで
に発生した気泡数を計測した。このようにして、
水素ガス除去処理時間と気泡発生数との関係を調
べた。発生気泡数が少ないほど水素ガス除去率は
大きくなつている。
The present invention relates to a method for treating molten aluminum. Molten aluminum before casting contains harmful gases such as hydrogen gas and nonmetallic inclusions such as oxides of aluminum and magnesium. The hydrogen gas and nonmetallic inclusions cause defects in the obtained ingot and products obtained using the ingot as materials. Therefore, it is necessary to remove hydrogen gas and nonmetallic inclusions. Conventionally, as a method for removing these, a method has been adopted in which inert gas such as nitrogen gas or argon gas or chlorine gas is blown into the molten aluminum in the form of bubbles. However, since the atmosphere contains moisture, aluminum reacts with the moisture in the atmosphere on the surface of the molten aluminum (2Al + 3H 2 O →
(Al 2 O 3 +3H 2 ), there is a problem that the resulting hydrogen enters the molten metal. Therefore, the hydrogen gas removal efficiency by blowing inert gas and chlorine gas becomes extremely poor. Therefore, a method of carrying out the above treatment in an inert gas atmosphere has been considered, but even with this method it is impossible to reduce the amount of water in the atmosphere to 0.5 mg/or less. Unless the water content is 0.5 mg/min or less, the amount of hydrogen gas generated by reacting with aluminum and penetrating into the molten aluminum will not decrease much, and the efficiency of hydrogen gas removal by inert gas and chlorine gas injection will still be low. Not enough. This invention was made in view of the above circumstances, and it is possible to prevent hydrogen generated by the reaction between moisture in the atmosphere and aluminum from penetrating into the molten aluminum. The purpose is to provide a treatment method that can significantly increase removal efficiency. In this specification, the term "aluminum" is used to include not only pure aluminum but also aluminum alloys. The method for treating molten aluminum according to the present invention is a method for treating molten aluminum in which hydrogen gas and nonmetallic inclusions are removed from the molten aluminum by blowing a treatment gas in the form of bubbles into the molten aluminum placed in a treatment tank. , Sprinkle borofluoride salt on the surface of the molten aluminum in the treatment tank in advance, decompose the borofluoride salt with the heat of the molten aluminum to generate BF 3 gas, and spray the borofluoride salt above the surface of the molten metal in the treatment tank The above treatment is performed in an atmosphere containing BF 3 gas. In the above, the processing gas that is blown into the molten aluminum in the form of bubbles includes inert gases such as nitrogen gas, argon gas, helium gas, and mixed gases thereof, and hydrogen gas contained in the molten aluminum, such as chlorine gas. and any gas effective for removing non-metallic inclusions. In addition, in the above, borofluoride salt is sprayed on the surface of the molten aluminum in advance, and the borofluoride salt is decomposed by the heat of the molten aluminum to generate BF 3 gas. Setting the atmosphere to be an atmosphere containing BF3 gas is as follows:
This is because if this is done, the reaction between the moisture in the atmosphere and aluminum is significantly inhibited. Although the mechanism by which the reaction between moisture and aluminum is inhibited is not clear, it is presumed as follows. In other words, if the atmosphere above the molten metal surface in the treatment tank is an atmosphere containing BF 3 gas, BF 3 and aluminum will react and form B.
AlF 3 is generated (BF 3 +Al→B+AlF 3 ), and B of this reacts with oxygen in the atmosphere to generate boron oxide (4B+3O 2 →2B 2 O 3 ). And this
B 2 O 3 suppresses the reaction between aluminum and the moisture in the atmosphere, and the reaction between the two (Al + 3H 2 O → AlO 3 +
It is thought that this prevents hydrogen generated by 3H 2 ) from penetrating into the molten aluminum. Examples of borofluoride salts include NaBF 4 , KBF 4 , LiBF 4 ,
NH 4 BF 4 etc. are used. The amount of borofluoride salt to be sprayed is 0.005% relative to the surface area of the molten aluminum.
g/cm 2 or more is preferable, especially 0.01 g/cm 2
The above is good. Furthermore, an alkali metal or alkaline earth metal halide (chloride, fluoride, etc.) may be added to the surface of the molten aluminum together with a borofluoride salt. In this case, the effect of adding the borofluoride salt is further improved, and the hydrogen gas removal efficiency is further increased.
The amount of the halide added is preferably 0.003 g or more, particularly 0.06 g or more per cm 2 of surface area of the molten aluminum. Since the method for treating molten aluminum according to the present invention is configured as described above, the reaction between moisture contained in the atmosphere above the molten metal in the treatment tank and aluminum is suppressed, and as a result of this reaction, the hydrogen produced in the molten aluminum is suppressed. Intrusion is prevented. Therefore, hydrogen gas removal efficiency is dramatically increased compared to conventional methods. Examples of the present invention will be described below with reference to the drawings along with comparative examples. Examples and Comparative Examples 1 to 4 These Examples and Comparative Examples were carried out using the apparatus shown in FIG. In FIG. 1, molten aluminum 1 to be treated is placed in a molten metal processing tank 2 such that the surface of the molten metal 1 is slightly below the top of the tank 2. The upper end opening of the processing tank 2 is closed with a lid 3. A hole 4 is bored in the center of the lid 3, and a processing gas supply pipe 5 is inserted through the hole 4 from above. The lower end of the processing gas supply pipe 5 extends to near the bottom of the processing tank 2, and a bubble-like processing gas release member 6 is attached to the tip thereof. Furthermore, the processing gas supply pipe 5 is adapted to be rotated by a motor 7. The processing gas discharge member 6 has a disk shape, has a processing gas passage hole (not shown) formed in the center, and has a plurality of vertical grooves 6a formed at predetermined intervals in the circumferential direction on the circumferential surface. In addition, an N 2 gas supply pipe 8 passes through the lid 3,
An exhaust pipe 9 is attached. The exhaust pipe 9 is for discharging processing gas, N 2 gas, a small amount of BF 3 gas, a small amount of HF, a small amount of AlF 3 and the like. The processing gas flowing through the processing gas supply pipe 5 is released from the lower end opening of the processing gas passage hole into the discharge member 6.
is supplied to the bottom of the Then, due to the centrifugal force generated by the rotation of the discharge member 6 and the action of the vertical grooves 6a, small bubbles of processing gas are discharged throughout the tank 2. Using such a device, heat the molten metal 1 to 70 to 730℃.
and after spraying borofluoride salt on the surface thereof, or without spraying, while supplying N 2 gas from the supply pipe 8 to the atmosphere above the surface of the molten metal 1 in the treatment tank 2, or 500 kg of molten aluminum with a purity of 99.99 wt% was subjected to hydrogen gas removal treatment under the conditions shown in Table 1 without being supplied. Ar gas was used as the processing gas and was blown into the molten metal 1 at a rate of 20/min. In addition, the rotation speed of the processing gas supply pipe 5 is
It was set to 650r.pm. 200 g of each molten metal was collected in a red-hot iron container, and the number of bubbles generated until solidification was completed under a vacuum of 2 Torr was counted. In this way,
The relationship between the hydrogen gas removal treatment time and the number of bubbles generated was investigated. The smaller the number of bubbles generated, the greater the hydrogen gas removal rate.

【表】 実施例および比較例1〜4の結果を第2図にま
とめて示す。 第2図から明らかなように、処理槽2における
溶湯1表面に硼弗化塩を散布して水素ガスの除去
処理を行なつた場合には、硼弗化塩を散布しない
で水素ガスの除去処理を行なつた場合に比べて除
去効率は飛躍的に向上している。
[Table] The results of Examples and Comparative Examples 1 to 4 are summarized in FIG. 2. As is clear from Fig. 2, when hydrogen gas is removed by spraying borofluoride salt on the surface of the molten metal 1 in treatment tank 2, hydrogen gas is removed without spraying borofluoride salt. The removal efficiency is dramatically improved compared to the case where treatment is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の実施に用いる装置の
垂直断面図、第2図はこの装置を用いて水素ガス
除去処理を行なつた場合の処理時間と気泡発生数
との関係を示すグラフである。 1……アルミニウム溶湯、2……処理槽。
Figure 1 is a vertical cross-sectional view of the apparatus used to carry out the method of the present invention, and Figure 2 is a graph showing the relationship between the processing time and the number of bubbles generated when hydrogen gas removal is performed using this apparatus. be. 1... Molten aluminum, 2... Treatment tank.

Claims (1)

【特許請求の範囲】[Claims] 1 処理槽内に入れられたアルミニウム溶湯中に
処理ガスを気泡状態で吹込んで、アルミニウム溶
湯中から水素ガスおよび非金属介在物を除去する
アルミニウム溶湯の処理方法において、上記処理
槽におけるアルミニウム溶湯の表面に、予め硼弗
化塩を散布し、この硼弗化塩をアルミニウム溶湯
の有する熱により分解させてBF3ガスを発生さ
せ、処理槽における溶湯表面よりも上方の雰囲気
をBF3ガス含有雰囲気としておいて上記処理を行
なうことを特徴とするアルミニウム溶湯の処理方
法。
1. In a method for treating molten aluminum in which hydrogen gas and nonmetallic inclusions are removed from the molten aluminum by blowing a treatment gas in the form of bubbles into the molten aluminum placed in a treatment tank, the surface of the molten aluminum in the treatment tank is , the borofluoride salt is sprayed in advance, and the borofluoride salt is decomposed by the heat of the molten aluminum to generate BF 3 gas, making the atmosphere above the molten metal surface in the treatment tank a BF 3 gas-containing atmosphere. 1. A method for treating molten aluminum, characterized in that the above-mentioned treatment is carried out at
JP19784883A 1983-10-21 1983-10-21 Treatment of aluminum melt Granted JPS6089528A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19784883A JPS6089528A (en) 1983-10-21 1983-10-21 Treatment of aluminum melt
DE8484112667T DE3480855D1 (en) 1983-10-21 1984-10-19 METHOD FOR REMOVING HYDROGEN GAS AND NON-METAL IMPURITIES FROM ALUMINUM MELTS.
EP84112667A EP0142727B1 (en) 1983-10-21 1984-10-19 Process for treating molten aluminum to remove hydrogen gas and non-metallic inclusions therefrom
US06/663,056 US4556419A (en) 1983-10-21 1984-10-19 Process for treating molten aluminum to remove hydrogen gas and non-metallic inclusions therefrom
AU34545/84A AU549799B2 (en) 1983-10-21 1984-10-22 Removal of hydrogen and non-metallic inclusions from aluminium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19784883A JPS6089528A (en) 1983-10-21 1983-10-21 Treatment of aluminum melt

Publications (2)

Publication Number Publication Date
JPS6089528A JPS6089528A (en) 1985-05-20
JPS6122012B2 true JPS6122012B2 (en) 1986-05-29

Family

ID=16381341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19784883A Granted JPS6089528A (en) 1983-10-21 1983-10-21 Treatment of aluminum melt

Country Status (1)

Country Link
JP (1) JPS6089528A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO310115B1 (en) * 1999-09-03 2001-05-21 Norsk Hydro As Melt processing equipment

Also Published As

Publication number Publication date
JPS6089528A (en) 1985-05-20

Similar Documents

Publication Publication Date Title
EP0142727B1 (en) Process for treating molten aluminum to remove hydrogen gas and non-metallic inclusions therefrom
JPH0453934B2 (en)
EP0083936A2 (en) Metal treatment system
US3870511A (en) Process for refining molten aluminum
CA1046286A (en) Process for removing alkali-metal impurities from molten aluminum
US5935295A (en) Molten aluminum treatment
JPS6122012B2 (en)
US6217632B1 (en) Molten aluminum treatment
JPH09202611A (en) Removal of boron from metallic silicon
JPS5846541B2 (en) Method of adding reactive metals to a molten metal bath
US4892580A (en) Lead-containing additive for steel melts
US3501291A (en) Method for introducing lithium into high melting alloys and steels
JPS6053092B2 (en) Processing method for molten aluminum
US3078531A (en) Additives for molten metals
JPS62205237A (en) Processing method for molten aluminum
US5098651A (en) Magnesium treatment process and apparatus for carrying out this process
JPS6246617B2 (en)
JP2004306039A (en) Continuous casting method of molten magnesium alloy
JP3404237B2 (en) How to prevent oxidation of molten steel
US1898969A (en) Method of protecting magnesium and its alloys at elevated temperatures
CA1103934A (en) Method of reducing the sodium content in aluminium and aluminium alloys
RU2093608C1 (en) Method of cleaning ladles
WO2001006023A1 (en) Method and system of protecting easily oxidized metals melts like molten magnesium by 'in situ' generation of boron trifluoride gas
JP3375651B2 (en) Continuous casting mold powder for copper alloy
JPS62207831A (en) Electron beam melting method