【発明の詳細な説明】[Detailed description of the invention]
この発明は、電子線、紫外線等の照射を受ける
と赤色発光し、かつ従来品に比し低温焼成で得ら
れる新規な螢光体に関する。
近時、各種の分野で省エネルギー化が重要な課
題となつている。これを照明用螢光ランプについ
てみると、省エネルギー化のためには、螢光体の
高効率化が要求されるということになる。
このような観点から螢光体発光を考える場合に
おいて、特につぎの二つの点に留意する必要があ
る。すなわち、人間の眼はその明るさに対する感
度が、緑系をもつとも明るく感じ赤系や青系を暗
く感じるというように、発光色によつて異なる。
そこで、第一に、人間の感覚でみた明るさの感
じ、すなわち視感度の点で満足されることであ
る。第二に、照らされた物体の色が太陽光下での
色にどの程度近く再現できているかと言うことを
あらわしている指標、すなわち演色性のよいこと
である。
ところで、高演色化と高効率化とは一般に両立
し難いものであつて、高効率化を図るためには、
視感度の良好な発光スペクトルを有する螢光体を
得る必要があり、他方、高演色化を図るために
は、視感度の悪い赤成分を多く必要とするのが普
通である。このため、公知の緑色螢光体や青色螢
光体と組み合わせて使用する場合に、高効率、高
演色性を示すような赤色発光の新規な螢光体の出
現が強く要望されていた。また、従来の螢光体の
多くは焼成時1400〜1500℃程度もの高温を必要と
するため、その点の改善も望まれていた。
そこで、この発明者は、このような要望に応え
るべく種々の検討を施した結果、ついに新しい赤
色発光螢光体を提供することに成功した。
すなわち、この発明にかかる螢光体は、組成式
Y2O3・Nb2O5:Eu3+
であらわされ、3価のユーロピウムEu3+が付活
剤としてイツトリウムYの一部と置換しているこ
とを特徴としている。
この螢光体は、紫外線、電子線等による励起下
で、第1図に示すように、614nm付近に主発光
ピークを有する。したがつて、演色性がよく、し
かも視感度の点でも有利である。さらに、800〜
1300℃という低温で焼成することもでき、その点
でも有利である。
なお、付活剤としての3価のユーロピウム
Eu3+は、3価として計算して、イツトリウムY
に対し2〜16原子%だけその一部と置換している
ことが、実施上好ましい。
この螢光体は、たとえば、原料としてY2O3、
Nb2O5およびEu2O3を選び、これらを所定量ずつ
配合して充分に乾式混合したものを、焼成炉中、
酸化雰囲気下、好ましくは空気雰囲気下、800〜
1300℃の温度で、2〜20時間程度焼成することに
よつて、合成される。
この発明にかかる螢光体は、単独で赤色発光の
螢光体として用いられるほか、他の螢光体と配合
しても用いられる。
この発明にかかる螢光体について焼成温度と相
対発光効率の関係を調べた。空気雰囲気下、所定
温度で4時間焼成したのち、螢光分光光度計によ
つて効率を測定したのである。その結果は第2図
にあらわれているとおりであり、焼成温度1300℃
では勿論のこと、1000℃でも充分な相対発光効率
が得られている。
つぎに、実施例について従来例と併せて述べ
る。
この発明にかかる赤色螢光体を用いて螢光ラン
プを製作し、その発光特性を従来の螢光ランプと
比較した。実施例で使用した螢光体は、次の3成
分混合系である。
青成分 Sr10(PO4)6Cl2:Eu2+
緑成分 (Ce、Tb)MgAl11O19
赤成分 Y2O3・Nb2O5:Eu3+
上記螢光体の混合物を、酢酸ブチルをニトロセ
ルロースで増粘したものの中に分散させ、螢光ラ
ンプ用バルブに塗布した。この場合、結着効果を
増すため、ピロリン酸カルシウム等の結着剤を添
加しておいてもよい。なお、各螢光体の混合比
は、これら各螢光体の発光スペクトル強度比であ
らわして、第1表の通りとした。ここに、発光ス
ペクトル強度比とは、混合組成物に付与される
UV量と同一量のUV量が、各螢光体単一物に付与
された場合の各螢光スペクトル強度を1としたと
きの、混合組成物中の各螢光スペクトル強度の比
をあらわす。
The present invention relates to a novel phosphor that emits red light when irradiated with electron beams, ultraviolet rays, etc., and can be obtained by firing at a lower temperature than conventional products. Recently, energy saving has become an important issue in various fields. Looking at this with regard to fluorescent lamps for illumination, it follows that in order to save energy, the efficiency of the fluorescent body must be increased. When considering fluorescent light emission from this perspective, it is necessary to pay special attention to the following two points. That is, the human eye's sensitivity to brightness differs depending on the color of the emitted light, such that greenish colors feel bright and reddish and blueish colors seem dark.
Therefore, the first thing to do is to be satisfied with the sense of brightness as seen by human senses, that is, with respect to visibility. The second factor is good color rendering, which is an index that shows how closely the color of an illuminated object can be reproduced to the color under sunlight. By the way, it is generally difficult to achieve both high color rendering and high efficiency, and in order to achieve high efficiency,
It is necessary to obtain a phosphor having an emission spectrum with good visibility, and on the other hand, in order to achieve high color rendering, a large amount of a red component with poor visibility is usually required. Therefore, there has been a strong demand for a new phosphor that emits red light and exhibits high efficiency and high color rendering when used in combination with known green and blue phosphors. Furthermore, since many conventional phosphors require high temperatures of approximately 1,400 to 1,500°C during firing, improvements in this respect have been desired. Therefore, as a result of various studies to meet these demands, the inventor finally succeeded in providing a new red-emitting phosphor. That is, the phosphor according to the present invention is represented by the compositional formula Y 2 O 3 .Nb 2 O 5 :Eu 3+ , in which trivalent europium Eu 3+ is substituted for a portion of yttrium Y as an activator. It is characterized by This phosphor has a main emission peak around 614 nm when excited by ultraviolet rays, electron beams, etc., as shown in FIG. Therefore, it has good color rendering properties and is also advantageous in terms of visibility. In addition, 800~
It is also advantageous in that it can be fired at a low temperature of 1300°C. In addition, trivalent europium as an activator
Eu 3+ is calculated as trivalent and is equivalent to yttrium Y.
In practice, it is preferable that 2 to 16 at. This phosphor can be made using, for example, Y 2 O 3 as a raw material,
Select Nb 2 O 5 and Eu 2 O 3 , mix them in predetermined amounts and thoroughly dry mix them in a firing furnace.
Under an oxidizing atmosphere, preferably under an air atmosphere, 800~
It is synthesized by baking at a temperature of 1300°C for about 2 to 20 hours. The phosphor according to the present invention may be used alone as a red-emitting phosphor, or may be used in combination with other phosphors. The relationship between firing temperature and relative luminous efficiency of the phosphor according to the present invention was investigated. After firing at a predetermined temperature in an air atmosphere for 4 hours, the efficiency was measured using a fluorescence spectrophotometer. The results are shown in Figure 2, and the firing temperature was 1300℃.
Needless to say, sufficient relative luminous efficiency was obtained even at 1000°C. Next, an example will be described together with a conventional example. A fluorescent lamp was manufactured using the red phosphor according to the present invention, and its light emitting characteristics were compared with those of a conventional fluorescent lamp. The phosphor used in the examples is a three-component mixture system as shown below. Blue component Sr 10 (PO 4 ) 6 Cl 2 : Eu 2+ Green component (Ce, Tb) MgAl 11 O 19 Red component Y 2 O 3・Nb 2 O 5 : Eu 3+ The mixture of the above phosphors was mixed with acetic acid. Butyl was dispersed in a nitrocellulose thickener and applied to a fluorescent lamp bulb. In this case, a binder such as calcium pyrophosphate may be added to increase the binding effect. The mixing ratio of each phosphor was expressed as the emission spectrum intensity ratio of each phosphor, as shown in Table 1. Here, the emission spectrum intensity ratio is given to the mixed composition.
It represents the ratio of the intensity of each fluorescent spectrum in the mixed composition, where the intensity of each fluorescent spectrum is set to 1 when the same amount of UV is applied to each single phosphor.
【表】
従来例についても同様にして、螢光ランプ用バ
ルブに塗布した。なお、従来例は螢光体としてハ
ロリン酸カルシウム:Mn2+、Sb3+を選んだ。
以上のようにして、40W、32mmφ、Ar封入、
2.5Torrの螢光ランプを製作し、その発光特性を
調べた。その結果は第2表に示す通りであり、実
施例は従来例に比べすぐれていることが分かる。
なお、螢光ランプは、4200〓、白色(色度点x=
0.37、y=0.38)のもので検討した。[Table] The conventional example was also applied to a fluorescent lamp bulb in the same manner. In the conventional example, calcium halophosphate: Mn 2+ and Sb 3+ were selected as the fluorophore. As above, 40W, 32mmφ, Ar filled,
We manufactured a 2.5Torr fluorescent lamp and investigated its emission characteristics. The results are shown in Table 2, and it can be seen that the example is superior to the conventional example.
In addition, the fluorescent lamp is 4200〓, white (chromaticity point x =
0.37, y=0.38).
【表】【table】
【図面の簡単な説明】[Brief explanation of the drawing]
第1図はこの発明にかかる螢光体のスペクトル
エネルギー分布を示す特性図、第2図はこの発明
にかかる螢光体についての焼成温度と相対発光効
率の関係をあらわす説明図である。
FIG. 1 is a characteristic diagram showing the spectral energy distribution of the phosphor according to the present invention, and FIG. 2 is an explanatory diagram showing the relationship between firing temperature and relative luminous efficiency for the phosphor according to the present invention.