JPS61218708A - Exhaust fine particle processor of internal-combustion engine - Google Patents
Exhaust fine particle processor of internal-combustion engineInfo
- Publication number
- JPS61218708A JPS61218708A JP60059471A JP5947185A JPS61218708A JP S61218708 A JPS61218708 A JP S61218708A JP 60059471 A JP60059471 A JP 60059471A JP 5947185 A JP5947185 A JP 5947185A JP S61218708 A JPS61218708 A JP S61218708A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- exhaust
- intake throttle
- throttle valve
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/0015—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
- F02D35/0023—Controlling air supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/06—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野〉 本発明は内燃機関の排気微粒子処理装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an exhaust particulate treatment device for an internal combustion engine.
(従来の技術〉
排気中に含まれるカーボン等の微粒子を捕集するトラッ
プを排気通路に備えるディーゼルエンジン等の内燃機関
においては、トラップに捕集された排気微粒子が増加す
ると排気圧力が過度に上昇し機関及びエミッション性能
が低下するため、トラップに捕集された排気微粒子を所
定時期に燃焼させトラップを再生していた。かかる排気
微粒子処理装置の従来例を第5図に示す(特開昭58−
51235号公報参照)。(Prior art) In internal combustion engines such as diesel engines that are equipped with a trap in the exhaust passage to collect particulates such as carbon contained in the exhaust, when the number of exhaust particulates collected in the trap increases, the exhaust pressure rises excessively. However, the exhaust particulates collected in the trap are burned at a predetermined time to regenerate the trap.A conventional example of such an exhaust particulate treatment device is shown in Fig. 5 (Japanese Patent Laid-Open No. 58 −
(See Publication No. 51235).
即ち、機関1の排気通路2には排気微粒子を捕集する耐
熱性フィルタ構造のトラップ3が介装されている。そし
て、例えば所定走行距離、走行時間等によってトラップ
3の再生が必要となり得る時期を判定しかつ機関1に多
量に余剰空気が流入する運転状態のときに制御袋W4か
らのデユーティ信号により負圧制御弁5を動作させダイ
アフラム装置6の圧力室6aに負圧ポンプ7から負圧空
気を導入する。これにより、吸気通路8に設けられた吸
気絞弁9を開度制御して余剰空気の導入量を減少させ排
気温度を上昇させる。このようにして、温度上昇した排
気の熱でトラップ3に捕集された排気微粒子を燃焼させ
トラップ3の再生を図るようにしている。That is, a trap 3 having a heat-resistant filter structure is interposed in the exhaust passage 2 of the engine 1 to collect exhaust particulates. Then, it determines when the trap 3 may need to be regenerated based on, for example, a predetermined travel distance, travel time, etc., and performs negative pressure control based on the duty signal from the control bag W4 when the engine 1 is in an operating state in which a large amount of surplus air flows into the engine 1. The valve 5 is operated to introduce negative pressure air from the negative pressure pump 7 into the pressure chamber 6a of the diaphragm device 6. As a result, the opening of the intake throttle valve 9 provided in the intake passage 8 is controlled to reduce the amount of excess air introduced and increase the exhaust temperature. In this way, the exhaust particulates collected in the trap 3 are burned by the heat of the heated exhaust gas, thereby regenerating the trap 3.
詳説すると、前記制御装置4には、燃料噴射ポンプ10
に設けられた負荷センサ11と回転速度センサ12とか
ら夫々負荷信号と回転速度信号が入力されると共に前記
吸気絞弁9下流の吸気通路8に設けられた吸気圧力セン
サ13から圧力信号が入力されている。そして、制御装
置4はトラップの再生時期と判断したときに検出された
機関負荷と機関回転速度から当該運転状態が多量の余剰
空気が機関lに流入する運転状態であるか否かを判定す
る。To explain in detail, the control device 4 includes a fuel injection pump 10.
A load signal and a rotational speed signal are input from a load sensor 11 and a rotational speed sensor 12 provided in the intake throttle valve 9, respectively, and a pressure signal is inputted from an intake pressure sensor 13 provided in the intake passage 8 downstream of the intake throttle valve 9. ing. Then, the control device 4 determines whether the operating state is one in which a large amount of surplus air flows into the engine l from the engine load and engine rotational speed detected when it is determined that it is time to regenerate the trap.
前記運転状態であると判定されたときに制御装置4は負
圧制御弁5にデユーティ信号を出力し吸気絞弁9により
機関1に導入される余剰空気を制御する。ここで、制御
装置4は吸気圧力センサ13の圧力信号に基づいてデユ
ーティ信号のデユーティ比を変化させる。この変化によ
り、負圧制御弁5は前記ダイアフラム装置6の圧力室6
aへの負圧空気の導入量を制御し吸気絞弁9の開度を変
化させ吸気絞弁9下流の吸気負圧を略一定に保持するよ
うにしている。When it is determined that the engine is in the operating state, the control device 4 outputs a duty signal to the negative pressure control valve 5 to control excess air introduced into the engine 1 by the intake throttle valve 9. Here, the control device 4 changes the duty ratio of the duty signal based on the pressure signal of the intake pressure sensor 13. Due to this change, the negative pressure control valve 5
The intake air pressure downstream of the intake throttle valve 9 is maintained at a substantially constant level by controlling the amount of negative pressure air introduced into the intake throttle valve 9 and changing the opening degree of the intake throttle valve 9.
尚、6bはダイアフラム、6Cはリターンスプリング、
14は前記ダイアフラム6bに取付けられたロッド、1
5は一端部がロッド14に回動自由に取付けられ他端部
が吸気絞弁9の弁軸9aに取付けられたレバーである。In addition, 6b is a diaphragm, 6C is a return spring,
14 is a rod attached to the diaphragm 6b;
A lever 5 has one end rotatably attached to the rod 14 and the other end attached to the valve shaft 9a of the intake throttle valve 9.
〈発明が解決しようとする問題点〉
しかしながら、このような従来の排気微粒子処理装置に
おいては、トラップの再生時期でかつ吸気絞り域と判定
したときには吸気絞弁9の開度を制御し吸気負圧を略一
定に保持するようにしているので以下の問題点があった
。<Problems to be Solved by the Invention> However, in such a conventional exhaust particulate treatment device, when it is determined that the trap is regenerated and the intake throttle area is reached, the opening degree of the intake throttle valve 9 is controlled to reduce the intake negative pressure. Since it is maintained at a substantially constant value, there are the following problems.
第6図は所定機関回転速度における非吸気絞り時と吸気
負圧を略一定に制御する吸気絞り時とでの機関負荷の変
化に対する排気温度、燃料消費量及びスモーク排出量の
変化を示している。即ち、吸気絞りを行う場合は負荷が
L+以上で排気微粒子が安定して燃焼する排気温度T8
以上に上昇するのに対し、吸気を絞らない場合は負荷が
L2以上でT、に達する。従ってトラップ再生の点から
は負荷のし2以上で吸気絞りを解除することが好1
ましいが第6図から明らかなように負荷の大きな
条件では吸気絞りにより燃料消費量及びスモーク排出量
が急激に増大する。Figure 6 shows changes in exhaust temperature, fuel consumption, and smoke emissions with respect to changes in engine load at a predetermined engine speed, when the intake is not throttled, and when the intake negative pressure is controlled to be approximately constant. . In other words, when restricting the intake air, the exhaust temperature is T8 at which the exhaust particulates are stably combusted when the load is above L+.
On the other hand, if the intake air is not throttled, the load reaches T at L2 or higher. Therefore, from the point of view of trap regeneration, it is preferable to release the intake throttle when the load is 2 or more.
However, as is clear from FIG. 6, under heavy load conditions, the intake throttle causes a rapid increase in fuel consumption and smoke emissions.
逆に、負荷がL2になるまで吸気負圧を一定とする(シ
リンダ吸入空気量一定)制御方式では燃料消費量及びス
モーク排出量の悪化は抑制できるが、L、からLtの間
で排気温度が上記排気温度Ttに達せず排気微粒子の燃
焼が困難となり、かつ吸気絞りによって得られる排気温
度以上の領域が狭くなるという問題点があった。On the other hand, a control method that keeps the intake negative pressure constant until the load reaches L2 (constant cylinder intake air amount) can suppress the deterioration of fuel consumption and smoke emissions, but the exhaust temperature increases between L and Lt. There are problems in that the above-mentioned exhaust gas temperature Tt cannot be reached, making it difficult to burn exhaust particulates, and the region above the exhaust temperature obtained by the intake throttle becomes narrow.
本発明は、このような実状に鑑みなされたもので、燃料
消費量、スモーク排出量の悪化を抑制しつつ排気微粒子
を安定して燃焼できる排気温度を広い運転領域で確保で
きる排気微粒子処理装置を提供することを目的とする。The present invention was made in view of the above-mentioned circumstances, and provides an exhaust particulate treatment device that can secure an exhaust temperature at which exhaust particulates can be stably combusted over a wide operating range while suppressing deterioration in fuel consumption and smoke emissions. The purpose is to provide.
〈問題点を解決するための手段)
このため、本発明は第1図に示すように機関Aの排気通
路Bに介装され排気中の微粒子を捕集するトラップCを
備える内燃機関の排気微粒子処理装置において、前記ト
ラップの再生時期を判定する再生時期判定手段りと、吸
気通路Eに介装した吸気絞弁Fと、該吸気絞弁Fを開閉
駆動する吸気絞弁駆動手段Gと、前記吸気絞弁F下流の
吸気圧力を検出する吸気圧力検出手段Hと、機関の運転
状態を検出する運転状態検出手段Iと、6トラツプの再
生時期と判定されたときに前記運転状態検出手段と吸気
圧力検出手段Iと吸気圧力検出手段Hからの信号に基づ
いて、排気温度がトラップに捕集された排気微粒子を安
定燃焼できる所定温度に達するまでは前記吸気絞弁駆動
手段Gの制御により吸気圧力を略一定電圧に保つように
制御し、排気温度が吸気絞り制御により前記所定温度に
達してから前記吸気絞弁全開条件で排気温度が前記所定
温度に達する運転状態になるまでは排気温度を前記所定
温度近傍に保持すべく吸気圧力を徐々に高めるように吸
気絞り制御を行い、それより排気温度が高くなる運転状
態では前記吸気絞弁を全開に保持するように制御する吸
気絞弁開度制御手段Jとを備えるようにしたものである
。<Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention provides a trap C for collecting particulates in the exhaust gas of an internal combustion engine, which is installed in the exhaust passage B of the engine A and collects particulates in the exhaust gas. In the processing device, a regeneration time determining means for determining the regeneration time of the trap, an intake throttle valve F interposed in the intake passage E, an intake throttle valve driving means G for driving the intake throttle valve F to open and close, and the An intake pressure detection means H detects the intake pressure downstream of the intake throttle valve F, an operation state detection means I detects the operating state of the engine, and when it is determined that it is time to regenerate the 6-trap, Based on the signals from the pressure detection means I and the intake pressure detection means H, the intake pressure is controlled by the intake throttle valve drive means G until the exhaust temperature reaches a predetermined temperature at which the exhaust particulates collected in the trap can be stably combusted. The exhaust temperature is controlled to be maintained at a substantially constant voltage, and the exhaust temperature is maintained at the above-mentioned level from the time when the exhaust temperature reaches the predetermined temperature due to the intake throttle control until the operating state in which the exhaust temperature reaches the predetermined temperature under the condition that the intake throttle valve is fully open is reached. Intake throttle valve opening control that performs intake throttle control to gradually increase the intake pressure to maintain it near a predetermined temperature, and controls the intake throttle valve to maintain the intake throttle valve fully open in operating conditions where the exhaust temperature is higher than that. The device is equipped with means J.
く作用〉
このようにして、排気微粒子を燃焼できる所定温度以下
の所定運転領域では吸気圧力を徐々に変化させて排気温
度を前記所定温度に保持させるようにし、またそれ以下
の運転領域では吸気圧力を略一定に保持させるようにし
た。In this way, in the predetermined operating range below a predetermined temperature where exhaust particulates can be combusted, the intake pressure is gradually changed to maintain the exhaust temperature at the predetermined temperature, and in the operating range below that temperature, the intake pressure is was kept approximately constant.
(実施例〉
以下に、本発明の一実施例を第2図〜第4図に基づいて
説明する。尚、従来例と同一要素には第5図と同一符号
を付して説明を省略する。(Embodiment) An embodiment of the present invention will be described below based on FIGS. 2 to 4. Elements that are the same as those in the conventional example are given the same reference numerals as in FIG. 5, and their explanation will be omitted. .
第2図において、制御装置20には、冷却水温度を検出
する水温センサ21と機関負荷を検出する負荷センサ2
2と機関回転速度を検出する回転速度センサ23と触媒
付トラップ24の入口側排気圧力と出口側排気圧力を検
出する排気圧力センサ25a、25bと吸気絞弁9下流
の吸気圧力を検出する吸気圧力検出手段としての吸気圧
力センサ26とから検出信号が入力されている。ここで
、負荷センサ22は燃料噴射ポンプ27のコントロール
レバー27aと連動するポテンショメータにより構成さ
れ、回転速度センサ23は例えばクランク角センサによ
り構成され排気圧力センサ25a、25b、吸気圧力セ
ンサ26は例えば半導体式圧力センサで、特に吸気圧力
センサ26は吸気圧力を絶対圧力として検知する構成で
ある。また、触媒付トラップ24は緩衝材24aを介し
てケース24bに装着されている。In FIG. 2, the control device 20 includes a water temperature sensor 21 that detects the cooling water temperature and a load sensor 2 that detects the engine load.
2, a rotational speed sensor 23 that detects the engine rotational speed, exhaust pressure sensors 25a and 25b that detect the exhaust pressure on the inlet side and outlet side of the trap with catalyst 24, and intake pressure that detects the intake pressure downstream of the intake throttle valve 9. A detection signal is input from an intake pressure sensor 26 as a detection means. Here, the load sensor 22 is constituted by a potentiometer interlocked with a control lever 27a of the fuel injection pump 27, the rotation speed sensor 23 is constituted by, for example, a crank angle sensor, and the exhaust pressure sensors 25a, 25b, and the intake pressure sensor 26 are, for example, semiconductor type. The pressure sensor, particularly the intake pressure sensor 26, is configured to detect intake pressure as an absolute pressure. Further, the catalyst trap 24 is attached to a case 24b via a buffer material 24a.
制御装置20は、CPU28、メモリ (ROM)29
の他に、アナログデータをディジタルデータに変換する
A/D変換器30と回転速度センサ23の回転パルスが
入力されるF/V変換器31と、F/V変換器31を介
して入力される回転速度センサ23の検出電圧■い負荷
センサ22の検出電圧vL、水温センサ21の検出電圧
vw 、排気圧力センサ25a、25bの検出電圧VP
1.Vl−□、吸気圧カセンサ2吸気圧出センサIFの
うちのひとつを選択的にA/D変換器30の入力とする
マルチプレクサ32と、後述する接地装置33と、イン
ターフェースをとるためのPIO(ペリフェラリl10
)34とから、構成されている。また制御装置20はバ
ッテリ35からの電圧V。The control device 20 includes a CPU 28 and a memory (ROM) 29.
In addition, an A/D converter 30 that converts analog data into digital data, an F/V converter 31 to which rotation pulses from the rotation speed sensor 23 are input; Detection voltage of rotational speed sensor 23 ■Detection voltage vL of load sensor 22, detection voltage vw of water temperature sensor 21, detection voltage VP of exhaust pressure sensors 25a and 25b
1. Vl-□, intake pressure sensor 2, a multiplexer 32 that selectively inputs one of the intake pressure output sensors IF to the A/D converter 30, and a PIO (peripheral interface) for interfacing with a grounding device 33 to be described later. l10
) 34. Further, the control device 20 receives the voltage V from the battery 35.
から定電圧VCCを得て、制御装置20の各構成要素に
供給する定電圧回路36を備える。A constant voltage circuit 36 is provided which obtains a constant voltage VCC from the control device 20 and supplies it to each component of the control device 20.
尚、CPU2BはPIO34を介してマルチプレクサ3
2へのチャンネル指示を行いA/D変換器30からの変
換終了を示すE OC(End of Convert
)信号を受けた後にディジタル変換されたデータを入力
させるようになっている。Note that the CPU 2B is connected to the multiplexer 3 via the PIO 34.
EOC (End of Convert) indicates the end of conversion from the A/D converter 30.
) After receiving the signal, the digitally converted data is input.
接地装置33は制御用電磁弁の接地線に介装されるスイ
ッチング回路33aと、ダイアフラム装置6の圧力室6
aと制御用電磁弁37のボートaとを連通ずる圧力通路
38に介装される切り換え用三方電磁弁39の接地線に
介挿されるスイッチング回路33とから構成され、各ス
イッチング回路33a、33bは主にトランジスタを用
いて構成される。前記制御用電磁弁37には負圧ポンプ
7からの負圧を略一定に調整する定圧弁40が設けられ
、この定圧弁40から負圧を取り出す負圧取出通路41
が制御用電磁弁37のボートaと三方電磁弁39のボー
トbとを接続する前記圧力通路38の途中に接続されて
いる。The grounding device 33 includes a switching circuit 33a interposed in the grounding wire of the control solenoid valve, and a pressure chamber 6 of the diaphragm device 6.
a, and a switching circuit 33 inserted into the ground wire of a three-way switching solenoid valve 39, which is interposed in a pressure passage 38 that communicates the boat a of the control solenoid valve 37, and the switching circuits 33a and 33b are Mainly constructed using transistors. The control solenoid valve 37 is provided with a constant pressure valve 40 that adjusts the negative pressure from the negative pressure pump 7 to a substantially constant level, and a negative pressure extraction passage 41 that takes out the negative pressure from the constant pressure valve 40.
is connected in the middle of the pressure passage 38 that connects the boat a of the control solenoid valve 37 and the boat b of the three-way solenoid valve 39.
三方電磁弁39のボートaとダイアフラム装置6の圧力
室6aとが圧力通路38により連通され、三方電磁弁3
9は非通電状態で大気圧ボートcとボートaを連通し、
通電状態でボートbとボートaを接続するように構成さ
れている。前記制御用電磁弁37は非通電状態で弁口3
7aが閉じ通電状態で弁口37aが開いて大気導入ボー
トbから大気を導入し、圧力通路38内の負圧空気を大
気で希釈する。The boat a of the three-way solenoid valve 39 and the pressure chamber 6a of the diaphragm device 6 are communicated through the pressure passage 38, and the three-way solenoid valve 3
9 connects atmospheric pressure boat C and boat A in a non-energized state;
It is configured to connect boat b and boat a in an energized state. The control solenoid valve 37 is closed to the valve port 3 in a de-energized state.
7a is closed and energized, the valve port 37a is opened to introduce the atmosphere from the atmosphere introduction boat b, and dilute the negative pressure air in the pressure passage 38 with the atmosphere.
制御用電磁弁37は通常30〜50H2程度の周波数で
オンオフ的に開閉し、そのオンオフ時間比率制御(制御
デユーティ)と、三方電磁弁39の通電制御が制御装置
20によってなされる。即ち各スイッチング回路33a
、33bにCPU28からPI034を介してそれぞれ
出力信号が送られた場合に各接地線を導通させて、制御
用電磁弁37と三方電磁弁39をオンにするのである。The control solenoid valve 37 normally opens and closes on and off at a frequency of about 30 to 50H2, and the control device 20 controls the on/off time ratio (control duty) and controls the energization of the three-way solenoid valve 39. That is, each switching circuit 33a
, 33b from the CPU 28 via the PI034, the grounding wires are made conductive and the control solenoid valve 37 and the three-way solenoid valve 39 are turned on.
ここにおいて、CPU28は第3図に示すフローチャー
トに基づくプログラムに従って作動する。Here, the CPU 28 operates according to a program based on the flowchart shown in FIG.
ここでは、制御装置20が再生時期判定手段と吸気絞弁
開度制御手段とを兼ね、ダイアフラム装置6により吸気
絞弁駆動装置を構成する。また、負荷センサ22と回転
速度センサ23により運転状態検出手段を構成する。尚
、42はイグニッションスイッチである。Here, the control device 20 serves both as a regeneration timing determining means and an intake throttle valve opening control means, and the diaphragm device 6 constitutes an intake throttle valve driving device. Further, the load sensor 22 and the rotational speed sensor 23 constitute an operating state detection means. Note that 42 is an ignition switch.
次に作用を第3図に示すフローチャートに基づいて説明
する。Next, the operation will be explained based on the flowchart shown in FIG.
Slにて水温センサ21.負荷センサ22. F/V
変換器31を介しての回転速度センサ23.入口側圧力
センサ25a及び出口側圧力センサ25bの出力電圧で
あルvW、 VR,Vt、、 VPl、 VpzをC
PU2Bの記憶部(RAM)にメモリーする。そしてS
2において、機関の始動を例えば機関回転速度が50O
rpm以上か否かにより判定し、NOの場合はS33に
進み三方電磁弁39をオフとしてポートaとボートcを
連通させて大気をダイアフラム装置6の圧力室6aに導
入し、吸気絞りを停止する。そしてS34へ進み制御用
電磁弁37をオフ(オフデエーティ100%)とし電力
の浪費を防ぎSlへ戻る。Water temperature sensor 21. Load sensor 22. F/V
Rotational speed sensor 23 via transducer 31. The output voltages of the inlet side pressure sensor 25a and the outlet side pressure sensor 25b are vW, VR, Vt, VPl, Vpz.
It is stored in the storage unit (RAM) of PU2B. and S
2, the engine is started, for example, when the engine rotational speed is 50O
The determination is made based on whether or not the rpm is higher than the rpm, and if NO, the process proceeds to S33, where the three-way solenoid valve 39 is turned off, port a and boat c are communicated, the atmosphere is introduced into the pressure chamber 6a of the diaphragm device 6, and the intake throttle is stopped. . Then, the process advances to S34, where the control solenoid valve 37 is turned off (off duty 100%) to prevent power wastage and return to S1.
S2でYESの場合はS3へ進み触媒付トラップ24ノ
前後差圧(ΔVP = VPI −Vpz)を前記出力
電圧V p + + V r zから求めS4に進む
。If YES in S2, the process proceeds to S3, where the differential pressure across the catalytic trap 24 (ΔVP = VPI - Vpz) is determined from the output voltage V p + + V r z, and the process proceeds to S4.
S4では現在再生中であるか否かを判定する(CPU2
8の記憶部(RAM)に再生中を示す信号が・メモリー
されているか否かを判定する)。YESの場合はS8へ
進むがエンジン始動後初回はNOであるため、S5.S
6で再生時期の判定を行う。すなわち■8とvLとから
回転速度と負荷に基づいてROM29に設定された限界
差Jj (1粒子捕集限界時の差圧)をテーブルルック
アップして求める。In S4, it is determined whether or not it is currently being played (CPU2
It is determined whether a signal indicating that playback is being stored is stored in the storage unit (RAM) of No. 8). If YES, proceed to S8, but since it is NO the first time after the engine starts, proceed to S5. S
In step 6, the reproduction timing is determined. That is, from (1)8 and vL, the limit difference Jj (differential pressure at the limit of one particle collection) set in the ROM 29 is determined by table lookup based on the rotational speed and load.
そしてS6へ進み前後差圧ΔV、が限界差圧ΔVPxm
xに達しているか否かを判定し、Noの場合は再生時期
ではないので333へ進み、YESの場合はS7でCP
U2Bの記憶部(RAM)に再生中を示す記号をメモリ
ーLS8へ進んで冷却水温度が例えば60℃以上である
か否かを判定し、NOの場合には機関の暖機が不十分で
あり吸気絞りに適さないため333へ進む。S8でYE
S即ち充分に暖機されているときにはS9へ進み、回転
速度と負荷とからこの運転状態の排気温度が排気微粒子
が安定して燃焼する温度(本実施例では触媒が充分に活
性化する温度例えば400℃)未満か否かを判定し、N
oの場合即ち排気温度が400℃以上の場合はS33へ
進みYESの場合810へ進む。SIOではvRとvL
とから吸気負圧を略一定に制御する領域(第4図中A領
域)と排気温度が400℃となるように負荷の変化と回
転速度の変化に対応して吸気負圧を変化させる領域(第
4図中日領域)の吸気負圧が得られる制御用電磁弁37
の駆動信号(S、ニオンデューティ比率)を、ROM2
9からテーブルルックアップし、SllでROM29に
設定された制御目標吸気負圧■、□をVlと■、とから
テーブルルックアップして求める。Then, proceed to S6, and the front and rear differential pressure ΔV is the limit differential pressure ΔVPxm
Determine whether or not x has been reached. If No, it is not time to play, so proceed to 333; if YES, CP is reached in S7.
The symbol indicating that regeneration is in progress is stored in the memory section (RAM) of U2B, and the symbol is transferred to memory LS8 to determine whether the cooling water temperature is, for example, 60°C or higher.If NO, the engine is insufficiently warmed up. Proceed to 333 because it is not suitable for intake throttle. Yes for S8
In other words, if the engine has been warmed up sufficiently, the process advances to S9, and the exhaust temperature in this operating state is determined from the rotational speed and load to the temperature at which exhaust particulates are stably combusted (in this example, the temperature at which the catalyst is sufficiently activated, for example). 400℃), and
If o, that is, if the exhaust gas temperature is 400° C. or higher, the process proceeds to S33, and if YES, the process proceeds to 810. In SIO, vR and vL
There is a region where the intake negative pressure is controlled to be approximately constant (region A in Figure 4), and a region where the intake negative pressure is changed in response to changes in load and rotational speed so that the exhaust temperature is 400°C (region A in Fig. 4). Control solenoid valve 37 that can obtain negative intake pressure (Fig. 4 Chunichi region)
The drive signal (S, duty ratio) of ROM2
9, and the control target intake negative pressures (■, □) set in the ROM 29 at Sll are determined by looking up the table from Vl and (■).
ここで制御目標吸気負圧v stdは、第4図中B領域
においては機関回転速度と負荷の減少に伴って増大する
ように設定され、第4図中A領域においては機関回転速
度及び機関負荷の変化に拘わらすB領域の最大負圧に設
定されている。Here, the control target intake negative pressure v std is set to increase as the engine speed and load decrease in region B in FIG. 4, and to increase as the engine speed and engine load decrease in region A in FIG. is set to the maximum negative pressure in area B regardless of changes in .
そして312に進み吸気圧力センサ26の出力VIP′
をメモリーし、S13へ進む。S13では上記吸気圧力
の制御目標値V 、t、と測定値v1.(共に絶対圧)
を比較し、制御目標値V、□が測定値VIPと同じか大
であるか否かを判定し、YESの場合、即ち吸気絞り量
が適正であるか絞りすぎの場合はS14へ進み補正差圧
ΔVIF (V、ta−V+p)を求めS15へ進む。Then, the process proceeds to 312 where the output VIP' of the intake pressure sensor 26 is
is stored in memory, and the process proceeds to S13. In S13, the control target value V, t of the intake pressure and the measured value v1. (both absolute pressure)
It is determined whether the control target value V, □ is the same as or larger than the measured value VIP. If YES, that is, if the intake throttle amount is appropriate or is too throttled, proceed to S14 and calculate the correction difference. The pressure ΔVIF (V, ta-V+p) is determined and the process advances to S15.
315では補正差圧Δv(Pが最大レベル(ΔVtP□
8例えば50mmHz) と同じかまたはそれ以上で
あるか否かを判定し、YESの場合は、S16でslo
で求めたオンデユーテイ比率に適正な補正デューティ比
率ΔS1..x(例えば20%)を加えて補正しS19
へ進む。S I5テN O(7)場合はS17でΔvI
Fが最小レベル(ΔvIPI11i1%例えば20wm
Hg)と同じかまたはそれ以上であるか否かを判定し、
YESの場合は818でS、に補正デユーティ比率ΔS
ll&i+s(例えば10%)を加え、NOの場合は
S、を補正せずに819に進む。S19ではSIが最大
限度すなわちS01以上であるか否かを判定しYESの
場合はS、を最大限度のオンデユーテイ比率5IIIl
l、l(例えば90%)としNoの場合は補正せずに5
28へ進む。ここで84□はダイアフラム装置6の圧力
室6aの負圧がスプリング6Cの初期セット荷重よりも
多少下回る反力を得る負圧となるようなオンデユーテイ
比率(例えば90%)とすることによって圧力室6aの
圧力変化に対する吸気絞弁9の応答速度を向上させるの
である。315, the corrected differential pressure Δv(P is the maximum level (ΔVtP□
8, for example, 50 mmHz), and if YES, the slow
An appropriate correction duty ratio ΔS1 for the on-duty ratio determined by. .. Correct by adding x (for example, 20%) S19
Proceed to. If S I5TENO(7), then ΔvI in S17
F is the minimum level (ΔvIPI11i1% e.g. 20wm
Determine whether it is the same as or higher than Hg),
If YES, correct duty ratio ΔS at 818.
Add ll&i+s (for example, 10%), and if NO, proceed to 819 without correcting S. In S19, it is determined whether SI is equal to or greater than the maximum limit, that is, S01, and if YES, S is set to the maximum on-duty ratio 5IIIl.
l, l (for example, 90%), and if No, 5 without correction.
Proceed to 28. Here, 84□ is set to an on-duty ratio (for example, 90%) such that the negative pressure in the pressure chamber 6a of the diaphragm device 6 becomes a negative pressure that obtains a reaction force that is somewhat lower than the initial set load of the spring 6C. This improves the response speed of the intake throttle valve 9 to pressure changes.
313でNoの場合、即ち測定値VIPが目標値■st
4よりも大きくて吸気絞り量が少ない場合は、S21へ
進み補正差圧ΔV+r(V+p−V、w)を求めS22
へ進む。If No in 313, that is, the measured value VIP is the target value ■st
If it is larger than 4 and the intake throttling amount is small, the process proceeds to S21 and calculates the corrected differential pressure ΔV+r (V+p-V, w) in S22.
Proceed to.
S22では補正差圧ΔVIFが最大レベル(ΔVIP□
8例えば50mm)Ig)と同じかまたはそれ以上であ
るか否かを判定し、YESの場合はS23でSIOで求
めたオンデユーテイ比率S、から適正な補正デユーティ
比率ΔSIIImX(例えば20%)を減じて補正し、
S26へ進む。S22でNoの場合はS24でΔVIF
が最小レベル(ΔVIPm!a例えば20mmHg)と
同じかまたはそれ以上であるか否かを判定し、YESの
場合はS25でSIから補正デユーティ比率Δ51m1
n(例えば10%)を減じ、Noの場合は補正せずに3
26に進む。S26ではSlが最小限度のオンデユーテ
イ比率5lai、1(例えば10%)以下であるか否か
を判定し、YESの場合はS、を最小限度のオンデユー
テイ比率(10%)とし、Noの場合は補正せずに32
8へ進む。ここで最小限度のオンデユーテイ比率はダイ
ヤフラム装置6のロッド14の最大リフト時におけるス
プリング6Cの荷重を多少上回る反力が得られる圧力室
6aの負圧となるようなオンデユーテイ比率とし、S2
0の場合と同様に変化に対する吸気絞弁9の応答速度を
高めるようにしている。In S22, the corrected differential pressure ΔVIF reaches the maximum level (ΔVIP□
8) Determine whether it is the same as or greater than Ig) (for example, 50 mm), and if YES, subtract the appropriate correction duty ratio ΔSIIImX (for example, 20%) from the on-duty ratio S obtained by SIO in S23. Correct,
Proceed to S26. If No in S22, ΔVIF in S24
is equal to or higher than the minimum level (ΔVIPm!a, for example, 20 mmHg), and if YES, the corrected duty ratio Δ51m1 is determined from the SI in S25.
Subtract n (for example, 10%), and if no, add 3 without correction.
Proceed to step 26. In S26, it is determined whether Sl is less than the minimum on-duty ratio 5lai, 1 (for example, 10%), and if YES, S is set as the minimum on-duty ratio (10%), and if No, it is corrected. 32 without
Proceed to step 8. Here, the minimum on-duty ratio is such that the negative pressure in the pressure chamber 6a is obtained, which provides a reaction force that slightly exceeds the load of the spring 6C at the maximum lift of the rod 14 of the diaphragm device 6, and S2
As in the case of 0, the response speed of the intake throttle valve 9 to changes is increased.
32Bでは三方電磁弁39をオンとしてボートaとボー
トCを連通させ、329で制御用電磁弁37の駆動信号
(S、)を出力して弁口37aを適正なオンデユーテイ
比率で開きダイヤフラム装置6の圧力室6aに供給され
る負圧空気量を適切に制御し、吸気絞弁9の開度を変化
させる。At 32B, the three-way solenoid valve 39 is turned on to connect boats A and C, and at 329, a drive signal (S,) for the control solenoid valve 37 is output to open the valve port 37a at an appropriate on-duty ratio to open the diaphragm device 6. The amount of negative pressure air supplied to the pressure chamber 6a is appropriately controlled, and the opening degree of the intake throttle valve 9 is changed.
そしてS30では■□とvLとからROM29に設定さ
れた再生判定差圧ΔVps五n (トラップの排気微粒
子捕集量がほとんどない状態を示す差圧)をテーブルル
ックアップし、S31で測定値ΔV、が判定値ΔV P
XI i nに達したかまたはそれ以下であるか否か
を判定して、Noの場合はSlへ戻り、くり返し吸気絞
り制御を行う。331でYESの場合は332で初期設
定を行う。即ちS7でCPU2Bの記憶部(RAM)に
メモリーされた再生中を示す記号を消去し、S33へ進
み三方電磁弁39をオフにして吸気絞りを停止し、S3
4で制御用電磁弁37をオフとしてSlへ戻るのである
。Then, in S30, the regeneration determination differential pressure ΔVps5n set in the ROM 29 (differential pressure indicating a state in which there is almost no amount of collected exhaust particulates in the trap) is looked up in the table from ■□ and vL, and in S31, the measured value ΔV, is the judgment value ΔV P
It is determined whether XI in has been reached or is less than that, and if No, the process returns to Sl and repeatedly performs intake throttling control. If YES in 331, initial settings are performed in 332. That is, in S7, the symbol indicating that regeneration is in progress is erased from the storage unit (RAM) of the CPU 2B, and the process proceeds to S33, where the three-way solenoid valve 39 is turned off and the intake throttle is stopped.
At step 4, the control solenoid valve 37 is turned off and the process returns to Sl.
以上説明したように、排気温度が触媒の活性温度である
400℃以下において第4図に示すように400℃以下
の所定巾の温度域(第4図中B領域)では機関回転速度
と負荷の低下に伴って排気温度を400℃に保持するよ
うに吸気絞弁9下流の吸気負圧を徐々に増大(第6図中
破線)させるようにしたので、この運転領域においても
触媒が活性化され触媒付トラップ24に捕集された排気
微粒子の燃焼が行える。As explained above, when the exhaust temperature is below 400°C, which is the activation temperature of the catalyst, the engine speed and load are As the exhaust temperature decreases, the intake negative pressure downstream of the intake throttle valve 9 is gradually increased (dashed line in Figure 6) to maintain the exhaust temperature at 400°C, so the catalyst is activated even in this operating range. The exhaust particulates collected in the catalyst trap 24 can be burned.
このとき、機関回転速度と負荷との低下に伴って吸気負
圧を徐々に増大させるようにしたので、過度な絞りを行
うことがなく第6図中破線示の如くスモーク排出量及び
燃料消費量の悪化も従来のものに較べて極めて抑制しつ
つ従来より広範囲の運転領域でトラップの再生を図れる
。また°第4図中A’pfJ域においては吸気絞弁9下
流の吸気圧力を略一定に制御するようにしたので、従来
と同様に排気温度が上昇し触媒が活性化する最低温度(
例えは350℃)以上の排気温度が所定領域で得られ排
気微粒子の燃焼が可能となる。At this time, since the intake negative pressure is gradually increased as the engine speed and load decrease, excessive throttling is not performed, and smoke emissions and fuel consumption are reduced as shown by the broken line in Figure 6. It is possible to regenerate the trap in a wider range of operation than in the past, while also suppressing the deterioration of the trap significantly compared to the conventional one. In addition, in the A'pfJ region in Figure 4, the intake pressure downstream of the intake throttle valve 9 is controlled to be approximately constant, so as in the past, the exhaust temperature rises and the lowest temperature at which the catalyst is activated (
For example, an exhaust temperature of 350° C. or higher can be obtained in a predetermined region, making it possible to burn exhaust particulates.
また、排気温度が400℃を超える運転領域(第4図中
C領域)では吸気絞りを行うことなく排気熱によりトラ
ップ24の再生を図る。Further, in an operating region where the exhaust gas temperature exceeds 400° C. (region C in FIG. 4), the trap 24 is regenerated using exhaust heat without restricting the intake air.
尚、本実施例では触媒付トラップについて説明したが触
媒を備えないトラップについても本発明は適用できる。Although this embodiment describes a trap with a catalyst, the present invention can also be applied to a trap without a catalyst.
〈発明の効果〉
本発明は、以上説明したように、排気温度が排気微粒子
を安定燃焼できる所定温度以下の運転領域の所定領域で
は吸気負圧を徐々に変化させて前記所定温度を保持させ
、また前記運転領域でかつ所定領域以外の運転領域では
吸気負圧を略一定に保持させるように吸気絞りを行うよ
うにしたので、スモーク排出量及び燃料消費量の悪化を
抑制しつつ従来より広範囲の運転領域で排気微粒子を燃
焼させトラップの再生を図れる。<Effects of the Invention> As explained above, the present invention gradually changes the intake negative pressure to maintain the predetermined temperature in a predetermined region of the operating region where the exhaust gas temperature is below a predetermined temperature at which exhaust particulates can be stably combusted; In addition, in the operating range other than the predetermined operating range, the intake air is throttled to maintain the intake negative pressure approximately constant. The trap can be regenerated by burning exhaust particulates in the operating region.
第1図は本発明の構成図、第2図は本発明の一実施例を
示す全体図、第3図は同上のフローチャート、第4図は
同上の作用を説明するための図、第5図は排気微粒子処
理装置の従来例を示す全体図、第6図は同上及び前記一
実施例の作用を説明するための図である。
2・・・排気通路 8・・・吸気通路 9・・・吸
気絞弁 20・・・制御装置 22・・・負荷セン
サ 23・・・回転速度センサ 24・・・触媒付
トラップ 25a。
25b・・・排気圧力センサ 26・・・吸気圧力セ
ンサ特許出願人 日産自動車株式会社
代理人 弁理士 笹 島 冨二雄
機関回転速度−一一一大FIG. 1 is a configuration diagram of the present invention, FIG. 2 is an overall diagram showing an embodiment of the present invention, FIG. 3 is a flowchart of the same, FIG. 4 is a diagram for explaining the operation of the same, and FIG. 6 is an overall view showing a conventional example of an exhaust particulate processing device, and FIG. 6 is a diagram for explaining the operation of the same and the above-mentioned embodiment. 2... Exhaust passage 8... Intake passage 9... Intake throttle valve 20... Control device 22... Load sensor 23... Rotational speed sensor 24... Trap with catalyst 25a. 25b...Exhaust pressure sensor 26...Intake pressure sensor Patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima Engine rotation speed - 111
Claims (1)
ラップを備える内燃機関の排気微粒子処理装置において
、前記トラップの再生時期を判定する再生時期判定手段
と、吸気通路に介装した吸気絞弁と、該吸気絞弁を開閉
駆動する吸気絞弁駆動手段と、前記吸気絞弁下流の吸気
圧力を検出する吸気圧力検出手段と、機関の運転状態を
検出する運転状態検出手段と、トラップの再生時期と判
定されたときに前記運転状態検出手段と吸気圧力検出手
段からの信号に基づいて、排気温度がトラップに捕集さ
れた排気微粒子を安定燃焼できる所定温度に達するまで
は前記吸気絞弁駆動手段の制御により吸気圧力を略一定
負圧に保つように制御し、排気温度が吸気絞り制御によ
り前記所定温度に達してから前記吸気絞弁全開条件で排
気温度が前記所定温度に達する運転状態になるまでは排
気温度を所定温度近傍に保持すべく吸気圧力を徐々に高
めるように吸気絞り制御を行い、それより排気温度が高
くなる運転状態では前記吸気絞弁を全開に保持するよう
に制御する吸気絞弁開度制御手段とを備えたことを特徴
とする内燃機関の排気微粒子処理装置。An exhaust particulate processing device for an internal combustion engine that includes a trap installed in an exhaust passage of the engine to collect particulates in the exhaust gas, comprising a regeneration timing determination means for determining the regeneration timing of the trap, and an intake throttle installed in the intake passage. a valve, an intake throttle valve drive means for driving the intake throttle valve to open and close, an intake pressure detection means for detecting the intake pressure downstream of the intake throttle valve, an operating state detection means for detecting the operating state of the engine, and a trap. When it is determined that it is time for regeneration, the intake throttle valve is operated until the exhaust temperature reaches a predetermined temperature at which exhaust particulates collected in the trap can be stably combusted based on the signals from the operating state detection means and the intake pressure detection means. An operating state in which the intake pressure is maintained at a substantially constant negative pressure by control of the driving means, and after the exhaust temperature reaches the predetermined temperature by the intake throttle control, the exhaust temperature reaches the predetermined temperature under the condition that the intake throttle valve is fully open. The intake throttle valve is controlled to gradually increase the intake pressure in order to maintain the exhaust gas temperature near a predetermined temperature until the temperature reaches 1. An exhaust particulate treatment device for an internal combustion engine, comprising: an intake throttle valve opening control means.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60059471A JPS61218708A (en) | 1985-03-26 | 1985-03-26 | Exhaust fine particle processor of internal-combustion engine |
US06/842,360 US4756155A (en) | 1985-03-26 | 1986-03-19 | Exhaust particle removing system for an internal combustion engine |
DE19863610057 DE3610057A1 (en) | 1985-03-26 | 1986-03-25 | EXHAUST PARTICULAR REMOVAL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60059471A JPS61218708A (en) | 1985-03-26 | 1985-03-26 | Exhaust fine particle processor of internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61218708A true JPS61218708A (en) | 1986-09-29 |
Family
ID=13114254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60059471A Pending JPS61218708A (en) | 1985-03-26 | 1985-03-26 | Exhaust fine particle processor of internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61218708A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304815B1 (en) | 2000-03-29 | 2001-10-16 | Ford Global Technologies, Inc. | Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems |
-
1985
- 1985-03-26 JP JP60059471A patent/JPS61218708A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304815B1 (en) | 2000-03-29 | 2001-10-16 | Ford Global Technologies, Inc. | Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4756155A (en) | Exhaust particle removing system for an internal combustion engine | |
JPS6299610A (en) | Exhaust particle processing device for internal-combustion engine | |
JP3952974B2 (en) | Control device for internal combustion engine | |
JP3546703B2 (en) | Actuator control device for internal combustion engine | |
JPH05106518A (en) | Exhaust gas reflux device of diesel engine | |
JPS61218708A (en) | Exhaust fine particle processor of internal-combustion engine | |
JP3788283B2 (en) | Exhaust gas purification device for a turbocharged diesel engine | |
JP2005090434A (en) | Emission control system for internal combustion engine | |
JP3941715B2 (en) | Engine exhaust throttle valve control device | |
JP2008051042A (en) | Control device for supercharged engine | |
JPS6056126A (en) | Nozzle opening degree control device in variable displacement type turbo-charger | |
JP2990019B2 (en) | Supercharging pressure control method | |
JP2004521226A (en) | Method and apparatus for controlling an internal combustion engine | |
JP3815030B2 (en) | Evaporative fuel treatment system for lean combustion internal combustion engine | |
JP3257233B2 (en) | Exhaust particulate processing equipment for internal combustion engines | |
JPS6240538B2 (en) | ||
JPS632004B2 (en) | ||
JP2003166416A (en) | Internal combustion engine with turbocharger | |
JP3352625B2 (en) | Internal combustion engine system | |
JP3919536B2 (en) | Evaporative fuel processing equipment | |
JPS61272412A (en) | Processing device for exhaust fine particle in internal-combustion engine | |
JPS63988Y2 (en) | ||
JP4140387B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3274722B2 (en) | Traction control device | |
JP4042087B2 (en) | Control device for electromagnetic control valve |