[go: up one dir, main page]

JPS61210920A - Automatic birefringence meter - Google Patents

Automatic birefringence meter

Info

Publication number
JPS61210920A
JPS61210920A JP5284285A JP5284285A JPS61210920A JP S61210920 A JPS61210920 A JP S61210920A JP 5284285 A JP5284285 A JP 5284285A JP 5284285 A JP5284285 A JP 5284285A JP S61210920 A JPS61210920 A JP S61210920A
Authority
JP
Japan
Prior art keywords
rotating
polarizer
rotary
measurement
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5284285A
Other languages
Japanese (ja)
Other versions
JP2645252B2 (en
Inventor
Masayoshi Yamada
正良 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60052842A priority Critical patent/JP2645252B2/en
Publication of JPS61210920A publication Critical patent/JPS61210920A/en
Application granted granted Critical
Publication of JP2645252B2 publication Critical patent/JP2645252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure automatically the main vibration orientation and phase delay of a birefringence substance quickly at high accuracy by using a rotary polarizer and a rotary analyses. CONSTITUTION:A light beam with less polarization coming out of a single color light source composed of a light source 1 and a spectroscope or an interference filter 2, or laser is irradiated on the arbitrary part of the birefringence substance 5 made into a plate-like shape, which is fitted on a biaxial jogging device 6, through the rotary polarizer 4, and the polarized light component of the transmitted light is measured by a photodetector 9 through a rotary analyses 7. With the use of a microprocessor having display and arithmetic processing functions, a control, measurement, display and arithmetic processing part 10 adjusts the polarized light orientation of the rotary polarizer 4, that of the rotary analyses 7 and the biaxial jogging device 6 setting the irradiated part of the plate-like birefringence substance 5, and measures an electrical output signal from the photodetector 9. Thus, the birefringence and distribution can be automatically measured quickly at high accuracy.

Description

【発明の詳細な説明】 この発明は複屈折物質の主振動方位と位相遅れを高い精
度で高速かつ自動的に測定できる自動複屈折計の構成方
法と測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for configuring and measuring an automatic birefringence meter that can automatically measure the principal vibrational direction and phase delay of a birefringent substance at high speed and with high accuracy.

光学的に異方性のある物質や、力あるいは電磁場などが
加わって光学的に異方性を生じている物質の中に、振動
数が一定の光の平面波を入射させると、光は2つの平面
波に分かれて進行し、それらの進行方向は同じであるが
、電気ベクトルの直線的な偏りの方向および位相速度が
異なる結果、2つの平面波に対する物質の屈折率に差異
を生じる。この屈折率の差異を複屈折という、複屈折は
、物質の構造や物質に加わっている外場の影響を敏感に
反映するので、物質の構造や性質の研究に対して感度の
高い有用な方法を与える。
When a plane wave of light with a constant frequency is incident on a material that is optically anisotropic, or a material that has become optically anisotropic due to the addition of a force or an electromagnetic field, the light will split into two waves. The two plane waves are separated and travel in the same direction, but the direction of the linear deflection of the electric vector and the phase velocity are different, resulting in a difference in the refractive index of the material for the two plane waves. This difference in refractive index is called birefringence.Birefringence sensitively reflects the structure of materials and the influence of external fields applied to them, so it is a highly sensitive and useful method for studying the structure and properties of materials. give.

複屈折の測定には、一般的に、単色光源、偏光子、被測
定複屈折物質、検光子および光検出器が用いられ、主振
動方位を決めた後、位相遅れを決定するという2段の手
続きで行われる。
To measure birefringence, a monochromatic light source, a polarizer, a birefringent material to be measured, an analyzer, and a photodetector are generally used. After determining the principal vibration direction, the phase delay is determined. It is done by procedure.

しかしながら、これを手動で行う場合、調整操作にかな
りの熟練を必要とするし、測定にも長い時間を必要とす
るので、高い精度で自動的に測定できる自動複屈折計の
開発が強く望まれている。また、動的に変化する系にお
ける複屈折の測定や複屈折の分布を求めるために多点測
定を行う場合には、高速で自動的に測定できる自動複屈
折計が望ましいのは明らかである。さらに、複屈折の測
定から物質の構造や性質に関する情報、例えば、光弾性
効果により生じる複屈折から半導体ウェーハの残留ひず
みを、直接自動的に得られれば、なお好ましいのは明ら
かである。
However, if this is done manually, the adjustment operation requires considerable skill and the measurement takes a long time, so the development of an automatic birefringence meter that can automatically measure with high precision is strongly desired. ing. Furthermore, when performing multi-point measurements to measure birefringence in a dynamically changing system or to determine the distribution of birefringence, it is obvious that an automatic birefringence meter that can perform high-speed and automatic measurements is desirable. Furthermore, it is clear that it would be even more preferable to directly and automatically obtain information regarding the structure and properties of a substance from the measurement of birefringence, for example, the residual strain of a semiconductor wafer from the birefringence caused by the photoelastic effect.

本発明の目的は、高い精度で高速かつ自動的に複屈折物
質の主振動方位と位相遅れを測定できる自動複屈折計を
提供し、これを具体的に実現するための構成方法と測定
方法を与えることにある。
The purpose of the present invention is to provide an automatic birefringence meter that can quickly and automatically measure the principal vibrational direction and phase delay of a birefringent substance with high precision, and to provide a configuration method and a measurement method for specifically realizing this. It's about giving.

まず、本発明の自動複屈折計の構成を第1図について説
明すると、 (イ)光源lと分光器または干渉フィルタ2からなる単
色光源から出射する単色光をレンズ3によって収束して
、平板状にした被測定複屈折物質5に照射し、その透過
光をレンズ8で集め、光検出器9で電気信号として検出
し得る透過光測定部を構成する。この場合、複屈折の分
布が測定できるように、被測定複屈折物質5をパルスモ
ータまたはサーボモータにより駆動される二輪微動器6
に取付けて、照射位置が外部制御信号で任意の部分に設
定できるようにする。ここで用いる単色光源としては、
偏りの少ないものが好ましく、偏りのある場合には、偏
光解消子などを用いて偏りを少なくする必要がある。ま
た、光源1と分光器または干渉フィルタ2からなる単色
光源の替わりに、レーザを用いても良い。
First, the configuration of the automatic birefringence meter of the present invention will be explained with reference to FIG. 1. The transmitted light is irradiated onto the birefringent substance 5 to be measured, the transmitted light is collected by the lens 8, and the transmitted light can be detected as an electrical signal by the photodetector 9. In this case, in order to measure the distribution of birefringence, the birefringent substance 5 to be measured is moved by a two-wheel microstimulator 6 driven by a pulse motor or a servo motor.
The irradiation position can be set to any part using an external control signal. The monochromatic light source used here is
It is preferable that there is little bias, and if there is bias, it is necessary to reduce the bias using a depolarizer or the like. Further, instead of the monochromatic light source consisting of the light source 1 and the spectrometer or the interference filter 2, a laser may be used.

(ワ)透過光測定部に、本発明の重要構成物である外部
’5ifll信号にて偏光方位が任意に設定できるパル
スそ一夕またはサーボモータにより回転駆動される回転
偏光子4と回転検光子7を、被測定複屈折物質5の前後
の位置に付加して、任意の偏光方位の光を被測定複屈折
物質5の任意の部分に照射し、その透過光の任意の偏光
成分を検出できる偏光透過光測定部を構成する。
(W) The transmitted light measuring section includes a rotating polarizer 4 and a rotating analyzer, which are rotationally driven by a pulse generator or a servo motor, the polarization direction of which can be arbitrarily set using an external '5ifll signal, which are important components of the present invention. 7 at the front and back positions of the birefringent substance to be measured 5, light of any polarization direction can be irradiated to any part of the birefringent substance to be measured 5, and any polarization component of the transmitted light can be detected. This constitutes a polarized transmitted light measuring section.

(ハ)二輪微動器6、回転偏光子4および回転検光子7
への制御信号が入出力でき、光検出器9からの電気出力
信号を計測できる表示・演算処理機能を備えたマイクロ
プロセッサを用いた帽I計測・表示・演算処理部10を
構成する。この場合、マイクロプロセッサを用いた帽ト
計測・表示・演算処理部10の替わりに、例えば、FI
IJITStl FM−11のようなfi用のマイクロ
コンビエータに制御・計測機能を付加して用いても良い
(c) Two-wheel microstimulator 6, rotating polarizer 4, and rotating analyzer 7
A cap I measurement/display/arithmetic processing unit 10 is configured using a microprocessor having a display/arithmetic processing function capable of inputting/outputting control signals to and measuring electrical output signals from the photodetector 9. In this case, instead of the measurement/display/arithmetic processing unit 10 using a microprocessor, for example, an FI
A micro combinator for fi such as IJITStl FM-11 may be used by adding control and measurement functions.

次に、以上のように偏光透過光測定部と制御・計測・表
示・演算処理部から構成される自動複屈折計を用いて、
高い精度で高速かつ自動的に平板状にした複屈折物質の
主振動方位と位相遅れを決定する測定方法について説明
する。
Next, using an automatic birefringence meter consisting of a polarized transmitted light measurement section and a control/measurement/display/arithmetic processing section as described above,
We will explain a measurement method that automatically determines the principal vibrational direction and phase delay of a birefringent material made into a flat plate with high precision and at high speed.

本発明の自動複屈折計において、第2図に示すように、
基準方位Oxに対して、互いに直交する複屈折物質の主
振動方位OD° と0「のうちの1つ、例えば、00’
が角度ψを、また、回転偏光子4の偏光方位OPが角度
φをなしており、その回転偏光子4の偏光方位OPに対
して回転検光子7の偏光方位OAが角度χをなしている
系に、強度1oの光が入射する場合、その透過光の強度
Iは、複屈折物質の表面における反射(反射率:R)を
考慮に入れ、文献(M、8orn andεJolf:
Pr1nciples of 0ptics 4th 
ed、、  PergamonPress、  p、6
95.’1970)に従うと、1−1o(1−R)” 
(cos’  x −5in2(φ−ψ)x 5in2
(φ−ψ+χ)sin”δ/2+ (1)と表わされる
。ここに、ψとδは、それぞれ、測定しようとする平板
状にした複屈折物質の主振動方位と位相遅れである。
In the automatic birefringence meter of the present invention, as shown in FIG.
One of the principal vibrational directions OD° and 0' of the birefringent material, which are orthogonal to each other with respect to the reference direction Ox, for example, 00'
is an angle ψ, and the polarization azimuth OP of the rotating polarizer 4 is an angle φ, and the polarization azimuth OA of the rotating analyzer 7 is an angle χ with respect to the polarization azimuth OP of the rotating polarizer 4. When light with an intensity of 1o is incident on the system, the intensity I of the transmitted light is determined by taking into account the reflection (reflectance: R) on the surface of the birefringent material, as described in the literature (M, 8orn and εJolf:
Pr1nciples of 0ptics 4th
ed, Pergamon Press, p. 6
95. '1970), 1-1o (1-R)''
(cos' x −5in2(φ−ψ)x 5in2
It is expressed as (φ−ψ+χ)sin”δ/2+ (1) where ψ and δ are the principal vibration direction and phase delay of the flat birefringent material to be measured, respectively.

今、この系で次の2つの場合を考える。Now consider the following two cases in this system.

(A)回転偏光子4の偏光方位と回転検光子7の偏光方
位が平行の場合(χ−0)、 式(1)は、 1、、m1o(1−R) (1−sin 2(φ−φ)
 、stnδ/21 (2)となる。
(A) When the polarization direction of the rotating polarizer 4 and the polarization direction of the rotating analyzer 7 are parallel (χ-0), formula (1) is 1,, m1o(1-R) (1-sin 2(φ −φ)
, stnδ/21 (2).

(B)回転偏光子4の偏光方位と回転検光子7の偏光方
位が垂直の場合(χ−π/2)、式(1)は 1i=Io(1−R) Sln  2(φ−ψ) si
n”δ/2  (3)となる。
(B) When the polarization direction of the rotating polarizer 4 and the polarization direction of the rotating analyzer 7 are perpendicular (χ-π/2), equation (1) is 1i=Io(1-R) Sln 2(φ-ψ) si
n”δ/2 (3).

これら2つの場合(A)と(B)、すなわち式(2)と
(3)から、本発明の新しい測定方法の基礎となる方程
式 %式%(4) が求まる。この方程式(4)は入射光強度■0と複屈折
物質表面の反射率Rに関係していないのが特徴ある。し
たがって、φの関数として、IllとIJLを測定し、
方程式(4)を満たすψとδを決定すれば良い、この時
、I上/ (Ih+1+)の最小値を与えるφが主振動
方位ψであり、■↓/(IA+II+)の最大値はsi
n’δ/2となるので、これから位相遅れδを求めるこ
とができる。具体的測定方法としては、例えば、 (a)まず、回転偏光子4と回転検光子7の偏光方位を
平行(χ−0)にして、基準方位OXから10度毎に1
回転(φ−0°、lOo、20゜・・・ 350°)の
透過光の強度■、1を測定する。
From these two cases (A) and (B), that is, equations (2) and (3), the equation (4) that forms the basis of the new measurement method of the present invention is determined. This equation (4) is characterized in that it is not related to the incident light intensity ■0 and the reflectance R of the surface of the birefringent material. Therefore, we measure Ill and IJL as functions of φ,
All you have to do is determine ψ and δ that satisfy equation (4). At this time, φ that gives the minimum value on I/(Ih+1+) is the principal vibration direction ψ, and the maximum value of ■↓/(IA+II+) is si
Since n'δ/2 is obtained, the phase delay δ can be obtained from this. As a specific measurement method, for example, (a) First, the polarization directions of the rotating polarizer 4 and the rotating analyzer 7 are made parallel (χ-0), and the polarization direction is set at 10 degrees every 10 degrees from the reference direction OX.
Measure the intensity of the transmitted light during rotation (φ-0°, lOo, 20°...350°).

測定結果例を第3(a)図に示す。An example of the measurement results is shown in FIG. 3(a).

(b)同様に、回転偏光子4と回転検光子7の偏光方位
を垂直(χ−π/2)にして、基準方位OXカら10度
毎に1回転(φ=0°、10°、20° ・・・ 35
0” )の透過光の強度!上を測定する。測定結果例を
第3(b)図に示す。
(b) Similarly, the polarization directions of the rotating polarizer 4 and the rotating analyzer 7 are set perpendicular (χ-π/2), and one rotation is made every 10 degrees from the reference direction OX (φ=0°, 10°, 20°...35
0") is measured. An example of the measurement results is shown in FIG. 3(b).

(C)測定した透過光の強度I11と■工から10度毎
に1回転の!工/CIよ+11.)の大きさを計算する
(C) Measured intensity of transmitted light I11 and ■One rotation every 10 degrees from machining! Engineering/CI +11. ).

計算結果例を第3(c)図に示す。An example of the calculation results is shown in FIG. 3(c).

(d)10度毎に1回転の計算結果[h/ (Ih+I
n)の36点が方程式(4)を満たすように、主振動方
位ψと位相遅れδをパラメータとする最小二乗最適法を
適用する。この時、主振動方位ψはI工/(L÷■11
)の最小値を与えるφと一致し、また、位相遅れδは、
[L/(Iふ÷In)の最大値、すなわち、sin”δ
/2によって与えられる。最適演算結果例を第3(c)
図に示す。
(d) Calculation result of one rotation every 10 degrees [h/ (Ih+I
A least squares optimization method using the main vibration direction ψ and the phase delay δ as parameters is applied so that the 36 points of n) satisfy equation (4). At this time, the main vibration direction ψ is I/(L÷■11
), and the phase delay δ is equal to φ that gives the minimum value of
The maximum value of [L/(Ifu÷In), that is, sin”δ
/2. An example of the optimal calculation result is shown in Part 3 (c).
As shown in the figure.

本発明の自動複屈折計は、以上のように、偏光透過光測
定部とマイクロプロセッサを用いた帽I計測・表示・演
算処理部から構成されているので、複屈折物質の任意の
部分に、任意の偏光方位の光を照射し、その透過光の任
意の偏光方位の成分強度を、高速かつ自動的に測定でき
る機能を有している。また、測定方法は、入射光強度1
oと複屈折物質表面の反射率費に依存しない方程式(4
)に基づいて、複屈折物質の主振動方位ψと位相遅れδ
を、最小二乗最適法を適用して決定する方法を取るので
、複屈折を高い精度で決定することができる。したがっ
て、本発明の自動複屈折計は、従来の手動で測定する方
法に比べて、高い精度で高速かつ自動的に複屈折の測定
やその分布測定が行えるので、製造分野における評価あ
るいは検査手段としての複屈折針の用途が可能となり、
研究手段としての複屈折針の用途が大いに拡大される。
As described above, the automatic birefringence meter of the present invention is composed of a polarized transmitted light measuring section and a cap I measurement/display/arithmetic processing section using a microprocessor. It has the ability to irradiate light with any polarization direction and quickly and automatically measure the component intensity of the transmitted light in any polarization direction. In addition, the measurement method is as follows: incident light intensity 1
o and the reflectance cost of the surface of a birefringent material (4
), the principal vibrational direction ψ and phase lag δ of the birefringent material
Since this method is used to determine by applying the least squares optimization method, birefringence can be determined with high accuracy. Therefore, the automatic birefringence meter of the present invention can measure birefringence and its distribution automatically with high precision and at high speed compared to conventional manual measurement methods, so it can be used as an evaluation or inspection tool in the manufacturing field. The use of birefringent needles becomes possible,
The use of birefringent needles as a research tool is greatly expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の自動複屈折計の構成を示すブロック図
である。  1は光源、2は分光器または干渉フィルタ
、3はレンズ、4は回転偏光子、5は平板状にした複屈
折物質、6は二軸微動器、7は回転検光子、8はレンズ
、9は光検出器、10はマイクロプロセッサを用゛いた
制御・計測・表示・演算処理部である。 !!2図は、偏光透過光測定における基準方位OX、e
ll屈折物質の主振動方位OD゛ と000、偏光子の
偏光方位OPおよび検光子の偏光方位0^の関係を示す
図である。 f143図は本発明の測定方法に基づいて得られる測定
および最適演算結果例を示す図である。
FIG. 1 is a block diagram showing the configuration of an automatic birefringence meter according to the present invention. 1 is a light source, 2 is a spectrometer or an interference filter, 3 is a lens, 4 is a rotating polarizer, 5 is a birefringent material made into a flat plate, 6 is a biaxial fine shaker, 7 is a rotating analyzer, 8 is a lens, 9 1 is a photodetector, and 10 is a control/measurement/display/arithmetic processing unit using a microprocessor. ! ! Figure 2 shows the reference orientation OX, e in polarized transmitted light measurement.
11 is a diagram showing the relationship between the principal vibrational direction OD' of a refractive material and 000, the polarization direction OP of a polarizer, and the polarization direction 0^ of an analyzer. Figure f143 is a diagram showing an example of measurement and optimal calculation results obtained based on the measurement method of the present invention.

Claims (1)

【特許請求の範囲】 1、外部制御信号にて任意の偏光方位に設定できる回転
偏光子(4)と任意の方位の偏光成分を検出できる回転
検光子(7)を用いることを特徴とする自動複屈折計で
あって、光源(1)と分光器または干渉フィルタ(2)
からなる単色光源あるいはレーザから出射する偏りの少
ない光を、回転偏光子(4)を通して、二軸微動器(6
)に取付けた平板状にした複屈折物質(5)の任意の部
分に照射し、その透過光を、回転検光子(7)を通して
、光検出器(9)で測定する偏光透過光測定部と、回転
偏光子(4)と回転検光子(7)の偏光方位と平板状に
した複屈折物質(5)の照射部分を設定する二軸微動器
(6)を制御し、光検出器(9)からの電気出力信号を
計測できる表示・演算処理機能を備えたマイクロプロセ
ッサを用いた制御・計測・表示・演算処理部(10)あ
るいは制御・計測機能を備えた汎用のマイクロコンピュ
ータから構成される自動複屈折計。 2、特許請求の範囲第一項に記載の自動複屈折計におい
て、回転偏光子(4)と回転検光子(7)の偏光方位を
平行にして回転した場合(A)と垂直にして回転した場
合(B)の回転角度の関数として測定した透過光強度が
、複屈折物質(5)に入射する光の強度とその表面での
反射に依存しない方程式(4)を満たすように、最小二
乗最適法を適用して、複屈折物質(5)の主振動方位と
位相遅れを決定する測定方法。
[Claims] 1. An automatic system characterized by using a rotating polarizer (4) that can be set to any polarization direction using an external control signal and a rotating analyzer (7) that can detect polarization components in any direction. A birefringent meter comprising a light source (1) and a spectrometer or interference filter (2)
Light with little polarization emitted from a monochromatic light source or laser is passed through a rotating polarizer (4),
), which irradiates any part of the birefringent material (5) in the form of a flat plate, and measures the transmitted light with a photodetector (9) through a rotating analyzer (7); , controls the biaxial fine mover (6) that sets the polarization direction of the rotating polarizer (4) and the rotating analyzer (7) and the irradiation area of the flat birefringent material (5), and controls the photodetector (9). ) consists of a control/measurement/display/arithmetic processing unit (10) using a microprocessor equipped with display/arithmetic processing functions that can measure the electrical output signal from the controller (10) or a general-purpose microcomputer equipped with control/measurement functions. Automatic birefringence meter. 2. In the automatic birefringence meter according to claim 1, when the polarization directions of the rotating polarizer (4) and the rotating analyzer (7) are rotated parallel to each other, the polarization directions of the rotating polarizer (4) and the rotating analyzer (7) are rotated perpendicularly to (A). A least squares optimum is applied so that the transmitted light intensity measured as a function of the rotation angle in case (B) satisfies equation (4), which does not depend on the intensity of the light incident on the birefringent material (5) and its reflection at its surface. A measurement method that applies the method to determine the principal vibration direction and phase delay of a birefringent material (5).
JP60052842A 1985-03-15 1985-03-15 Automatic birefringence meter Expired - Lifetime JP2645252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052842A JP2645252B2 (en) 1985-03-15 1985-03-15 Automatic birefringence meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052842A JP2645252B2 (en) 1985-03-15 1985-03-15 Automatic birefringence meter

Publications (2)

Publication Number Publication Date
JPS61210920A true JPS61210920A (en) 1986-09-19
JP2645252B2 JP2645252B2 (en) 1997-08-25

Family

ID=12926095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052842A Expired - Lifetime JP2645252B2 (en) 1985-03-15 1985-03-15 Automatic birefringence meter

Country Status (1)

Country Link
JP (1) JP2645252B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319194A (en) * 1992-03-10 1994-06-07 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring birefringence without employing rotating mechanism
US6295151B1 (en) 1997-05-13 2001-09-25 Nec Corporation Optical transmission and receiving equipment
CN100378445C (en) * 2004-12-28 2008-04-02 中国科学院上海光学精密机械研究所 An intelligent comprehensive measuring instrument for crystal extinction ratio half-wave voltage and wave plate phase delay

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027824A (en) * 1983-07-25 1985-02-12 Jinzou Kobayashi Method for obtaining optical rotary power and/or double refraction of crystal and optical device used for embodying said method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027824A (en) * 1983-07-25 1985-02-12 Jinzou Kobayashi Method for obtaining optical rotary power and/or double refraction of crystal and optical device used for embodying said method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319194A (en) * 1992-03-10 1994-06-07 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring birefringence without employing rotating mechanism
US6295151B1 (en) 1997-05-13 2001-09-25 Nec Corporation Optical transmission and receiving equipment
CN100378445C (en) * 2004-12-28 2008-04-02 中国科学院上海光学精密机械研究所 An intelligent comprehensive measuring instrument for crystal extinction ratio half-wave voltage and wave plate phase delay

Also Published As

Publication number Publication date
JP2645252B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US4298283A (en) Interferometric measuring method
US3183763A (en) Polarization analyzers for optical systems employing polarized light
JP2010060352A (en) Method and device for measuring optical anisotropy parameter
US2866375A (en) Gloss meter
KR101226677B1 (en) Bio-sensor measurement system using phase-shifting method
JPS61210920A (en) Automatic birefringence meter
US6654121B1 (en) Apparatus and method for detecting polarization
US3623814A (en) Light beam deflection sensor
JP2791479B2 (en) Retardation measurement method
JPH0612333B2 (en) Automatic birefringence measuring device
US5182612A (en) Method of measurement of an angle of incidence of a luminous beam, measuring device for carrying out the method and use of the device for the measurement of distances
JP4095932B2 (en) Refractive index measuring device and refractive index measuring method
US3446977A (en) Stress inspection apparatus for transparent sheet material
JP2004028922A (en) Automatic double refraction meter
JPH02183142A (en) Spectropolarimeter
CN105841825B (en) A kind of wavelength resolution monitoring method based on liquid crystal on silicon
JPH02116736A (en) Method and apparatus for determining crystal orientation
JP2789575B2 (en) Birefringence measurement device
JPH04127004A (en) Ellipsometer and how to use it
JP2006189411A (en) Measuring instrument and measuring method for phase delay
JP2568653B2 (en) Ellipsometer
JPH061233B2 (en) Automatic method for measuring the coupling length of polarization-maintaining optical fibers
JPH01161124A (en) Light wavelength measuring method
JPS60249007A (en) Instrument for measuring film thickness
JPH08285725A (en) Method and apparatus for measuring the refractive index of a wafer made of glass material