JPS6121461A - Controlling method of stepless transmission for vehicles - Google Patents
Controlling method of stepless transmission for vehiclesInfo
- Publication number
- JPS6121461A JPS6121461A JP59143119A JP14311984A JPS6121461A JP S6121461 A JPS6121461 A JP S6121461A JP 59143119 A JP59143119 A JP 59143119A JP 14311984 A JP14311984 A JP 14311984A JP S6121461 A JPS6121461 A JP S6121461A
- Authority
- JP
- Japan
- Prior art keywords
- continuously variable
- engine
- transmission
- torque
- variable transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims description 16
- 239000000843 powder Substances 0.000 claims abstract description 8
- 230000005415 magnetization Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/66—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
- F16H61/662—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
- F16H61/66254—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は車輌用無段変速機の制御方法に係わり、特にV
ベルト伝動を利用した車輌用無段変速機のスリップ防止
の制御方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a control method for a continuously variable transmission for a vehicle, and particularly relates to a control method for a continuously variable transmission for a vehicle.
The present invention relates to a control method for preventing slip in a continuously variable transmission for a vehicle that utilizes belt transmission.
Vベルト伝動を利用した車輌用無段変速機は変速比を定
められた範囲内であれば自由に選択でき、エンジンの能
力を有効に使用できるばかりか燃費の最も低くなる様な
走行も可能にするものである。Continuously variable transmissions for vehicles that utilize V-belt transmission allow you to freely select the gear ratio within a specified range, making it possible to not only use the engine's capacity effectively but also drive with the lowest fuel efficiency. It is something to do.
しかし伝達媒体であるベルトの耐久性に問題点を有して
おり、ある種の走行条件においては、ベルトに過負荷が
かかりスリップするという欠点を有している。この防止
法としてはベルトを挟圧する油圧を常に高い圧力に保っ
たり、あるいはベルトの過負荷を予期して一時的に高圧
の圧油を供給する方法がとられているがいずれも完全な
防止方法になっていない。However, there are problems with the durability of the belt, which is a transmission medium, and under certain running conditions, the belt is overloaded and slips. Methods to prevent this are to constantly maintain the hydraulic pressure that pinches the belt at a high pressure, or to temporarily supply high-pressure oil in anticipation of belt overload, but both methods are completely preventive. It has not become.
本発明は上述の点に鑑みてなされたもので、その目的は
、いかなる走行条件においてもベルトスリップが起らな
い車輌用無段変速機の制御方法を提供することにある。The present invention has been made in view of the above-mentioned points, and its object is to provide a control method for a continuously variable transmission for a vehicle in which belt slip does not occur under any driving conditions.
(実施例〕
以下において添付図面を参照して本発明の詳細な説明す
る。(Example) The present invention will be described in detail below with reference to the accompanying drawings.
参照符号1はエンジン、3は電磁パウダ一式クラッチユ
ニットであって入力軸2によってエンジン1に連結され
ている。クラッチユニット3の出力軸は無段変速14の
入力軸5と一体に固着されている。無段変速機4は一対
の入力側■溝プーリ6.7と、一対の出力側V溝プーリ
8,9と、入力プーリと出力プーリとに巻き掛けられた
無端ベルト10とからなり、一方の入力側■溝プーリ6
は入力軸5と一体に固着されていて、他方の入力側V溝
プーリ7は入力側■溝プーリ6の回転軸上を軸方向に摺
動自在に装架されている。入力側V溝プーリ7の無端ベ
ルト10が巻回される部分と反対の側は入力側V溝プー
リ7を軸方向に摺動させるための油圧室20が形成され
ており、該油圧室に流入する圧油によって入力側V溝プ
ーリ6゜7によって画定される入力側プーリ径の大きさ
が制御される。一方の出力側■溝ブー98は図示しない
駆動輪に連結されており、他方の出力側V溝プーリ9は
出力側V溝プーリ8の回転軸上に軸方向に摺動自在に装
架されている。出力側■溝プーリ9の無端ベルト10が
巻回される部分と反対の側には出力側V溝プーリ9を軸
方向に摺動させるための油圧室21が形成されており、
該油圧室に流入する圧油によって出力側V溝プーリ8,
9によって画定される出力側プーリ径の大きさが制御さ
れる。すなわち油圧室20.21に流入する圧油を制御
することによって入力側プーリ及び出力側プーリのプー
リ径が調節され、その結果変速比e(e−人力プーリ回
転数N1N/出力プーリ回転数N )が自由に選択さ
れる。各油圧室20゜UT
21に流入する圧油は流量制御弁11及び圧力制御弁1
2によって制御される。13は油圧ポンプ、14はタン
クである。エンジン1にはスロットル開度センサー16
及びエンジン回転数センサー17が設けられており、無
段変速機4の入力プーリには入力プーリの回転数を感知
する入力プーリ回転数センサー18及び出力プーリには
出力プーリの回転数を感知する出力プーリ回転数センサ
ー19が、夫々設けられている。上記各センサーはマイ
クロコンピュータから成る制御装置15に接続されてお
り、該制御装@15は夫々のセンサーからの信号に基づ
いて電磁パウダ一式クラッチユニット3、流量制御弁1
1及び圧力制御弁12を制mする制m電流を発生させる
。Reference numeral 1 is an engine, and 3 is an electromagnetic powder clutch unit, which is connected to the engine 1 through an input shaft 2. The output shaft of the clutch unit 3 is fixed integrally with the input shaft 5 of the continuously variable transmission 14. The continuously variable transmission 4 consists of a pair of input-side V-groove pulleys 6, 7, a pair of output-side V-groove pulleys 8, 9, and an endless belt 10 wound around the input and output pulleys. Input side ■Groove pulley 6
is fixed integrally with the input shaft 5, and the other input side V-groove pulley 7 is mounted so as to be slidable in the axial direction on the rotation axis of the input side V-groove pulley 6. A hydraulic chamber 20 for sliding the input V-groove pulley 7 in the axial direction is formed on the side of the input-side V-groove pulley 7 opposite to the part around which the endless belt 10 is wound. The pressure oil used controls the diameter of the input pulley defined by the input V-groove pulley 6.7. One output side ■groove boo 98 is connected to a drive wheel (not shown), and the other output side V groove pulley 9 is mounted on the rotating shaft of the output side V groove pulley 8 so as to be slidable in the axial direction. There is. A hydraulic chamber 21 for sliding the output V-groove pulley 9 in the axial direction is formed on the opposite side of the output side V-groove pulley 9 from the part around which the endless belt 10 is wound.
The output side V-groove pulley 8,
The size of the output pulley diameter defined by 9 is controlled. That is, by controlling the pressure oil flowing into the hydraulic chamber 20.21, the pulley diameters of the input pulley and the output pulley are adjusted, and as a result, the gear ratio e (e - manual pulley rotation speed N1N/output pulley rotation speed N) is freely selected. The pressure oil flowing into each hydraulic chamber 20°UT 21 is controlled by a flow control valve 11 and a pressure control valve 1.
2. 13 is a hydraulic pump, and 14 is a tank. Throttle opening sensor 16 for engine 1
and an engine rotation speed sensor 17 are provided on the input pulley of the continuously variable transmission 4, and an input pulley rotation speed sensor 18 for sensing the rotation speed of the input pulley and an output for sensing the rotation speed of the output pulley on the output pulley. A pulley rotation speed sensor 19 is provided respectively. Each of the above sensors is connected to a control device 15 consisting of a microcomputer, and the control device @15 controls the electromagnetic powder complete clutch unit 3 and the flow control valve 1 based on the signals from the respective sensors.
1 and the pressure control valve 12 are generated.
次に第2図のフローチャートに従って制御方法を説明す
る。Next, the control method will be explained according to the flowchart shown in FIG.
ステップ101にてスロットル開度センサー16からエ
ンジンのスロットル開度θTHを読み込む。読み込まれ
たスロットル開度θ、□は制御装置15にインプットさ
れステップ102でθTH−〇の判別を行ないスロット
ル開度がOならばステップ103にて車速に対応する出
カブ−98の回転数を出力プーリ回転数センサ19から
読み込む。In step 101, the engine throttle opening θTH is read from the throttle opening sensor 16. The read throttle opening degree θ, □ is input to the control device 15, and in step 102 θTH-〇 is determined. If the throttle opening degree is O, the rotation speed of the output valve 98 corresponding to the vehicle speed is outputted in step 103. Read from pulley rotation speed sensor 19.
読み込まれた出力プーリ回転数N。olは制御装置15
にインプットされステップ104にて、あらかじめ定め
られた一定値N1どの大小比較を行ない、一定値N1よ
りも小さければクラッチユニット3のパウダーを磁化す
るためのクラッチ電流icを切る。即ちクラッチユニッ
ト3が解除された状態となる。一定値N1は実験的に定
められた値で、スロットル開度が零で、車速が低速の一
定値以下の時にクラッチユニット3を解除してエンスト
を防止するためのものである。Loaded output pulley rotation speed N. ol is the control device 15
In step 104, a predetermined constant value N1 is compared in magnitude, and if it is smaller than the constant value N1, the clutch current IC for magnetizing the powder in the clutch unit 3 is cut off. That is, the clutch unit 3 is in a released state. The constant value N1 is an experimentally determined value that is used to prevent the engine from stalling by releasing the clutch unit 3 when the throttle opening is zero and the vehicle speed is below a low constant value.
次にクラッチユニット3を連結させる条件はステップ1
02でスロットル開度θTHが零でないと判断されたか
、あるいはスロットル開度θTHが零でも車速すなわち
出力プーリ回転数N。U工が所定値N1JX上である場
合で、ステップ106でエンジン回転数センサー17に
よってエンジン回転数NFを読み込み、ステップ107
でクラッチユニット3の出力軸と一体に回転する入力1
−リ6の回転数NINをろカプーリ回転数センサー18
で読み込む。ステップ108でこの両者の差であるクラ
ッチユニット3のスリツプ量N、−N1Ne計算し、あ
らかじめ任意に定められたスリップ量の上限値N2との
比較を行なう。クラッチユニットのスリップ量が上限値
N2より小である場合は、ステップ110にてクラッチ
電流i、cの時間微分値1c
dl をスリップ量の関数として、スリップ量が零とな
るまでフィードバック制御する。クラッチュニツ]〜の
スリップ量が上限値N2と等しいか又は大である場合は
ステップ109でスリップ量N =N を上限値N
2に設定する。すなわちりE IN
ic
ラッチ電流icの時間微分値 dt はステップ11
0にて一定値にとなってフィードバックされ、同じくス
リップ量が零となる迄フィードバック制御される。スリ
ップINE−N1Nを上限値N2に設定する訳はクラッ
チ電流の時間微分値に上限があるからである。さらにス
テップ110でクラッチ電流の時間微分値を求める理由
はクラッチ接続はスムーズでしかも迅速に行なう必要が
あるためで、スリップ量が大きく迅速な接続を必要とす
る場合はクラッチ電流の増加量を大きく、スリップ量が
小さくなるに従って電流の増加量を減少させるためであ
る。ここでKは定数である。Next, the conditions for connecting the clutch unit 3 are step 1.
02, it is determined that the throttle opening θTH is not zero, or even if the throttle opening θTH is zero, the vehicle speed, that is, the output pulley rotation speed N. When the U work is above the predetermined value N1JX, the engine speed NF is read by the engine speed sensor 17 in step 106, and the engine speed NF is read in step 107.
Input 1 rotates together with the output shaft of clutch unit 3.
- Rotation speed NIN of pulley 6 is measured by rotary coupler rotation speed sensor 18.
Load it with In step 108, the slip amount N, -N1Ne of the clutch unit 3, which is the difference between the two, is calculated and compared with a predetermined upper limit value N2 of the slip amount. When the slip amount of the clutch unit is smaller than the upper limit value N2, in step 110, feedback control is performed using the time differential value 1c dl of the clutch currents i and c as a function of the slip amount until the slip amount becomes zero. If the slip amount of ~ is equal to or larger than the upper limit value N2, in step 109 the slip amount N = N is set to the upper limit value N
Set to 2. In other words, the time differential value dt of the latch current ic is the step 11.
At 0, it becomes a constant value and is fed back, and similarly, feedback control is performed until the slip amount becomes zero. The reason why the slip INE-N1N is set to the upper limit value N2 is that there is an upper limit to the time differential value of the clutch current. Furthermore, the reason why the time differential value of the clutch current is determined in step 110 is that the clutch connection must be performed smoothly and quickly.If the amount of slip is large and quick connection is required, the amount of increase in the clutch current is increased. This is to reduce the amount of increase in current as the amount of slip decreases. Here K is a constant.
以上の制御によってクラッチュニツl−3の接続が完了
するとクラッチユニット3のスリップ量は零となり、次
に無段変速機4の変速比を制御する圧油の流量制御と、
変速814のトルク伝達能力を決定するベルト10の挟
圧力を制御する圧油の圧力制御を行なう。When the connection of the clutch l-3 is completed by the above control, the slip amount of the clutch unit 3 becomes zero, and then the flow rate control of pressure oil that controls the gear ratio of the continuously variable transmission 4 is performed.
The pressure of the pressure oil is controlled to control the squeezing force of the belt 10, which determines the torque transmission ability of the speed change 814.
次に流量制御を説明する。Next, flow control will be explained.
ステップ101にて読み込んだスロットル開度θTHか
らステップ201において該開度に対応する目標エンジ
ン回転数N′を算出する。Niは無段変速機を使用した
場合の各スロットル開度に於ける目標エンジン回転数を
示す第3図から算出される。ステップ106に読み込ん
だエンジン回転数N と目標エンジン回転数NLとの差
を計算し、[
この差が設定範囲±Noの中に入っておれば変速比eは
変更しない。目標エンジン回転数NCがエンジン回転数
N よりも大きい時はN、を大きく[
するため、入力プーリ径を小さくする、すなわち油圧室
20から圧油を抜くようステップ204にて電流’ F
lを設定し流量制御弁11に供給する。From the throttle opening degree θTH read in step 101, in step 201 a target engine speed N' corresponding to the throttle opening degree is calculated. Ni is calculated from FIG. 3, which shows the target engine speed at each throttle opening when a continuously variable transmission is used. The difference between the engine speed N read in step 106 and the target engine speed NL is calculated, and [If this difference is within the setting range ±No, the gear ratio e is not changed. When the target engine speed NC is higher than the engine speed N, the input pulley diameter is made smaller in order to increase N, that is, the current 'F is increased in step 204 to remove pressure oil from the hydraulic chamber 20.
1 is set and supplied to the flow rate control valve 11.
目標エンジン回転数N′がエンジン回転数NEよりも小
さい時はNEを小さくするため、入力プーリ径を大きく
する、すなわら油圧室20へ圧油を流入させるようステ
ップ203にて電流IF2を設定し流量制御弁11に供
給する。流量制御弁11には圧油を抜く場合の電流’F
lと圧油を流入させる場合の電流i の電流制御が必要
で、電流’ Fl、’ F2に対する油流量の関係を第
4図に示す。第4図から明らかなように流量制御弁11
の制御電流1.1、’ F2と流量の関係1は直線性が
あり、変速比eを決定する流量制御を容易にしている。When the target engine speed N' is smaller than the engine speed NE, in order to reduce NE, the input pulley diameter is increased, that is, the current IF2 is set in step 203 so that pressure oil flows into the hydraulic chamber 20. and is supplied to the flow rate control valve 11. The flow rate control valve 11 has a current 'F' when releasing pressure oil.
It is necessary to control the current i when the pressure oil and pressure oil flow in, and the relationship between the oil flow rate and the currents 'Fl and 'F2 is shown in FIG. As is clear from FIG. 4, the flow rate control valve 11
The relationship 1 between the control current 1.1,' F2 and the flow rate is linear, making it easy to control the flow rate to determine the gear ratio e.
上述した流量制御と同時にベルト10を挟圧する圧力制
御が行なわれる。ステップ101゜106により読み込
んだスロットル開度θ、□とエンジン自転数NEからス
テップ301において第5図のエンジン性能曲線に基づ
きエンジントルクT、を算出する。ステップ302にお
いて、無段変速機のトルク伝達能力下、がエンジントル
クTEより一定値に、たけ大きく設定される。Simultaneously with the above-described flow rate control, pressure control for squeezing the belt 10 is performed. In step 301, the engine torque T is calculated based on the engine performance curve shown in FIG. 5 from the throttle opening degrees θ and □ read in steps 101 and 106 and the engine rotational speed NE. In step 302, the torque transmission capacity of the continuously variable transmission is set to a constant value much larger than the engine torque TE.
T =T’ +K ・ ・ ・(1)EI
次にステップ303で変速機のベルト伝達馬力P、を計
韓し、ステップ304にて出力プーリの回転数N。Ul
を読み込み、ステップ107で読み込んだ入力プーリ回
転数N1Nとの比である変速比をステップ305にて計
算し、この値とプーリ径及び入出力プーリの軸間距離等
の値から第8図に示すベルト巻き掛は角θ1、θ2をス
テップ306にて計算し、さらに伝達馬力、ベルト速度
及び摩擦係数等の値を加えて、ステップ307にて変速
機のベルト10を挟圧する力であるベルト推力を計算し
、ステップ308にてライン圧力P、に換算し、ステッ
プ309にて、あらかじめ制御装置15に記憶させた第
6図に示すライン圧力P、−電流線図から必要電流iを
決定し、圧力制御弁12に電流iを供給する。これによ
り油圧20.21に適正な圧力P、が付加されベルト1
0が挟圧され、変速機のトルク伝達能力T8がステップ
302で設定された値となる。従って変速機4はエンジ
ントルクT、よりも常に一定値K だけトルク伝達可能
である。この一定値に1の値を大きくすればするほど変
速機4のベルトスリップの危険性が小さくなるが、同時
に入出力プーリ間の伝達効率が低下する。効率を低下さ
せない為には一定値に1の値を小さくすれば良いが、エ
ンジントルクT、や負荷の急変時にはベルトスリップが
発生する恐れがある。そこでステップ111にてクラッ
チユニット3のトルク伝達能力Toを変速機
のトルク伝達能力下 より一定値に2だけ小さく設定す
る。T = T' +K (1) EI Next, in step 303, the belt transmission horsepower P of the transmission is measured, and in step 304, the rotation speed N of the output pulley is determined. Ul
is read, and the gear ratio, which is the ratio to the input pulley rotation speed N1N read in step 107, is calculated in step 305, and from this value and the values of the pulley diameter and the center distance of the input and output pulleys, etc., as shown in FIG. 8. For belt wrapping, angles θ1 and θ2 are calculated in step 306, and values such as transmitted horsepower, belt speed, and friction coefficient are added to calculate the belt thrust, which is the force that pinches the transmission belt 10, in step 307. In step 308, the required current i is determined from the line pressure P,-current diagram shown in FIG. A current i is supplied to the control valve 12. As a result, an appropriate pressure P is added to the oil pressure 20.21, and the belt 1
0 is compressed, and the torque transmission capacity T8 of the transmission becomes the value set in step 302. Therefore, the transmission 4 is always capable of transmitting torque by a constant value K than the engine torque T. The larger the value of 1 is set to this constant value, the lower the risk of belt slip in the transmission 4 becomes, but at the same time, the transmission efficiency between the input and output pulleys decreases. In order not to reduce the efficiency, the value of 1 may be reduced to a constant value, but belt slip may occur when the engine torque T or load suddenly changes. Therefore, in step 111, the torque transmission capacity To of the clutch unit 3 is set to a constant value 2 smaller than the torque transmission capacity of the transmission.
T =T −K ・・・(2)
B2
このクラッチユニット3の設定トルク伝達能力Toから
第7図に示したクラッチのトルク−電流特性図より必要
なりラッチ電流icが求められ、制御装置15から該電
流icがクラッチユニット3に供給され、パウダーが磁
化される。その結果クラッチユニット3のトルク伝達能
力は(2)式で示される如くクラッチユニットのトルク
伝達能力T8より一定値に2だけ小さくなる。ここでス
テップ302で設定した一定値に1とステップ111で
設定した一定値に2の間には(3)式で示される関係を
持たせる。T = T - K (2) B2 From the set torque transmission capacity To of the clutch unit 3, the necessary latch current IC is determined from the torque-current characteristic diagram of the clutch shown in FIG. The current IC is supplied to the clutch unit 3 and the powder is magnetized. As a result, the torque transmission capacity of the clutch unit 3 becomes a constant value 2 smaller than the torque transmission capacity T8 of the clutch unit, as shown by equation (2). Here, the constant value 1 set in step 302 and the constant value 2 set in step 111 are set to have a relationship expressed by equation (3).
K1〉K2 ・・・(3)
これによりクラッチユニット3のトルク伝達能力下 は
エンジントルクTEより常に大きくなり、エンジントル
クTFとクラッチユニットのトルク伝達能力TCと変速
機のトルク伝達能力T8の間には(4)式の関係が成立
し、
T >T >T ・・・(4)
CE
エンジントルクが急増しても必ずクラッチユニットでス
リップし、変速機のベルトはスリップすることがなくな
る。K1>K2...(3) As a result, the torque transmission capacity of the clutch unit 3 is always larger than the engine torque TE, and there is a gap between the engine torque TF, the torque transmission capacity TC of the clutch unit, and the torque transmission capacity T8 of the transmission. The relationship of equation (4) is established, and T > T > T (4) CE Even if the engine torque increases rapidly, the clutch unit will always slip, and the transmission belt will never slip.
以上の如<(4)式の関係を保持することでベルトを含
めたプーリの伝達効率を低下させることなくベルトスリ
ップを確実に防止できる。By maintaining the above relationship of formula (4), belt slip can be reliably prevented without reducing the transmission efficiency of the pulley including the belt.
エンジンの駆動力や負荷が急激に増大しても必ずクラッ
チユニットでスリップし変速機のベルトスリップが生じ
ない無段変速機の制御方法が提供され、無段変速機の耐
久性が向上されると共に低燃費走行が可能となる。Provided is a control method for a continuously variable transmission in which the clutch unit always slips even when the driving force or load of the engine suddenly increases, and belt slip in the transmission does not occur, and the durability of the continuously variable transmission is improved. It becomes possible to drive with low fuel consumption.
第1図は本発明の車輌用無段変速機の制御方法を説明す
るための概略図、第2図はそのフローチャート、第3図
は各スロットル開度における目標エンジン回転数を示す
グラフ、第4図は流量制御弁における電流と流量の関係
を示すグラフ、第5図はエンジン性能曲線、第6図は圧
力制御弁におけるライン圧力と電流の関係を示ずグラフ
、第7図は電磁パウダ一式クラッチユニットにおけるト
ルクと電流の関係を示すグラフ及び第8図はプーリ間の
ベルト巻き折角を説明するための概略図。
1・・・エンジン、
3・・・クラッチユニット、
4・・・無段変速機、
11・・・流量制御弁、
12・・・圧力制御弁、
15・・・制御装置。FIG. 1 is a schematic diagram for explaining the control method of a continuously variable transmission for vehicles according to the present invention, FIG. 2 is a flowchart thereof, FIG. 3 is a graph showing target engine speed at each throttle opening, and FIG. The figure is a graph showing the relationship between current and flow rate in the flow control valve, Figure 5 is the engine performance curve, Figure 6 is a graph showing the relationship between line pressure and current in the pressure control valve, and Figure 7 is the electromagnetic powder set clutch. A graph showing the relationship between torque and current in the unit and FIG. 8 are schematic diagrams for explaining the angle of belt winding between pulleys. DESCRIPTION OF SYMBOLS 1... Engine, 3... Clutch unit, 4... Continuously variable transmission, 11... Flow control valve, 12... Pressure control valve, 15... Control device.
Claims (3)
法において、 該無段変速機とエンジンとを連結している電磁クラッチ
ユニットのトルク伝達能力が前記無段変速機のトルク伝
達能力より常に小さくなるようにエンジン回転数、スロ
ットル開度、前記無段変速機の入力側プーリ回転数及び
出力側プーリ回転数を感知して、前記無段変速機と前記
電磁クラッチユニットとを制御することを特徴とする車
輌用無段変速機の制御方法。(1) In a method of controlling a continuously variable transmission for a vehicle using belt transmission, the torque transmission capacity of an electromagnetic clutch unit connecting the continuously variable transmission and the engine is greater than the torque transmission capacity of the continuously variable transmission. Controlling the continuously variable transmission and the electromagnetic clutch unit by sensing an engine rotation speed, a throttle opening, an input pulley rotation speed, and an output pulley rotation speed of the continuously variable transmission so that the rotation speed is always small. A control method for a continuously variable transmission for a vehicle, characterized by:
挟圧する挟圧力によつて制御され、前記電磁クラッチユ
ニットのトルク伝達能力が該クラッチユニットのパウダ
ー磁化力によつて制御される車輌用無段変速機の制御方
法。(2) In the control method according to claim 1, the torque transmission capacity of the continuously variable transmission is controlled by a clamping force that clamps the belt of the transmission, and the torque transmission capacity of the electromagnetic clutch unit A control method for a continuously variable transmission for a vehicle, in which the power is controlled by the powder magnetization force of the clutch unit.
供給されるクラッチ制御電流によつて行なわれ、車輌の
発進時においては該電流の時間微分値が前記クラッチの
入出力回転数の差に比例する車輌用無段変速機の制御方
法。(3) In the control method according to claim 2, the powder magnetizing force of the clutch unit is controlled by a clutch control current supplied to the clutch, and when the vehicle starts, the time derivative of the current is controlled. A control method for a continuously variable transmission for a vehicle, the value of which is proportional to the difference between the input and output rotational speeds of the clutch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59143119A JPS6121461A (en) | 1984-07-10 | 1984-07-10 | Controlling method of stepless transmission for vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59143119A JPS6121461A (en) | 1984-07-10 | 1984-07-10 | Controlling method of stepless transmission for vehicles |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6121461A true JPS6121461A (en) | 1986-01-30 |
Family
ID=15331354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59143119A Pending JPS6121461A (en) | 1984-07-10 | 1984-07-10 | Controlling method of stepless transmission for vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6121461A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998043003A1 (en) * | 1997-03-25 | 1998-10-01 | Robert Bosch Gmbh | Device and method for reducing slip in the control system of a cvt in a motor vehicle |
JP2003042276A (en) * | 2001-07-24 | 2003-02-13 | Toyota Motor Corp | Control device for vehicle with continuously variable transmission |
JP2008032232A (en) * | 2007-10-22 | 2008-02-14 | Toyota Motor Corp | Control device for drive mechanism including continuously variable transmission |
JP2012031892A (en) * | 2010-07-29 | 2012-02-16 | Daihatsu Motor Co Ltd | Start clutch control device of idle stop vehicle |
-
1984
- 1984-07-10 JP JP59143119A patent/JPS6121461A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998043003A1 (en) * | 1997-03-25 | 1998-10-01 | Robert Bosch Gmbh | Device and method for reducing slip in the control system of a cvt in a motor vehicle |
US6409627B2 (en) | 1997-03-25 | 2002-06-25 | Robert Bosch Gmbh | Device and method for reducing slip in the control system of a CVT in a motor vehicle |
JP2003042276A (en) * | 2001-07-24 | 2003-02-13 | Toyota Motor Corp | Control device for vehicle with continuously variable transmission |
JP2008032232A (en) * | 2007-10-22 | 2008-02-14 | Toyota Motor Corp | Control device for drive mechanism including continuously variable transmission |
JP2012031892A (en) * | 2010-07-29 | 2012-02-16 | Daihatsu Motor Co Ltd | Start clutch control device of idle stop vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5168778A (en) | CVT downshift control strategy to minimize slip at the drive pulley | |
EP1340929B1 (en) | Shift controlling apparatus for continuously variable transmission | |
EP2175172B1 (en) | Shift control device for vehicular stepless transmission | |
JP3042684B2 (en) | Shift control method for belt-type continuously variable transmission | |
US5182968A (en) | Force ratio control of continuously variable transmissions | |
JPS63287636A (en) | Control device for automatic clutch in vehicle | |
WO2003067127A3 (en) | Methods for regulating the gear ratio of an automatic power-branched transmission, and automatic power-branched transmission | |
EP1338832A2 (en) | Shift control apparatus for continuosly varible transmission and shift control method therefor | |
US20060009321A1 (en) | Hybrid clamping mechanism for belt continuously variable transmission and method of use thereof | |
US10683931B2 (en) | Control apparatus for vehicle drive-force transmitting apparatus | |
JPH0674017B2 (en) | Controller for continuously variable transmission | |
US10683001B2 (en) | Control apparatus for vehicle drive-force transmitting apparatus | |
US7654926B2 (en) | Continuously variable V-belt transmission | |
US10731756B2 (en) | Control apparatus for vehicle | |
JP3607640B2 (en) | Hydraulic control device for transmission | |
JPS6121461A (en) | Controlling method of stepless transmission for vehicles | |
EP1099884A3 (en) | Controller of toroidal continuously variable transmission | |
EP0244223A2 (en) | Control system for a clutch for a vehicle | |
JPS62299442A (en) | Control device for automatic clutch for vehicle | |
JPH04285361A (en) | Control device for belt type continuously variable transmission for vehicle | |
JP3102723B2 (en) | Pulley side pressure control device for belt type continuously variable transmission | |
EP0240281B1 (en) | Control system for an electromagnetic clutch for a vehicle | |
CN109973644A (en) | Control device for vehicle power transmission device | |
JP3675329B2 (en) | Belt type continuously variable transmission | |
JPH01269756A (en) | Line pressure controller for belt type continuously variable transmission |