[go: up one dir, main page]

JPS61212395A - Biological denitrification method for waste water - Google Patents

Biological denitrification method for waste water

Info

Publication number
JPS61212395A
JPS61212395A JP5315585A JP5315585A JPS61212395A JP S61212395 A JPS61212395 A JP S61212395A JP 5315585 A JP5315585 A JP 5315585A JP 5315585 A JP5315585 A JP 5315585A JP S61212395 A JPS61212395 A JP S61212395A
Authority
JP
Japan
Prior art keywords
water
circulation
sludge
amount
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315585A
Other languages
Japanese (ja)
Inventor
Yoshitaka Murakami
村上 嘉孝
Kazuo Kimoto
和雄 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP5315585A priority Critical patent/JPS61212395A/en
Publication of JPS61212395A publication Critical patent/JPS61212395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To make possible the discharge of waste water after controlling efficiently the content of nitrogen therein to a prescribed value or below by measuring the inflow rate of feed water, total nitrogen concn. of the feed water, the concn. of return sludge and the concn. of the activated sludge in circulation water and controlling the flow rates of the circulation liquid and due amt. of the return sludge. CONSTITUTION:The inflow rate of the feed water, the total nitrogen content of the feed water, the concn. of the return sludge and the concn. of the activated sludge in the circulation water are measured in a method for denitrifying biologically the waste water by a nitrifying liquid circulation system. The flow rates of the circulation liquid and the amt. of the return sludge are calculated in accordance with the measured values and the flow rates of the circulation liquid and the amt. of the return sludge are controlled in accordance with the calculated values. As a result, the decrease in the reaction rate caused by the dissolved oxygen carried into an anaerobic tank by the excessive circulation water is prevented and the denitrification efficiency is improved. The cost of the driving power for aeration and liquid circulation is reduced and the cost of the treatment is reduced. The BOD removal efficiency and denitrification efficiency are stabilized as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硝化液循環方式における廃水の生物学的脱窒方
法、就中、廃水量および廃水中の窒素濃度が常に変動す
る都市下水および産業廃水を、効率よく所定濃度以下の
窒素濃度にして排水することができる生物学的脱窒方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for biological denitrification of wastewater in a nitrification solution circulation system, particularly for urban sewage and industrial wastewater where the amount of wastewater and the nitrogen concentration in the wastewater constantly fluctuate. The present invention relates to a biological denitrification method that can efficiently reduce the nitrogen concentration to a predetermined concentration or lower in wastewater.

銃米腹販 従来から廃水処理には主として活性汚泥を用いた生物学
的処理法が採用されている。従来の活性汚泥処理は主と
してBOD成分の除去が目的であり、窒素成分の除去に
本格的に取組まれたのはごく最近のことである。廃水の
生物学的脱窒処理法はまだ開発段階にあることから、そ
の操作管理は、初期設定値や手動管理にもとづいて行な
われているのが現状である。これらの初期設定値は予想
される最大負荷(廃水濃度×廃水量)と最低水温時の除
去速度をもとにしている。これらの値は日や時間もしく
は季節によって変動するが、負荷が低下したり、除去速
度が上昇した際に初期の設定値で運転を行った場合には
、必要以上の循環水や返送汚泥が流れることとなり、以
下のごとき問題を生ずることとなる。
Biological treatment methods using activated sludge have traditionally been used for wastewater treatment. Conventional activated sludge treatment is mainly aimed at removing BOD components, and only recently has serious efforts been made to remove nitrogen components. Since the biological denitrification treatment method for wastewater is still in the development stage, its operation and management is currently performed based on default settings and manual management. These initial settings are based on the expected maximum load (wastewater concentration x wastewater volume) and the removal rate at the lowest water temperature. These values vary depending on the day, time, or season, but if operation is performed at the initial set values when the load decreases or the removal rate increases, more circulating water and return sludge will flow than necessary. This results in the following problems.

■ 必要以上の循環水によって持ち込まれる溶存酸素に
より、嫌気槽の嫌気レベルが低下し、脱窒反応を遅らせ
る。
■ Dissolved oxygen brought in by more circulating water than necessary reduces the anaerobic level in the anaerobic tank and slows denitrification reactions.

■ 必要以上の循環水によって溶存酸素が好気槽から流
出する為、曝気に要する動力費が上昇する、また好気槽
での曝気を高濃度酸素含有ガスで行なう場合は酸素の消
費量が上昇する。
■ Dissolved oxygen flows out of the aerobic tank due to more water being circulated than necessary, increasing the power cost required for aeration. Also, when aerating the aerobic tank with a gas containing high concentration oxygen, the amount of oxygen consumed increases. do.

■ 硝化液循環、汚泥返送の為の動力費が上昇する。■ Power costs for nitrification liquid circulation and sludge return will increase.

また、プロセス内の脱窒反応、硝化反応、BOD酸化反
応を安定して行なイつ仕る為には処理槽内の活性汚泥濃
度を常に一定に保つ必要がある。BOD成分の除去のみ
を対象とする一般の活性汚泥プロセスでは原水中と返送
汚泥濃度から返送汚泥量を決定すれば処理槽内の活性汚
泥濃度を制御することが可能であるが、硝化液循環方式
による生物学的脱窒法の場合には、脱窒率を適正範囲に
設定する必要上それのみで満足すべき管理を行なうこと
はできない。
Furthermore, in order to stably perform the denitrification reaction, nitrification reaction, and BOD oxidation reaction in the process, it is necessary to keep the activated sludge concentration in the treatment tank constant at all times. In a general activated sludge process that targets only the removal of BOD components, it is possible to control the activated sludge concentration in the treatment tank by determining the amount of returned sludge from the concentration of raw water and returned sludge, but the nitrification liquid circulation method In the case of the biological denitrification method, it is necessary to set the denitrification rate within an appropriate range, and it is not possible to perform satisfactory management using only this method.

発明が解決しようとする問題点 本発明は、硝化液循環方式における廃水の生物、  学
的脱窒法において、原水中の窒素濃度、原水量の変動に
対応して活性汚泥処理工程における操作条件を、自動的
に制御し、効率よく所定値以下の窒素含量にして排水す
ることのできる廃水の生物学的脱窒法および装置を提供
することを目的とす問題点を解決するための手段 本発明は硝化液循環方式により廃水を生物学的に脱窒す
るための方法において、原水の流入量、原水の全窒素濃
度、返送汚泥濃度および循環水の活性汚泥濃度を測定し
、該測定値にもとづき循環液量および返送汚泥量を演算
し、該演算値にもとづき循環液量および返送汚泥量を制
御することを特徴とする廃水の生物学的脱窒方法に関す
る。
Problems to be Solved by the Invention The present invention aims to improve the operating conditions in the activated sludge treatment process in response to fluctuations in the nitrogen concentration in raw water and the amount of raw water in a biological and chemical denitrification method for wastewater using a nitrification liquid circulation system. An object of the present invention is to provide a biological denitrification method and device for wastewater that can be automatically controlled and efficiently reduced to a nitrogen content below a predetermined value before being discharged. In a method for biologically denitrifying wastewater using a liquid circulation method, the inflow amount of raw water, total nitrogen concentration of raw water, return sludge concentration, and activated sludge concentration of circulating water are measured, and based on the measured values, the circulating fluid is denitrified. The present invention relates to a method for biological denitrification of wastewater, characterized in that the amount of circulating fluid and the amount of returned sludge are controlled based on the calculated values.

本発明装置を用いた生物学的脱窒方法の概要を第1図を
用いて゛説明する。
An overview of the biological denitrification method using the apparatus of the present invention will be explained using FIG.

硝化液循環方式による廃水め生物学的脱窒法とは、有機
物を分解する好気性菌、ケルダール性窒素を酸化態窒素
に酸化する硝化菌および酸化態窒素を窒素ガスに還元す
る脱窒菌の混在する単相汚泥を用い、これを脱窒槽(1
)と硝化槽(2)に入れ、原水(4)を脱窒槽(1)を
経て硝化槽(2)に導入し、硝化槽(2)中で空気また
は酸素曝気により酸化した酸化態窒素を含む硝化液(6
)を脱窒槽に循環し、脱窒槽において、原水中のBOD
成分を有機炭素源として酸化態窒素を還元して脱窒する
方法を云い、例えばルドザック法、これを改良した、特
開昭57−10391号公報、特願昭59−26939
0号、特願昭59−269391号等に示された種々の
方法が包含される。
Biological denitrification of wastewater using a nitrifying solution circulation method involves a mixture of aerobic bacteria that decompose organic matter, nitrifying bacteria that oxidize Kjeldahl nitrogen to oxidized nitrogen, and denitrifying bacteria that reduce oxidized nitrogen to nitrogen gas. Using single-phase sludge, this is transferred to a denitrification tank (1
) and the nitrification tank (2), and the raw water (4) is introduced into the nitrification tank (2) via the denitrification tank (1), and contains oxidized nitrogen that has been oxidized by air or oxygen aeration in the nitrification tank (2). Nitrification liquid (6
) is circulated to the denitrification tank, and in the denitrification tank, the BOD in the raw water is
A method of denitrification by reducing oxidized nitrogen using a component as an organic carbon source, such as the Rudzak method, improved versions of which are disclosed in JP-A No. 57-10391 and Japanese Patent Application No. 59-26939.
0, Japanese Patent Application No. 59-269391, and the like.

排水される処理水はそれが環境汚染を生じない程度、即
ち目標値まで脱窒素およびBOD成分の除去が行なわれ
る必要がある。しかしながら処理システムに導入される
原水(4)は例えば下水等であって処理量およびBOD
成分の量、全窒素濃度は刻々と変化するものであるから
、これを前記目標値に入るよう、かつ効率よく処理シス
テムを稼動させるには、他の要素を適当に制御する必要
がある。本発明ではその制御を、硝化液の循環型(6)
および返送汚泥量(7)の制御により行なう点に特徴が
ある。
The treated water to be discharged needs to be denitrified and BOD components removed to an extent that it does not cause environmental pollution, that is, to a target value. However, the raw water (4) introduced into the treatment system is, for example, sewage, and the amount of treatment and BOD
Since the amounts of the components and the total nitrogen concentration change from moment to moment, it is necessary to appropriately control other factors in order to keep them within the target values and to operate the treatment system efficiently. In the present invention, the control is performed using a nitrification liquid circulation type (6).
The feature is that this is carried out by controlling the amount of returned sludge (7).

即ち、本発明ではまず原水の流入41(Q)、原水の全
窒素濃度(Nin)、返送汚泥濃度(CR)、循環水の
活性汚泥濃度(Cc)をそれぞれ原水流量測定手段(9
)、原水全窒素濃度測定手段(10)、循環水汚泥濃度
測定手段(11)および返送汚泥濃度測定手段(12)
を用いて測定する。
That is, in the present invention, first, the raw water inflow 41 (Q), the total nitrogen concentration (Nin) of the raw water, the returned sludge concentration (CR), and the activated sludge concentration (Cc) of the circulating water are measured by the raw water flow rate measuring means (9).
), raw water total nitrogen concentration measuring means (10), circulating water sludge concentration measuring means (11), and return sludge concentration measuring means (12)
Measure using.

一方、処理水の全窒素濃度の目標値をNg、処理槽内の
活性汚泥6度の目標値をcgとすると、式: [式中、RA、Raはそれぞれ(1−RA)が鎌気槽で
の脱窒率、(1−R,)が好気槽での硝化率を示し、通
常、(1−RA)および(1−R,)はいずれも0.8
0〜0.98の範囲に設定される。rlは流入水IQに
対する循環水の比およびr、は流入水ff1Qに対する
返送汚泥の比を示す値]である。
On the other hand, if the target value of the total nitrogen concentration of the treated water is Ng, and the target value of the activated sludge 6 degree in the treatment tank is cg, then the formula: [In the formula, RA and Ra are respectively (1-RA) The denitrification rate in the aerobic tank, (1-R,) indicates the nitrification rate in the aerobic tank, and usually both (1-RA) and (1-R,) are 0.8.
It is set in the range of 0 to 0.98. rl is the ratio of circulating water to inflow water IQ, and r is a value indicating the ratio of returned sludge to inflow water ff1Q].

従って、原水の流入量(Q)、原水の全窒素濃度(Ni
n)、返送汚泥濃度(CR)、循環水の活性汚泥濃度(
Cc)を制御因子とし、その測定値をらとに上記式から
演算手段(13)を用いてr、およびr、を求め、これ
により循環水量制御手段(14)と返送汚泥量の制御手
段(15)を作用させることにより、廃水の生物学的脱
窒を全自動的に効率よく行なうことが可能となる。
Therefore, the amount of inflow of raw water (Q), the total nitrogen concentration of raw water (Ni
n), return sludge concentration (CR), activated sludge concentration of circulating water (
Cc) as a control factor, and using the above-mentioned formula to calculate r and r, using the measured value as a control factor, the circulating water amount control means (14) and the return sludge amount control means ( 15) makes it possible to fully automatically and efficiently perform biological denitrification of wastewater.

また、本発明においては原水流入量、原水中の全窒素濃
度、返送汚泥濃度、循環水の活性汚泥濃度を常時監視し
、その測定値をもとに直ちに循環水量、返送汚泥量を連
続して制御する方法がより好ましいが、一般的な全窒素
濃度自動分析計では、分析に時間を要する為、試料のサ
ンプリング周期を15〜60分程度としている。したが
って、本性の制御周期としては、15〜120分、より
好ましくは30〜60分に設定するのがよい。この場合
、各制御周期における平均の流入水量、原水の全窒素濃
度の平均値、返送汚泥濃度の平均値、循環水の活性汚泥
濃度の平均値は数学的な手段を用いて予測し、演算時の
データとするのが良い。
In addition, in the present invention, the amount of raw water flowing in, the total nitrogen concentration in the raw water, the returned sludge concentration, and the activated sludge concentration in the circulating water are constantly monitored, and based on the measured values, the circulating water amount and returned sludge amount are continuously adjusted. A control method is more preferable, but since analysis requires time in a typical total nitrogen concentration automatic analyzer, the sample sampling period is set to about 15 to 60 minutes. Therefore, the actual control period is preferably set to 15 to 120 minutes, more preferably 30 to 60 minutes. In this case, the average amount of inflow water, average total nitrogen concentration of raw water, average value of returned sludge concentration, and average value of activated sludge concentration of circulating water in each control cycle are predicted using mathematical means, and the average value of activated sludge concentration in circulating water is predicted using mathematical means. It is better to use the data of

数学的予測手法としては一般に自己回帰モデルが用いら
れる。
An autoregressive model is generally used as a mathematical prediction method.

m次の自己回帰モデルでは、時刻t1における値X(b
)は、時刻(1+ −1)における値xQ+−t)。
In the m-th order autoregressive model, the value X(b
) is the value xQ+-t) at time (1+-1).

時刻(t+−2t)における値x(t+−2t) 、・
・時刻(t l−mt)におけろ値X(b  nt)を
用いて、X(L+)−a X(b  t)+ a X(
t+  2t)””+ am x(t+−mt)で表わ
される。ここにalla、・・・a□はm次の自己回帰
式の係数であり、その現象に関する既存のデータを用い
て数学的に決定することができる。自己回帰モデルの次
数mの最適値も既存のデータを用いて数学的に決定され
るが、制御周期を30〜60分にした場合、一般にmの
値は2〜4となる。
Value x(t+-2t) at time (t+-2t),・
- Using the value X (b nt) at time (t l - mt), X (L +) - a X (b t) + a X (
t+2t)""+am x(t+-mt). Here, alla, . . . a□ are coefficients of an m-th order autoregressive equation, and can be determined mathematically using existing data regarding the phenomenon. The optimal value of the order m of the autoregressive model is also determined mathematically using existing data, but when the control period is set to 30 to 60 minutes, the value of m is generally 2 to 4.

以下、実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

寒皇桝 生活雑排水を含む食品製造排水(処理原水)を第1図に
示す生物学的脱窒装置を用いて処理した。
Food manufacturing wastewater (treated raw water) containing Kannojo gray water was treated using the biological denitrification equipment shown in Figure 1.

装置仕様および処理条件は以下の通りである。The device specifications and processing conditions are as follows.

なお、同一装置を用い制御を手動で行なったものを比較
例として示す。
Note that a comparative example in which the same device was used and the control was performed manually is shown.

装置仕様 嫌気槽:            450Il好気槽:
第1硝化槽      390!第2硝化槽     
 3901゜ 原水流入量測定手段     :電磁流量計原水の全窒
素濃度測定手段  :全窒素自動分析計 返送汚泥濃度測定手段    :散乱光比較式循環水の
活性汚泥濃度測定手段:散乱光比較式MLSS計 パルプ 返送汚泥量制御手段     コ  〃処理条件 処理原水水質:  BOD  平均250mg/4総窒
素量   23mg/兇 処理原水流入量:       6.7m’/日第1硝
化槽の曝気ガス 中の酸素濃度:    35% 第2硝化槽の曝気ガス 中の酸素濃度=    70% 上記の処理によって得られた結果を表−1に示す。
Equipment specifications Anaerobic tank: 450Il aerobic tank:
1st nitrification tank 390! Second nitrification tank
3901゜ Raw water inflow measuring means: Electromagnetic flow meter Total nitrogen concentration measuring means of raw water: Total nitrogen automatic analyzer Return sludge concentration measuring means: Scattered light comparison type Circulating water activated sludge concentration measuring means: Scattered light comparison type MLSS meter Pulp Returned sludge amount control means 〃Processing conditions Processing raw water quality: BOD average 250mg/4Total nitrogen amount 23mg/kg Processing raw water inflow: 6.7m'/day Oxygen concentration in aeration gas of No. 1 nitrification tank: 35% Oxygen concentration in the aeration gas of the 2 nitrification tank = 70% The results obtained by the above treatment are shown in Table 1.

注1:実施例(A)における処理槽内汚泥濃度は返送汚
泥量を制御することにより自動的に調整し得るが、その
目標値(Cg)を5000mg/克とした。
Note 1: Although the sludge concentration in the treatment tank in Example (A) can be automatically adjusted by controlling the amount of returned sludge, the target value (Cg) was set to 5000 mg/k.

比較例(B)では、活性汚泥を手動で徐々に抜きとりつ
つ処理を行なった。従って汚泥濃度は抜き取りによる減
少と自然増殖による増加分を合わせたデーターである。
In Comparative Example (B), the activated sludge was gradually removed manually. Therefore, the sludge concentration is the sum of the decrease due to sampling and the increase due to natural growth.

注2二 酸化還元電位は槽内の味気レベルを表わし、低
ければ低い程鎌気のレベルが高いことを示す。実施例で
は循環水量が少ないため、嫌気レベルが高く保たれてい
ることがわかる。
Note 22 The redox potential represents the level of taste in the tank, and the lower it is, the higher the level of kamaki. It can be seen that in the example, since the amount of circulating water was small, the anaerobic level was kept high.

注3: 比較例(D)のピークは、処理原水中の窒素濃
度および原水量の増加に起因するものであり、これらの
影響が直接排水中の総窒素量に影響を与えることを示し
ている。
Note 3: The peak in Comparative Example (D) is due to an increase in the nitrogen concentration in the treated raw water and the amount of raw water, indicating that these effects directly affect the total nitrogen content in the wastewater. .

一方、本実施例(C)は、処理原水中の窒素濃度や量の
変動に影響されず、排水中の総窒素量の変動を±1 m
g/ 11の範囲に抑えることができることを示してい
る。
On the other hand, this example (C) is not affected by fluctuations in the nitrogen concentration or amount in the treated raw water, and can suppress fluctuations in the total nitrogen amount in wastewater by ±1 m
This shows that it is possible to keep the amount within the range of g/11.

注4:  循環水量、返送汚泥量は、実施例では自動制
御で送られた量の1日合計、比較例では固定された量(
但し、返送汚泥量は1日1回調整)。
Note 4: The amount of circulating water and the amount of returned sludge are the daily total of the amount sent under automatic control in the example, and the fixed amount (
However, the amount of returned sludge is adjusted once a day).

なお、実施例は、比較例より少ない循環水量、返送汚泥
量で、比較例以上にBOD成分、総窒素が除去された処
理水が得られている。
In addition, in the example, treated water with BOD components and total nitrogen removed more than the comparative example was obtained with a smaller amount of circulating water and a smaller amount of returned sludge than the comparative example.

発明の効果 (1)過剰な循環水により、嫌気槽にもちこまれる溶存
酸素によっておこる反応速度の低下を防ぎ、脱窒効率が
向上する。
Effects of the invention (1) Excess circulating water prevents a reduction in reaction rate caused by dissolved oxygen brought into the anaerobic tank, and improves denitrification efficiency.

(2)曝気および液循環の為の動力費が削減され、処理
コストが低減される。
(2) Power costs for aeration and liquid circulation are reduced, reducing processing costs.

(3)B OD除去効率、脱窒効率の安定化がはかれる
(3) BOD removal efficiency and denitrification efficiency are stabilized.

(4)循環水によって流出する溶存酸素が減少する為、
好気槽での曝気を高蟲度酸素含有ガスで行なう場合、酸
素消費量が減少する。
(4) Dissolved oxygen flowing out due to circulating water decreases,
When aeration in an aerobic tank is performed with a high-strength oxygen-containing gas, the amount of oxygen consumed decreases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の概要図、第2図は処理槽内汚泥濃
度の経時変化を示す図、第3図は排水中の総窒素濃度の
経時変化を示す図。 (1)  嫌気槽(脱窒槽) (2)好気槽(硝化槽) (2°)第1硝化槽 (2” ’)第2硝化槽 (3)沈降槽 (4)原 水 (5)処理水 (6)循環水 (7)返送汚泥、 (8)余剰汚泥、 (9)原水流量測定手段、 (I O)原水全窒素濃度測定手段、 (2)循環水汚泥濃度測定手段、 (12)返送汚泥濃度測定手段、 (13)演 算 部、 (14)循環水量の制御手段、 (15)返送汚泥量の制御手段、 (A)、(C)  本発明実施例で得られた結果、(B
)、(D)  比較例で得られた結果。 <1/BuJ)*’t−Y’aGuakN5t00QQ
QC!O d6のψ?〜
FIG. 1 is a schematic diagram of the apparatus of the present invention, FIG. 2 is a diagram showing changes over time in sludge concentration in a treatment tank, and FIG. 3 is a diagram showing changes in total nitrogen concentration in wastewater over time. (1) Anaerobic tank (denitrification tank) (2) Aerobic tank (nitrification tank) (2°) First nitrification tank (2”’) Second nitrification tank (3) Sedimentation tank (4) Raw water (5) Treatment Water (6) Circulating water (7) Returned sludge, (8) Excess sludge, (9) Raw water flow rate measuring means, (IO) Raw water total nitrogen concentration measuring means, (2) Circulating water sludge concentration measuring means, (12) return sludge concentration measuring means, (13) calculation unit, (14) circulating water amount control means, (15) return sludge amount control means, (A), (C) results obtained in the examples of the present invention, ( B
), (D) Results obtained in comparative examples. <1/BuJ) *'t-Y'aGuakN5t00QQ
QC! ψ of O d6? ~

Claims (1)

【特許請求の範囲】[Claims] 1、硝化液循環方式により廃水を生物学的に脱窒する方
法において、原水の流入量、原水の全窒素濃度、返送汚
泥濃度および循環水の活性汚泥濃度を測定し、該測定値
にもとづき循環液量および返送汚泥量を演算し、該演算
値にもとづき循環液量および返送汚泥量を制御すること
を特徴とする廃水の生物学的脱窒方法。
1. In a method of biologically denitrifying wastewater using a nitrifying solution circulation method, the inflow of raw water, total nitrogen concentration of raw water, return sludge concentration, and activated sludge concentration of circulating water are measured, and the circulation is started based on the measured values. A method for biological denitrification of wastewater, which comprises calculating the amount of liquid and the amount of returned sludge, and controlling the amount of circulating liquid and the amount of returned sludge based on the calculated values.
JP5315585A 1985-03-16 1985-03-16 Biological denitrification method for waste water Pending JPS61212395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315585A JPS61212395A (en) 1985-03-16 1985-03-16 Biological denitrification method for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315585A JPS61212395A (en) 1985-03-16 1985-03-16 Biological denitrification method for waste water

Publications (1)

Publication Number Publication Date
JPS61212395A true JPS61212395A (en) 1986-09-20

Family

ID=12934952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315585A Pending JPS61212395A (en) 1985-03-16 1985-03-16 Biological denitrification method for waste water

Country Status (1)

Country Link
JP (1) JPS61212395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307094A (en) * 2001-04-13 2002-10-22 Toshiba Corp Sewage treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307094A (en) * 2001-04-13 2002-10-22 Toshiba Corp Sewage treatment system

Similar Documents

Publication Publication Date Title
JP4714399B2 (en) Waste treatment with control of biological solids
US5076928A (en) Process for biological wastewater treatment
US8845900B2 (en) Apparatus and methods for control of waste treatment processes
US20120175302A1 (en) Apparatus and methods for control of waste treatment processes
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP2011005354A (en) Method of operating activated sludge capable of simultaneously treating bod and nitrogen
JP3397102B2 (en) Control method of intermittent aeration type activated sludge method
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JPS61212395A (en) Biological denitrification method for waste water
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH0938683A (en) Biological water treatment equipment
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3704697B2 (en) Waste water nitrification method and apparatus and nitrogen removal apparatus
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPS621496A (en) Two-stage microbiological treatment of organic dirty waste water
US7850850B2 (en) Apparatus and methods for control of waste treatment processes
JP2001276867A (en) Anaerobic and aerobic activated sludge treating method and equipment therefor
JP2001009497A (en) Biological water treatment method and equipment
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
Coskuner et al. Performance assessment of a wastewater treatment plant treating weak campus wastewater
JP3690537B2 (en) Intermittent aeration
JP2002136990A (en) Wastewater treatment equipment and control methods
JPS6347518B2 (en)