[go: up one dir, main page]

JPS6121511A - Control system of positioning mechanism - Google Patents

Control system of positioning mechanism

Info

Publication number
JPS6121511A
JPS6121511A JP14138484A JP14138484A JPS6121511A JP S6121511 A JPS6121511 A JP S6121511A JP 14138484 A JP14138484 A JP 14138484A JP 14138484 A JP14138484 A JP 14138484A JP S6121511 A JPS6121511 A JP S6121511A
Authority
JP
Japan
Prior art keywords
speed
control system
command
controlled object
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14138484A
Other languages
Japanese (ja)
Other versions
JPH0231407B2 (en
Inventor
Eitaro Konii
児新 栄太郎
Yoji Kobayashi
洋二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP14138484A priority Critical patent/JPH0231407B2/en
Publication of JPS6121511A publication Critical patent/JPS6121511A/en
Publication of JPH0231407B2 publication Critical patent/JPH0231407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/14Control of position or direction using feedback using an analogue comparing device
    • G05D3/1445Control of position or direction using feedback using an analogue comparing device with a plurality of loops

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To improve the high speed positioning and accuracy by using a signal amplifying a deviation between a position command obtained via a closed loop speed control system and an actual position and a signal added with a speed command so as to use them as operation inputs. CONSTITUTION:A position controller 10d inputs a speed command outputted from a speed pattern generator 11 to a model 16 of a closed loop speed control system 40. An output of the model 16 is inputted to an integration device 12 and a position command thetar is obtained. A position deviation Ed between the command thetar and an actual position theta of a controller system 30 is obtained by a subtractor 13 and the deviations Ed is amplified by an amplifier 14. A signal adding an output of the amplifier 14 and the speed command becomes an operation input Ud of a driver 20. In constituting the position control system, a position displacement such as feeding amount and rotary angle is improved for the response, the vibration is suppressed and the stop position accuracy is improved. That is, high speed positioning and accuracy are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制御対象を駆動する駆動装置に操作入力を与え
て制御対象の位置決めを行なう位置決め制御装置に関し
、特に、制御対象がコイルフィーダなどのように高速な
位置決め動作が要求される位置制御系の構図方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a positioning control device that positions a controlled object by applying an operation input to a drive device that drives the controlled object, and in particular, the present invention relates to a positioning control device that positions the controlled object by applying an operation input to a drive device that drives the controlled object, and particularly when the controlled object is a coil feeder or the like. The present invention relates to a composition method for a position control system that requires high-speed positioning operations.

〔従来の技術〕[Conventional technology]

従来、この種の位置制御系の構成方法として。 Conventionally, this type of position control system has been configured.

(a)フィードフォワード制御のみによる方法、(b)
フq−ドパンク制御のみによる方法、(C)フィードバ
ソ、り制御系に単純にフィードフォワード制御を施す方
法が知られている。
(a) Method using only feedforward control, (b)
A method using only feed q-puncture control, and (C) a method of simply applying feed forward control to the feed bath control system are known.

第2図は(a)の方法゛による構成を示したブロック線
図で2位置制御装置10aは駆動装置(モータ・ドライ
ブ)20に入力する操作入力Uaとして、速度指令Ωr
だけを与えている。ここで。
FIG. 2 is a block diagram showing the configuration according to method (a), in which a two-position control device 10a receives a speed command Ωr as an operation input Ua input to a drive device (motor drive) 20.
I am giving only here.

駆動装置20は、制御対象50の実際の速度(モータの
角速度)Ωをフィードバックする為の速度フィードバッ
ク要素21(そのゲインはkv)、目標′値なる操作人
力Ua(Ωr)から速度フィードバック要素21の出力
を減算する減算器22及び減算器22の出力を入力して
制御対象30”へ駆動信号(モータ電流)■を出力する
開ループ速度制御系23(その速度制御開ループ伝達関
係はGV (S) )を含む。
The drive device 20 includes a speed feedback element 21 (its gain is kv) for feeding back the actual speed (angular velocity of the motor) Ω of the controlled object 50, and a speed feedback element 21 that feeds back the actual speed (angular velocity of the motor) Ω of the controlled object 50, and a target value of the speed feedback element 21 from the operating human power Ua (Ωr). A subtracter 22 that subtracts the output and an open loop speed control system 23 that inputs the output of the subtracter 22 and outputs a drive signal (motor current) to the controlled object 30'' (the speed control open loop transmission relationship is GV (S ) )including.

又、制御対象60は駆動信号工を入力して速度Ωを出力
する電流速度変換手段31(その伝達関数はkt/Js
で、 ktはトルク定数、Jはロータ・イナーシャ、S
はラプラス変換の変数である)及び速度Ωを入力して位
置(モータの弯位角)θを出力する積分器62(その伝
達関数は1/S)な含む。
In addition, the controlled object 60 is a current speed conversion means 31 (its transfer function is kt/Js) that inputs a drive signal and outputs a speed Ω.
where kt is the torque constant, J is the rotor inertia, and S
is a variable of the Laplace transform) and an integrator 62 (its transfer function is 1/S) that inputs the speed Ω and outputs the position (motor curvature angle) θ.

第6図は(b)の方法による構成を示したブロック線図
で、第2図と同じ機能を有するものには同一符号を付し
てある。第2図と異なる点は。
FIG. 6 is a block diagram showing a configuration according to the method of (b), in which parts having the same functions as those in FIG. 2 are given the same reference numerals. What is different from Figure 2?

位置制御装置1t]bから出力される操作人力Ubとし
て、速度パターン発生器11から出力される速度指令Ω
rを積分器12で積分して得られた位置指令orと制御
対象60の実際の位置θとの偏差Ebを減算器13で求
め、その位置偏差Ebを増幅器14(その偏差ゲインは
に+)で増幅した信号を用いている。
The speed command Ω output from the speed pattern generator 11 as the operating human power Ub output from the position control device 1t]b
The deviation Eb between the position command or obtained by integrating r by the integrator 12 and the actual position θ of the controlled object 60 is obtained by the subtractor 13, and the position deviation Eb is calculated by the amplifier 14 (its deviation gain is +). It uses a signal amplified by

第4図は(C)の方法による構成を示したブロック線図
で、第6図と同じ機能を有するものには同一符号を付し
てある。第3図と異なる点は。
FIG. 4 is a block diagram showing a configuration according to method (C), in which parts having the same functions as those in FIG. 6 are given the same reference numerals. What is different from Figure 3?

位置制御装置10C6から出力される操作入力匹として
、増幅器14から構成される装置のフィードバック信号
と速度パターン発生器11から出力される速度指令Ωr
とを加算器15によって加えた信号を用いている。
The feedback signal of the device consisting of the amplifier 14 and the speed command Ωr output from the speed pattern generator 11 are used as operation inputs output from the position control device 10C6.
The adder 15 uses a signal obtained by adding the following.

〔発鳴が解決しようとする問題点〕[Problems that pronunciation attempts to solve]

しかしながら、(a)の方法では2位置制御装置10a
より操作入力tr’aとして出力される速度指令Ωrが
、たとえ制御対象50を所定の時間内に所定の位置まで
変位させるように計画されているとしても、制御対象3
0に加えられる予測で5きない外乱などによって、停止
時の位置精度が悪くなるという欠点があった。又、(b
)の方゛法では、系の連応性が糸内部に含まれる閉ルー
プ速度制御系40(図面の駆動装置2oと制御対象30
の電流速度変換手段31とを含む部分で。
However, in the method (a), the two-position control device 10a
Even if the speed command Ωr output as the operation input tr'a is planned to displace the controlled object 50 to a predetermined position within a predetermined time, the controlled object 3
There is a drawback that the position accuracy at the time of stopping deteriorates due to unpredictable disturbances added to 0. Also, (b
) method, the closed-loop speed control system 40 (the drive device 2o and the controlled object 30 in the drawing
and a current speed converting means 31.

その速度制御系閉ループ伝達関数1まOp(”)’)の
応答特性に制約され、閉ループ速度制御系4oの応答が
遅い場合には、高速応答の位置制御系を構成することが
困難であった。又、 (C)の方法では、閉ループ速度
制御系40の応答が遅い場合には2位置指令θrと制御
対象30の実際の位置θが大きくずれてしまい、その結
果、系の挙動が振動的になる欠点があった。
If the speed control system is restricted by the response characteristics of the closed-loop transfer function 1 or Op('')') and the response of the closed-loop speed control system 4o is slow, it is difficult to configure a position control system with high-speed response. In addition, in method (C), if the response of the closed-loop speed control system 40 is slow, the two-position command θr and the actual position θ of the controlled object 30 will deviate greatly, and as a result, the behavior of the system will be oscillatory. It had some drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による位置決め機構の制御方式は、操作入力とし
て、速度指令を閉ループ速度制御系のモデル及び積分器
を通して得られる位置指令と制御対象の実際の位置との
偏差を増幅器で増幅した信号と、速度指令とを加算した
信号を用いることにより2位置制御系を構成する際に。
The control method for the positioning mechanism according to the present invention uses, as operational inputs, a signal obtained by amplifying the deviation between the position command obtained through a closed-loop speed control system model and an integrator and the actual position of the controlled object, and the speed When configuring a two-position control system by using the signal obtained by adding the command.

送り量や回転角などの位置変位量の連応性を高めること
ができ、振動も抑止され、かつ停止位置精度を高めるこ
とができることを特徴としている。
It is characterized by being able to improve the coordination of positional displacement amounts such as feed amount and rotation angle, suppressing vibrations, and increasing stopping position accuracy.

〔実施例〕〔Example〕

以下2図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to two drawings.

第1図は本発明による位置制御系の一実施例の構成を示
したブロック線図である。本発明に係る位置制御装置”
10 dは、速度パターン発生器11から出力される速
度指令Ωrを閉ループ速度制御系40のモデル16(そ
の伝達関数はGp (s) )に入力させている゛。モ
デル16の出力を積分器12に入力して位置指令θrを
得る。この位置指令orと°制御対象60の実際の位置
θとの位置偏差0dを減算器16により求め、この位置
偏差Edは増幅器14で増幅、される。増幅器14の出
力と速度指令Ωrとの和を加算器15により求め。
FIG. 1 is a block diagram showing the configuration of an embodiment of a position control system according to the present invention. “Position control device according to the present invention”
10d inputs the speed command Ωr outputted from the speed pattern generator 11 to the model 16 (its transfer function is Gp (s)) of the closed loop speed control system 40. The output of the model 16 is input to the integrator 12 to obtain the position command θr. A positional deviation 0d between this position command or and the actual position θ of the controlled object 60 is obtained by a subtracter 16, and this positional deviation Ed is amplified by an amplifier 14. The sum of the output of the amplifier 14 and the speed command Ωr is determined by the adder 15.

この加算器15の出力が駆動装置20の操作人力Udと
なる。
The output of this adder 15 becomes the operating force Ud of the drive device 20.

駆動装置20の開ループ速度制御系23は。The open loop speed control system 23 of the drive device 20 is as follows.

第5図に示されるようなブロック線図で表わされる。こ
こで、に1は速度制御系積分ゲイン、 k2は速度制御
系比例ゲイン、に3は電圧゛−電流変換ゲインである。
It is represented by a block diagram as shown in FIG. Here, 1 is a speed control system integral gain, k2 is a speed control system proportional gain, and 3 is a voltage-current conversion gain.

即ち、速度制御開ループ伝達関数GV (S)は。That is, the speed control open loop transfer function GV (S) is:

と表わされる。従って、閉ループ速度制御系4゜の閉ル
ープ伝達関数Gp (S)は。
It is expressed as Therefore, the closed loop transfer function Gp (S) of the closed loop speed control system 4° is as follows.

と表わされる。このよう(二、閉ループ速度制御系40
の閉ループ伝達関係G、 (S)は計算で求めることが
できる。本実施例では、閉ループ速度制御系のモデル1
6の伝達関数G”;(S)を2周波数応答法などの同定
法を用いて求めた。その結果。
It is expressed as In this way (2. Closed loop speed control system 40
The closed-loop transfer relationship G, (S) can be obtained by calculation. In this example, model 1 of the closed-loop speed control system
The transfer function G"; (S) of 6 was obtained using an identification method such as the two-frequency response method. The results are as follows.

実際の閉ループ伝達関数Gp (”)は。The actual closed-loop transfer function Gp ('') is.

Gp(S)中S +a と近似できることがわかった。それで、モデルの伝達関
数心(S)を Gp (S) −− 8+a とした。ここで、に、aは定数である。
It was found that it can be approximated as S +a in Gp(S). Therefore, the transfer function center (S) of the model was set as Gp (S) -- 8+a. Here, a is a constant.

従って、モデル16は5例えば第6図に示されるように
、演算増幅器A、低抵抗+、R2及びコンデン−Bha
を用いて、アナログ回路で構成することができる。
Therefore, the model 16 is 5, e.g., as shown in FIG.
It can be constructed using an analog circuit.

また、モデル16をサンプル値系で実現するならば、T
をサンプル時間として。
Also, if model 16 is realized using a sample value system, then T
as the sample time.

x(k−N )−e aTx(k)十−(1−e aT
)u(k)なる差分方程式を順次サンプル値ごとに計算
すれば良い。ここで、u(k)はに時点のモデル16の
入力信号、x(k)はに時点のモデル16の出力信号で
ある。
x(k-N)-e aTx(k)-(1-e aT
) u(k) may be calculated sequentially for each sample value. Here, u(k) is the input signal of the model 16 at the instant, and x(k) is the output signal of the model 16 at the instant.

又、速度パターン発生器11から出力される速度指令Ω
rは、所定の時間内に所定の位置まで変位させるように
計画して生成される。これは。
Also, the speed command Ω output from the speed pattern generator 11
r is generated with a plan to displace it to a predetermined position within a predetermined time. this is.

例えば、コイルフィーダのような簡単な位−置決めに対
しては、第7図に示されるような、加減速のパターンを
生成することにより実現可能である。
For example, simple positioning of a coil feeder can be realized by generating an acceleration/deceleration pattern as shown in FIG.

第1図を再び参照すると1位置偏差Eaは7と表わされ
る。従って、モデル16の伝達関数Gp(S)と実際の
閉ループ速度制御系4oの閉ループ伝達関数Gp(”)
とを等しくできれば1位置偏差[6を零、にすることが
できる。換言すると2モデル16の伝達関数Gp(S)
の同定精度を高めることにより、偏差Edを小さくする
ことができる。
Referring again to FIG. 1, one positional deviation Ea is expressed as 7. Therefore, the transfer function Gp(S) of the model 16 and the closed-loop transfer function Gp('') of the actual closed-loop speed control system 4o.
If we can make them equal, we can make 1 position deviation [6] zero. In other words, the transfer function Gp(S) of the two models 16
By increasing the identification accuracy of , the deviation Ed can be reduced.

一方、第6図及び第4図の位置偏差mb(s)及びKc
(S)は、それぞれ。
On the other hand, the position deviations mb(s) and Kc in FIGS. 6 and 4
(S) respectively.

と表わされる。すなわち、どちらの位置偏差Eb(s)
 、 Pc (s)とも、その挙動が閉ループ速度制御
系40の閉ループ伝達関数Gp (s)の特性に依存し
It is expressed as That is, which position deviation Eb(s)
, Pc (s), their behavior depends on the characteristics of the closed-loop transfer function Gp (s) of the closed-loop speed control system 40.

位置制御系としての応答(連応性、振動等)を改善する
ためには9位相進み2位相遅れなどの補償が必要となる
In order to improve the response (coupling, vibration, etc.) of the position control system, compensation such as 9-phase lead and 2-phase lag is required.

又9本発明では、制御対象3oに外乱が加わったとして
も、フィードバック制御を施しているので、制御対象3
0を所定位置に精度よく停止させることも可能である。
In addition, in the present invention, even if a disturbance is applied to the controlled object 3o, feedback control is performed, so that the controlled object 3o
It is also possible to accurately stop the 0 at a predetermined position.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように9本発明によれば、高速な
位置決めを精度良く行なえるという効果がある。
As is clear from the above description, according to the present invention, there is an effect that high-speed positioning can be performed with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による位置制御系の一実施例の構成を示
したブロック線図、第2図〜第4図はそれぞれ従来の位
置制御系の構成を示したブロック線図、第5図は駆動装
置の開ループ速度制御系の構成を示したブロック線図、
第6図は第1図のモデルをアナログ回路で構成した例を
示した回路図、第7図は速度パターン発生器11から出
力される速度指令の速度パターンの一例を示した図であ
る。 10a、 10b、 10c、 10d・・・位置制御
装置、11・・・速度パターン発生器、12・・・積1
分器、13・・・減算器、14・・・増幅器、15・・
・加算器、16・・・閉ループ速度制御系のモデル、2
0・・・駆動装置。 21・・速度フィードバック要素、22・・・減算器。 23・・・開ループ速度制御系、30・・制御対象。 31・・電流速度変換手段、62・・積分器、40・・
・閉ループ速度制御系+kt・・トルク定数、J・・・
ロータ・イナーシャ、S・・・ラプラス変換の変数。 K1・・・偏差ゲイン+  kV・・・速度フィードバ
ックゲイン、  k+・・・速度制御系積分ゲイン、 
 K2・・速度制御系比例ゲイン+  K5・・電圧−
電流変換ゲイン。 第2図 第3図 第4図 第5図 招6図 ル 第7図“
FIG. 1 is a block diagram showing the configuration of an embodiment of the position control system according to the present invention, FIGS. 2 to 4 are block diagrams showing the configuration of conventional position control systems, and FIG. A block diagram showing the configuration of the open loop speed control system of the drive device,
FIG. 6 is a circuit diagram showing an example in which the model shown in FIG. 1 is configured with an analog circuit, and FIG. 7 is a diagram showing an example of a speed pattern of a speed command output from the speed pattern generator 11. 10a, 10b, 10c, 10d...Position control device, 11...Speed pattern generator, 12...Product 1
Divider, 13... Subtractor, 14... Amplifier, 15...
・Adder, 16...Model of closed loop speed control system, 2
0... Drive device. 21... Speed feedback element, 22... Subtractor. 23...Open loop speed control system, 30...Controlled object. 31...Current speed conversion means, 62...Integrator, 40...
・Closed loop speed control system +kt...Torque constant, J...
Rotor inertia, S...Variable of Laplace transformation. K1...deviation gain + kV...speed feedback gain, k+...speed control system integral gain,
K2... Speed control system proportional gain + K5... Voltage -
Current conversion gain. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、制御対象を駆動する駆動装置に操作入力を与えて前
記制御対象の位置決めを行なう位置決め制御装置に於て
、前記制御対象を所定の時間内に所定の位置まで変位さ
せるように計画された速度指令を発生する手段と、前記
駆動装置と前記制御対象を含む速度制御系の予め求めた
モデルに前記速度指令を入力して位置指令を得る手段と
、該位置指令と前記制御対象の実際の位置との偏差を得
る手段と、該位置偏差を増幅する手段と、該増幅された
位置偏差と前記速度指令とを加えて前記操作入力を得る
手段とを有する位置決め機構の制御方式。
1. In a positioning control device that positions the controlled object by applying an operation input to a drive device that drives the controlled object, a speed planned to displace the controlled object to a predetermined position within a predetermined time. means for generating a command; means for inputting the speed command into a predetermined model of a speed control system including the drive device and the controlled object to obtain a position command; 1. A control system for a positioning mechanism comprising means for obtaining a deviation from the positional deviation, means for amplifying the positional deviation, and means for obtaining the operation input by adding the amplified positional deviation and the speed command.
JP14138484A 1984-07-10 1984-07-10 ICHIGIMEKIKONOSEIGYOHOSHIKI Expired - Lifetime JPH0231407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14138484A JPH0231407B2 (en) 1984-07-10 1984-07-10 ICHIGIMEKIKONOSEIGYOHOSHIKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14138484A JPH0231407B2 (en) 1984-07-10 1984-07-10 ICHIGIMEKIKONOSEIGYOHOSHIKI

Publications (2)

Publication Number Publication Date
JPS6121511A true JPS6121511A (en) 1986-01-30
JPH0231407B2 JPH0231407B2 (en) 1990-07-13

Family

ID=15290740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14138484A Expired - Lifetime JPH0231407B2 (en) 1984-07-10 1984-07-10 ICHIGIMEKIKONOSEIGYOHOSHIKI

Country Status (1)

Country Link
JP (1) JPH0231407B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436688A (en) * 1987-07-31 1989-02-07 Nippon Mining Co Production of oil having high aromatic group content
CN102368162A (en) * 2011-10-26 2012-03-07 中国科学院光电技术研究所 A Large Angle Fast Mirror Tracking System
US8735465B2 (en) 2010-03-10 2014-05-27 The Procter & Gamble Company Denture adhesive compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436688A (en) * 1987-07-31 1989-02-07 Nippon Mining Co Production of oil having high aromatic group content
US8735465B2 (en) 2010-03-10 2014-05-27 The Procter & Gamble Company Denture adhesive compositions
US9463145B2 (en) 2010-03-10 2016-10-11 The Procter & Gamble Company Denture adhesive compositions
CN102368162A (en) * 2011-10-26 2012-03-07 中国科学院光电技术研究所 A Large Angle Fast Mirror Tracking System

Also Published As

Publication number Publication date
JPH0231407B2 (en) 1990-07-13

Similar Documents

Publication Publication Date Title
JP2691528B2 (en) Perfect tracking servo system
JPH10329063A (en) Robot control device
JPS6121511A (en) Control system of positioning mechanism
JPH03289385A (en) Regulating method for gain of motor control
CN114714364B (en) Robot joint friction force compensation adjustment method and robot friction force compensation method
JPH0962331A (en) Movement command distribution method for servo control
JPH0724886B2 (en) Positioning control method for turnover device
JPS6140616A (en) Position control system
JP2004086434A (en) Speed command type synchronization controller
JPH104692A (en) Position controller for motor
Mahawan et al. High-speed high-precision tracking control for electronically controlled winding machines
JPH01163808A (en) Noninteracting control system for robot
JPH01129793A (en) Torque control system for motor
JPS63157209A (en) Method and device for feed control of numerically controlled machine tool
JP2004102556A (en) Positioning controller
KR920004081B1 (en) Robot torque control method
JPS6279509A (en) Digital servo amplifier
JPH0991005A (en) Track control device
RU2230349C2 (en) Control apparatus for controlling manipulator of robot
JPS62128304A (en) Servo lock control method
JPS6180304A (en) Comprehensive gain adjustment method for articulated robots
JPH01319810A (en) Positioning device by motor
JPH0631525Y2 (en) Control device for manipulator
JPH0469178A (en) Control unit for force of robot
JPH05252772A (en) Method for controlling high speed positioning of servo motor