[go: up one dir, main page]

JPS61212629A - Exhaust apparatus for 2-cycle engine - Google Patents

Exhaust apparatus for 2-cycle engine

Info

Publication number
JPS61212629A
JPS61212629A JP60053086A JP5308685A JPS61212629A JP S61212629 A JPS61212629 A JP S61212629A JP 60053086 A JP60053086 A JP 60053086A JP 5308685 A JP5308685 A JP 5308685A JP S61212629 A JPS61212629 A JP S61212629A
Authority
JP
Japan
Prior art keywords
exhaust
pipe
exhaust pipe
gas
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60053086A
Other languages
Japanese (ja)
Inventor
Setsuo Shimoda
下田 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Shibaura Machinery Corp
Original Assignee
IHI Shibaura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Shibaura Machinery Corp filed Critical IHI Shibaura Machinery Corp
Priority to JP60053086A priority Critical patent/JPS61212629A/en
Publication of JPS61212629A publication Critical patent/JPS61212629A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/04Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues in exhaust systems only, e.g. for sucking-off combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/04Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues in exhaust systems only, e.g. for sucking-off combustion gases
    • F02B27/06Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues in exhaust systems only, e.g. for sucking-off combustion gases the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To improve charging efficiency by blasting-in the uncombusted gas into the small-diameter pipe part of an exhaust pipe consisting of a small-diameter pipe part, spread part, and a contracted-diameter part which are installed into the exhaust hole of a 2-cycle engine and recombusting said uncombusted gas, thus controlling the speed of the pressure waves by adjusting the temperature inside the exhaust pipe. CONSTITUTION:An exhaust pipe 11 consisting of a small-diameter pipe part 4, diffuser part 6 as spread part 6, and a contracted diameter part 9 is installed into the exhaust hole 2 of a 2-cycle engine 1. Each gas is supplied into the small diameter pipe part 4 through the pipes 12 and 14 from an uncombusted-gas feeding part 12 and a high- temperature steam feeding part 14. In the engine 1, the max. scavenging efficiency can be obtained with the inside-scavenging-pipe pressure waves in case of the engine revolution speed corresponding to each set value of the length and capacity of the exhaust pipe. Further, the temperature of the exhaust can be adjusted arbitrarily by feeding the uncombusted gas from the uncombusted-gas feeding part into the exhaust pipe and recombusting said gas or feeding the high-temperature steam form a high-temperature steam feeding part 14 and heating the exhaust, and therefore, the exhaust can be varied arbitrarily according to the revolution speed, since the speed of the pressure wave varies according to the temperature variation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、排気管内への排気吹出しにより生ずる圧力波
を利用して出力向上を図る2サイクルエンジンの排気装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exhaust system for a two-stroke engine that improves output by utilizing pressure waves generated by blowing exhaust gas into an exhaust pipe.

従来の技術 従来、2サイクルエンジンに使用される排気装置の代表
的なものとしては第4図に示すものが存、する、すなわ
ち、2サイクルエンジン1の排気口2に接続される排気
管3は、小径管4.この小径管4にスライド自在に嵌合
された小径管5、次第に拡開するディフューザ6、大径
管71次第に縮径するリヤコーン8.小径のテールパイ
プ9からなり、テールパイプ9の先端部に消音器10が
接続されている。
2. Description of the Related Art Conventionally, as a typical exhaust system used for two-stroke engines, there is one shown in FIG. , small diameter pipe 4. A small diameter tube 5 slidably fitted into the small diameter tube 4, a diffuser 6 that gradually expands, a rear cone 8 that gradually reduces the diameter of the large diameter tube 71. It consists of a small diameter tail pipe 9, and a muffler 10 is connected to the tip of the tail pipe 9.

ここで、排気口2から排気管3内への排気吹出しにより
生じた圧力波は、ディフューザ6及び大径管7内で減速
、減圧される。このとき、排気口2に負の圧力波(反射
負圧波)を及ぼし、排気口2部を負圧状態としてシリン
ダ内の掃気を促進する。さらに前進する圧力波はりャコ
ーン8において収速されて高圧状態となり、排気口2に
正の圧力波(反射正圧波)を及ぼして新蔑未燃ガスのシ
リンダ内充填比を高めている。そして9反射負圧波によ
り掃気を促進し1反射正圧波により新規未燃ガスのシリ
ンダ内充填比を高めることによって2サイクルエンジン
1の出力向上を図っている。
Here, the pressure waves generated by the exhaust blowing from the exhaust port 2 into the exhaust pipe 3 are decelerated and depressurized within the diffuser 6 and the large diameter pipe 7. At this time, a negative pressure wave (reflected negative pressure wave) is applied to the exhaust port 2 to bring the exhaust port 2 into a negative pressure state and promote scavenging in the cylinder. Further, the advancing pressure wave is collected in the cylinder cone 8 and becomes a high pressure state, and a positive pressure wave (reflected positive pressure wave) is exerted on the exhaust port 2, thereby increasing the filling ratio of unburned gas in the cylinder. The output of the two-stroke engine 1 is improved by promoting scavenging by nine reflected negative pressure waves and by increasing the filling ratio of fresh unburned gas in the cylinder by one reflected positive pressure wave.

ところで1反射負圧波及び反射正圧波による出力向上を
図るためには、排気口2に反射負圧波を及ぼすタイミン
グを掃気口開口時から掃気口閉口時に到る期間に合わせ
、排気口2に反射正圧波を及ぼすタイミングを掃気口閉
口時から排気ロ2閉ロ時に到る期間に合わせることが必
要である。排気口2及び掃気口等の開閉タイミングはエ
ンジン回転数の変化に伴って変化し、反射負圧波等が排
気口2に及ぶタイミングは排気管3の各部材寸法と圧力
波の速度とによって変化するものである。
By the way, in order to improve the output by using reflected negative pressure waves and reflected positive pressure waves, the timing of applying the reflected negative pressure waves to the exhaust port 2 is adjusted to the period from when the scavenging port opens to when the scavenging port is closed. It is necessary to match the timing of applying the pressure wave to the period from when the scavenging port is closed to when the exhaust hole 2 is closed. The opening/closing timing of the exhaust port 2, scavenging port, etc. changes as the engine speed changes, and the timing at which reflected negative pressure waves etc. reach the exhaust port 2 changes depending on the dimensions of each member of the exhaust pipe 3 and the speed of the pressure wave. It is something.

なお、圧力波の速度は、排気ガスが排気管3内に突入し
たときの排気温度、排気管3内温度、圧力波を伝える排
気管3内の媒体等により決定される。
Note that the speed of the pressure wave is determined by the exhaust temperature when the exhaust gas enters the exhaust pipe 3, the temperature inside the exhaust pipe 3, the medium inside the exhaust pipe 3 that transmits the pressure wave, and the like.

このため1反射負圧波等が排気口2に及ぶタイミングに
影響する要素のうち排気管3の各部材寸法の相違に着目
し、各2サイクルエンジン1にはそのエンジンの必要回
転数域に合わせた各部材寸法の排気管3が使用されてい
る。したがって、エンジンが必要回数域から外れた回転
数で運転される場合には1反射負圧波等による出力向上
を図ることができず1反射負圧波等が掃気を妨げる働き
をしてかえって出力低下をもたらす場合もある。
For this reason, we focused on the differences in the dimensions of each member of the exhaust pipe 3 among the factors that affect the timing at which reflected negative pressure waves etc. reach the exhaust port 2, and we focused on the differences in the dimensions of each member of the exhaust pipe 3. For each 2-stroke engine 1, we designed a design that matches the required rotation speed range of the engine. Exhaust pipes 3 of various member sizes are used. Therefore, when the engine is operated at a rotational speed outside the required number of rotations, it is not possible to improve the output by one reflected negative pressure wave, etc., and the one reflected negative pressure wave acts to impede scavenging, resulting in a decrease in output. Sometimes it brings.

そこで、第4図に示すように小径管5をスライド自在と
し、エンジン回転数の変化に応じて小径管5をスライド
させることにより反射負圧波等が排気口2に及ぶタイミ
ングを調節し1反射負圧波等による出力向上を図ること
ができる回転数域を拡大させている。
Therefore, as shown in Fig. 4, the small diameter pipe 5 is made slidable and the timing at which the reflected negative pressure waves reach the exhaust port 2 is adjusted by sliding the small diameter pipe 5 according to changes in engine speed. The rotation speed range in which output can be improved by pressure waves, etc. has been expanded.

発明が解決しようとする問題点 しかしなから、小径管5をスライドさせることによる調
整可能範囲は狭く、広い回転数域に渡って出力向上を図
ることはできない、また、スライド部からガス漏れ、圧
力波の漏れが発生し、エンジントラブルの原因となり易
い。
However, the adjustable range by sliding the small diameter tube 5 is narrow, and it is not possible to improve the output over a wide range of rotation speeds.In addition, gas leakage from the sliding part and pressure Wave leakage occurs, which can easily cause engine trouble.

本発明は、このような点に鑑みなされたもので。The present invention was made in view of these points.

圧力波の速度を制御することにより、広い回転数域に渡
って出力向上を図りうる2サイクルエンジンの排気装置
を得ることを目的とする。
The purpose of the present invention is to provide an exhaust system for a two-stroke engine that can improve output over a wide rotational speed range by controlling the speed of pressure waves.

問題点を解決するための手段 小径管41次第に拡開するディフューザ6、次第に縮径
するリヤコーン8を有する排気管11を2サイクルエン
ジン1の排気口2に接続し、排気口2から排気管11内
への排気吹出しにより生ずる圧力波の速度を調節する速
度調節機構12.14を排気管11に設ける。
Means for Solving the Problem An exhaust pipe 11 having a small-diameter pipe 41, a diffuser 6 that gradually expands, and a rear cone 8 that gradually decreases in diameter is connected to the exhaust port 2 of the two-stroke engine 1. The exhaust pipe 11 is provided with a speed adjustment mechanism 12,14 for adjusting the speed of the pressure wave generated by the exhaust air blowing to the exhaust pipe 11.

作用 圧力波がディフューザ6で減速、減圧され、これにより
排気口2に負の圧力波(反射負圧波)を及ぼし、シリン
ダ内の掃気を促進する。また、圧力波がリヤコーン8で
収束されて高圧状態となり。
The acting pressure wave is decelerated and depressurized by the diffuser 6, thereby exerting a negative pressure wave (reflected negative pressure wave) on the exhaust port 2 and promoting scavenging in the cylinder. Moreover, the pressure waves are converged at the rear cone 8, resulting in a high pressure state.

これにより排気口2に正の圧力波(反射正圧波)を及ぼ
し、シリンダ内の新規未燃ガスの充填比を高め、この新
規未燃ガスの充填比を高めることと掃気の促進とにより
2サイクルエンジン1の出力向上が図られる。エンジン
回転数の変化に伴なって排気口2や掃気口の開閉タイミ
ングが変化するが、その場合には速度調節機構12.1
4によって圧力波の速度が調節され1反射負圧波等をエ
ンジン回転数に応じたタイミングで排気口2に及ぼす。
This exerts a positive pressure wave (reflected positive pressure wave) on the exhaust port 2, increasing the filling ratio of new unburned gas in the cylinder, and increasing the filling ratio of this new unburned gas and promoting scavenging, resulting in two cycles. The output of the engine 1 is improved. The opening/closing timing of the exhaust port 2 and the scavenging port changes as the engine speed changes, but in that case, the speed adjustment mechanism 12.1
The speed of the pressure wave is adjusted by 4, and the reflected negative pressure wave 1 is applied to the exhaust port 2 at a timing corresponding to the engine speed.

実施例 本発明の一実施例を第1図ないし第3図に基づいて説明
する。なお、第41!lにおいて説明した部分と同一部
分は同一符号で示し、説明も省略する。
Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 3. In addition, the 41st! The same parts as those explained in 1 are indicated by the same reference numerals, and the explanation will be omitted.

一端が2サイクルエンジン1の排気口2に接続される小
径管4の他端にディフューザ6が接続され、順次接続さ
れた小径管4.ディフューザ6、大径管7.リヤコーン
8.テールパイプ9により排気管11が構成されている
。前記排気管11には。
One end of the small diameter pipe 4 is connected to the exhaust port 2 of the two-stroke engine 1, and a diffuser 6 is connected to the other end of the small diameter pipe 4, which are connected in sequence. Diffuser 6, large diameter pipe 7. Rear cone8. The tail pipe 9 constitutes an exhaust pipe 11. In the exhaust pipe 11.

排気管11内に新規未燃ガスを噴射導入する速度調節機
構12の一部である噴射ノズル13が接続されている。
An injection nozzle 13 that is part of a speed adjustment mechanism 12 that injects new unburned gas into the exhaust pipe 11 is connected.

なお、この速度調節機構12はエンジン回転数の検出部
、排気管Ill湿温度検出部及びこれらの検出部からの
検出結果に基づいて新規未燃ガスの噴射量を制御する制
御部等を有している。また、前記排気管11には、圧力
波速度を変えることのできる気体(例えば水蒸気)を排
気管11内に噴射導°入する第二の速度調節機構14の
一部である噴射ノズル15が接続されている。
The speed adjustment mechanism 12 includes an engine rotation speed detection section, an exhaust pipe humidity temperature detection section, and a control section that controls the injection amount of new unburned gas based on the detection results from these detection sections. ing. Further, an injection nozzle 15 is connected to the exhaust pipe 11 and is part of a second speed adjustment mechanism 14 that injects a gas (for example, water vapor) that can change the pressure wave velocity into the exhaust pipe 11. has been done.

この速度調節機構14は、前記速度調節機構12と同様
にエンジン回転数を検出する検出部、検出部からの検出
結果に基づいて気体の噴射量を制御する制御部等を有し
ている。
The speed adjustment mechanism 14, like the speed adjustment mechanism 12, includes a detection section that detects the engine rotation speed, a control section that controls the amount of gas to be injected based on the detection result from the detection section, and the like.

このような構成において、排気管1[の各部材(小径管
4.ディフューザ6等)の長さ寸法は常に一定であり、
この長さ寸法は2サイクルエンジンlの必要回転数域に
おける排気口2及び掃気口等の開閉タイミングに合わせ
て反射負圧波及び反射正圧波が排気口2に及ぶように設
定されている。
In such a configuration, the length of each member (small diameter pipe 4, diffuser 6, etc.) of the exhaust pipe 1 is always constant,
This length dimension is set so that reflected negative pressure waves and reflected positive pressure waves reach the exhaust port 2 in accordance with the opening/closing timing of the exhaust port 2, scavenging port, etc. in the required rotational speed range of the two-cycle engine 1.

このため、必要回転数域から外れた回転数で運転される
場合には排気口2等の開閉タイミングと反射負圧波等が
排気口2に及ぶタイミングとがずれ、反射正圧波が掃気
を妨げるように作用し、あるいは反射負圧波が新規未燃
ガスをも掃気するように作用し、出力低下をまねく場合
がある。
Therefore, when operating at a rotation speed outside the required rotation speed range, the opening/closing timing of the exhaust port 2, etc. and the timing at which reflected negative pressure waves, etc. reach the exhaust port 2 will be different, and the reflected positive pressure waves will interfere with scavenging. Otherwise, the reflected negative pressure wave may also act to scavenge new unburned gas, leading to a decrease in output.

そこで、速度調節機構12.14を単独で又は組合わせ
て使用し1回転数に合わせて圧力波の速度を調節し1反
射負圧波等が排気口2に及ぶタイミングを排気口2等の
開閉タイミングに合わせる。
Therefore, the speed adjustment mechanism 12.14 is used alone or in combination to adjust the speed of the pressure wave according to the number of rotations, and the timing when the 1 reflected negative pressure wave etc. reaches the exhaust port 2 is adjusted to the opening/closing timing of the exhaust port 2, etc. Match.

即ち、圧力波の速度は排気管11内温度、圧力波を伝え
る排気管11内の媒体によって変化することに着目した
もので、噴射ノズル13から噴射された未燃ガスを排気
管11内で燃焼させることによって排気管11内温度を
調節し、噴射ノズル15から噴射される気体により排気
管11内の媒体の性質を調節し、これらによって圧力波
の速度を調節する。
That is, this method focuses on the fact that the speed of the pressure wave changes depending on the temperature inside the exhaust pipe 11 and the medium inside the exhaust pipe 11 that transmits the pressure wave. By this, the temperature inside the exhaust pipe 11 is adjusted, and the gas injected from the injection nozzle 15 adjusts the properties of the medium inside the exhaust pipe 11, and thereby the speed of the pressure wave is adjusted.

第2図のグラフは、温度を変数とした温度変化による等
価管長曲線を示すものである。例えば。
The graph in FIG. 2 shows an equivalent pipe length curve due to temperature change with temperature as a variable. for example.

実vA(イ)は必要回転数域を3000回転に設定した
長さ寸法の排気管において、速度調節機構12により排
気管内温度を変化させたもので、温度上昇とともに圧力
波の速度も上昇し、排気管内温度を1000℃に上昇さ
せることにより必要回転数域を6000回転に設定した
長さ寸法の排気管と等価となる。すなわち、この排気管
を用いて排気管内温度を適宜調節することにより、30
00回転から6000回転の広い回転数域において反射
負圧波等による出力向上を図ることができる。同様に、
実線(ロ)は必要回転数域を5000回転に設定した長
さ寸法の排気管において、排気管内温度を1000℃に
上昇させることにより必要回転数域を9000回転に設
定した長さ寸法の排気管と等価となり、5ooo回転か
ら9000回転の広い回転数域において反射負圧波等に
よる出力向上を図ることができる。また、破線(ハ)は
、二つの速度調節機構12.14を併用したもので、噴
射ノズル13から噴射された未燃ガスの燃焼による排気
管内温度の上昇と、噴射ノズル15からの気体(加熱水
蒸気)の噴射とにより圧力波の速度はさらに上昇する。
Actual vA (a) is an exhaust pipe whose length is set to 3000 revolutions, and the temperature inside the exhaust pipe is changed by the speed adjustment mechanism 12. As the temperature rises, the speed of the pressure wave also increases. By raising the temperature inside the exhaust pipe to 1000°C, it becomes equivalent to an exhaust pipe with a length dimension in which the required rotation speed range is set to 6000 rotations. That is, by appropriately adjusting the temperature inside the exhaust pipe using this exhaust pipe, 30
In a wide rotation speed range from 00 rotations to 6000 rotations, it is possible to improve output through reflected negative pressure waves and the like. Similarly,
The solid line (b) shows an exhaust pipe whose length is set to 5,000 rpm, and whose length is set to 9,000 rpm by raising the temperature inside the exhaust pipe to 1,000°C. This is equivalent to , and it is possible to improve the output by reflecting negative pressure waves, etc. in a wide rotation speed range from 500 rotations to 9000 rotations. In addition, the broken line (C) shows the combination of two speed adjustment mechanisms 12 and 14, which increases the temperature in the exhaust pipe due to combustion of unburned gas injected from the injection nozzle 13 and increases the temperature of the gas (heated) from the injection nozzle 15. The velocity of the pressure wave further increases due to the injection of water vapor).

そして、破線(ハ)で示すように、必要回転数域を40
00回転に設定した長さ寸法の排気管において、所定量
の加熱水蒸気を噴射させつつ排気管内温度を1000℃
に上昇させることにより必要回転数域を10000回転
に設定した長さ寸法の排気管と等価となる。したがって
、この排気管を用いて加熱水蒸気の噴射と排気管内温度
のm節とにより、4000回転から10000回転のよ
り一層広い回転数域において反射負圧波等による出力向
上を図ることができる。
Then, as shown by the broken line (c), the required rotation speed range is 40
In an exhaust pipe with a length set at 00 rpm, the temperature inside the exhaust pipe is raised to 1000°C while injecting a predetermined amount of heated steam.
By increasing the number of revolutions to 10,000 revolutions, it becomes equivalent to an exhaust pipe whose length dimension is set to 10,000 revolutions. Therefore, by using this exhaust pipe and injecting heated steam and adjusting the temperature within the exhaust pipe at node m, it is possible to improve the output through reflected negative pressure waves and the like in a wider rotational speed range from 4,000 rotations to 10,000 rotations.

つぎに、第3図のグラフ中における破線は、必要回転数
域を3000回転、4000回転、5000回転、60
00回転、7000回転に設定した長さ寸法の排気管を
使用したエンジンにおいて。
Next, the broken lines in the graph of Figure 3 indicate the required rotation speed ranges of 3000 rotations, 4000 rotations, 5000 rotations, and 60 rotations.
In an engine using an exhaust pipe with a length dimension set at 00 rpm and 7000 rpm.

必要回転数域を外れた回転数で運転される場合には機関
出力が著しく低下する状態を示す機関出力曲線である。
This is an engine output curve showing a state in which the engine output decreases significantly when the engine is operated at a rotation speed outside the required rotation speed range.

また、このグラフ中における実線は。Also, the solid line in this graph is.

一つの排気管を使用し1回転数に応じて速度調節機構1
2.14を作動させた場合の機関出力を示すものである
。このグラフかられかるように、実線は破線で示す出力
のピーク値を連続し、同一の排気管を用いなから全ての
回転数(3000〜7000rpm)で最大の出力が得
られる。
Speed adjustment mechanism 1 according to the number of revolutions using one exhaust pipe
This shows the engine output when 2.14 is activated. As can be seen from this graph, the solid line shows the continuous peak value of the output shown by the broken line, and since the same exhaust pipe is used, the maximum output can be obtained at all rotation speeds (3000 to 7000 rpm).

なお、本実施例においては、排気管11内温度を調節す
る手段として排気管ll内に未燃ガスを噴射導入し、こ
れを燃焼させているが、ヒーターを用いて排気管ll内
の気体を加熱してもよいものである。
In this embodiment, as a means to adjust the temperature inside the exhaust pipe 11, unburned gas is injected into the exhaust pipe 11 and is combusted. It may be heated.

発明の効果 本発明は、上述のように速度調節機構により排気管内の
圧力波の速度を調節したことにより、排気口等の開閉タ
イミングに合わせて反射負圧波等を排気口に及ぼすこと
ができ、したがって1回転数の変化に伴なって排気口等
の開閉タイミングが変化した場合においてもそれに合せ
て圧力波の速度を調節し1反射負圧波による掃気の促進
、反射正圧波による新規未燃ガスの充填比の向上により
出力向上を図ることができ、低速回転から高速回転に到
る広い回転数域において出力向上を図ることができる等
の効果を有する。
Effects of the Invention The present invention adjusts the speed of the pressure waves in the exhaust pipe using the speed adjustment mechanism as described above, so that reflected negative pressure waves etc. can be applied to the exhaust port in accordance with the timing of opening and closing of the exhaust port, etc. Therefore, even if the opening/closing timing of the exhaust port, etc. changes due to a change in the number of revolutions, the speed of the pressure wave can be adjusted accordingly, promoting scavenging by the reflected negative pressure wave, and removing new unburned gas by the reflected positive pressure wave. By improving the filling ratio, it is possible to improve the output, and it has the effect that the output can be improved in a wide rotation speed range from low speed rotation to high speed rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側面図、第2図は温度
変化による等価管長を示すグラフ、第3図は機関出力を
示すグラフ、第4図は従来例を示す側面図である。 1・・・2サイクルエンジン、2・・・排気口、4・・
・小径管、6・・・ディフューザ、8・・・リヤコーン
、11・・・排気管、12・・・速度調節機構、14・
・・速度調節機構 出 願 人  石川島芝浦機械株式会社、%Z召 1コジフ回畷l旧!N(ram) Js必図
Fig. 1 is a side view showing an embodiment of the present invention, Fig. 2 is a graph showing equivalent pipe length due to temperature change, Fig. 3 is a graph showing engine output, and Fig. 4 is a side view showing a conventional example. . 1...2-cycle engine, 2...Exhaust port, 4...
・Small diameter pipe, 6... Diffuser, 8... Rear cone, 11... Exhaust pipe, 12... Speed adjustment mechanism, 14...
...Speed adjustment mechanism Applicant: Ishikawajima Shibaura Machinery Co., Ltd. N (ram) Js required

Claims (1)

【特許請求の範囲】[Claims] 小径管とこの小径管の先端側に位置して次第に拡開する
デイフユーザとこのデイフユーザの先端側に位置して次
第に縮径するリヤコーンとを有する排気管を設け、この
排気管の前記小径管を2サイクルエンジンの排気口に接
続し、前記排気口から前記排気管内への排気吹出しによ
り生ずる圧力波の速度を調節する速度調節機構を前記排
気管に設けたことを特徴とする2サイクルエンジンの排
気装置。
An exhaust pipe is provided which has a small diameter pipe, a diff user located on the distal end side of the small diameter pipe and gradually expands, and a rear cone located on the distal end side of the diff user whose diameter gradually decreases. An exhaust system for a two-cycle engine, characterized in that the exhaust pipe is provided with a speed adjustment mechanism that is connected to an exhaust port of the cycle engine and adjusts the speed of pressure waves generated by blowing exhaust gas from the exhaust port into the exhaust pipe. .
JP60053086A 1985-03-15 1985-03-15 Exhaust apparatus for 2-cycle engine Pending JPS61212629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60053086A JPS61212629A (en) 1985-03-15 1985-03-15 Exhaust apparatus for 2-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053086A JPS61212629A (en) 1985-03-15 1985-03-15 Exhaust apparatus for 2-cycle engine

Publications (1)

Publication Number Publication Date
JPS61212629A true JPS61212629A (en) 1986-09-20

Family

ID=12932971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053086A Pending JPS61212629A (en) 1985-03-15 1985-03-15 Exhaust apparatus for 2-cycle engine

Country Status (1)

Country Link
JP (1) JPS61212629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803320A1 (en) * 1988-02-04 1989-08-17 Martin Wimmer Internal combustion engine
WO2009151138A1 (en) * 2008-06-13 2009-12-17 ヤマハ発動機株式会社 Multi-cylinder engine, vehicle, boat, and multi-cylinder engine exhaust method
WO2009151135A1 (en) * 2008-06-13 2009-12-17 ヤマハ発動機株式会社 Engine, vehicle, boat, and engine exhaust method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803320A1 (en) * 1988-02-04 1989-08-17 Martin Wimmer Internal combustion engine
WO2009151138A1 (en) * 2008-06-13 2009-12-17 ヤマハ発動機株式会社 Multi-cylinder engine, vehicle, boat, and multi-cylinder engine exhaust method
WO2009151137A1 (en) * 2008-06-13 2009-12-17 ヤマハ発動機株式会社 Engine, vehicle, boat, and engine exhaust gas cleaning method
WO2009151136A1 (en) * 2008-06-13 2009-12-17 ヤマハ発動機株式会社 Engine, vehicle, boat, and engine secondary air supply method
WO2009151135A1 (en) * 2008-06-13 2009-12-17 ヤマハ発動機株式会社 Engine, vehicle, boat, and engine exhaust method
US8312713B2 (en) 2008-06-13 2012-11-20 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine, vehicle, marine vessel, and exhausting method for internal combustion engine
US8316639B2 (en) 2008-06-13 2012-11-27 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine, vehicle, marine vessel, and exhaust gas cleaning method for internal combustion engine
US8336303B2 (en) 2008-06-13 2012-12-25 Yamaha Hatsudoki Kabushiki Kaisha Multi-cylinder internal combustion engine, vehicle, marine vessel, and exhausting method for multi-cylinder internal combustion engine
US8359836B2 (en) 2008-06-13 2013-01-29 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine, vehicle, marine vessel, and secondary air supply method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4510354B2 (en) Method for controlling fuel injection in an internal combustion engine
US2820339A (en) Turbo-charged internal combustion engines and methods of starting and operating them
EP0990783A3 (en) Apparatus for controlling internal combustion engine
BR9810942A (en) Turbocharger system for internal combustion machines
EA199900537A2 (en) A gas turbine engine combustion system
JPS61212629A (en) Exhaust apparatus for 2-cycle engine
US7441520B2 (en) Valve-timing control apparatus of internal combustion engine
GB2102165A (en) Method of controlling an internal combustion engine
US3782108A (en) Gas turbine
US3254483A (en) Mixing nozzle
KR910001230A (en) Air-fuel ratio control device of internal combustion engine
JPS5974325A (en) Exhaust device for internal-combustion engine
CN111712618A (en) Method for starting a gas turbine engine of a combined cycle power plant
RU93028659A (en) DEVICE FOR STARTING AND REGULATING ENGINES, PREVIOUSLY INTERNAL COMBUSTION
US20030121496A1 (en) Engine control
US4736584A (en) Afterburner apparatus
US4513707A (en) Multiple port intake means for rotary piston engines
JPH0333448A (en) Fuel injection timing control device for intra-cylindrical direct injection type 2-cycle engine
JP2006519955A (en) Control method for engines ignited by compression of a homogeneous mixture
JPS6131287B2 (en)
SE527460C2 (en) Method of operating an internal combustion engine
JP2679825B2 (en) Ignition timing control device for two-stroke engine
JPS57195854A (en) Suction device for internal combustion engine having variable length suction tube
JPH07247846A (en) Operation state control device for engine
JPH08240122A (en) Variable chamber device for two-cycle engine