[go: up one dir, main page]

JPS61209351A - Electrode body for measuring ph and the like - Google Patents

Electrode body for measuring ph and the like

Info

Publication number
JPS61209351A
JPS61209351A JP5126085A JP5126085A JPS61209351A JP S61209351 A JPS61209351 A JP S61209351A JP 5126085 A JP5126085 A JP 5126085A JP 5126085 A JP5126085 A JP 5126085A JP S61209351 A JPS61209351 A JP S61209351A
Authority
JP
Japan
Prior art keywords
silver
exchange membrane
membrane
electrode
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5126085A
Other languages
Japanese (ja)
Other versions
JPH046906B2 (en
Inventor
Jinkichi Miyai
宮井 迅吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp filed Critical DKK Corp
Priority to JP5126085A priority Critical patent/JPS61209351A/en
Publication of JPS61209351A publication Critical patent/JPS61209351A/en
Publication of JPH046906B2 publication Critical patent/JPH046906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、pH等の測定用電極に用いられる銀−塩化銀
系電極体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silver-silver chloride-based electrode body used as an electrode for measuring pH and the like.

(従来の技術) 単能形又は複合形のpH電極を用いて被検液のpHを測
定する場合、ガラス膜に発生するpHに応じた電位E、
と参照電極側の検出電位E穴との差、E&−ER= E
−なる電気化学的出力から被検液のpHを求めること周
知の通りである。
(Prior art) When measuring the pH of a test liquid using a monofunctional or composite pH electrode, the potential E generated on the glass membrane according to the pH,
and the detection potential E hole on the reference electrode side, E&-ER=E
It is well known that the pH of the test liquid can be determined from the electrochemical output of -.

ガラス電極におけるガラス膜が汚れていない場 合には
、ガラス膜に生じた電位は直に被検液のpHに対応した
ものとなり、又、銀−塩化銀糸の基参照電極の電位が定
まる。
If the glass membrane in the glass electrode is not contaminated, the potential generated on the glass membrane directly corresponds to the pH of the test solution, and the potential of the base reference electrode of the silver-silver chloride thread is determined.

pH測定用電極は長期に亙って検出電位の安定性が保た
れることが望ましいが、実際の使用状態においては、温
度の不規則な変動が繰返し電極に加えられ、比較的高温
時には塩化銀の溶解度積が下って内部液中の塩化銀が不
足するため、銀−塩化銀電極における塩化銀が、そのと
きの温度における塩化銀の溶解平衡に達するまで溶出す
ることとなる。このように塩化銀(Ay(!J )が銀
イオン(A;)及び塩素イオン(C7−)として内部液
中に溶出することによって次のような問題を生ずる。
It is desirable for pH measurement electrodes to maintain stability in detection potential over long periods of time, but in actual use, irregular temperature fluctuations are repeatedly applied to the electrodes, and at relatively high temperatures silver chloride Since the solubility product of decreases and silver chloride becomes insufficient in the internal solution, silver chloride at the silver-silver chloride electrode elutes until the solubility equilibrium of silver chloride at the temperature at that time is reached. As described above, silver chloride (Ay(!J)) is eluted into the internal solution as silver ions (A;) and chloride ions (C7-), causing the following problems.

即ち、銀イオン及び塩素イオンの内部液への溶出の繰返
しによって、最終的には銀−塩化銀電極における塩化銀
が消滅して単なる銀棒に変質し、これが内部液の酸化還
元電位を感知して検出電位の不正常なずれを生ずること
となる。
That is, by repeating the elution of silver ions and chloride ions into the internal solution, the silver chloride at the silver-silver chloride electrode eventually disappears and transforms into a simple silver rod, which senses the redox potential of the internal solution. This results in an abnormal shift in the detected potential.

又、銀イオン及び塩素イオンの内部液への溶出によって
銀−塩化銀電極が単なる銀棒に変質する以前の段階にお
いても、溶出した銀イオン及び塩素イオンが温度低下に
応じて塩化銀として電極内部又は液絡部の近傍に析出沈
着し、液絡部の目詰り等を生じて内部液と被検液との間
に異常な液間電位差を発生せしめ、被検液の正確なpH
測定を妨げることとなる。
In addition, even before the silver-silver chloride electrode transforms into a mere silver rod due to the elution of silver ions and chlorine ions into the internal solution, the eluted silver ions and chloride ions are converted to silver chloride inside the electrode as the temperature decreases. Or, it may deposit near the liquid junction, causing clogging of the liquid junction, creating an abnormal liquid-to-liquid potential difference between the internal liquid and the test liquid, and making it impossible to determine the correct pH of the test liquid.
This will interfere with measurement.

銀イオン及び塩素イオンの内部液への溶出によって液絡
部の目詰りを生ずるに到る現象は、被検液中にヒドラジ
ン又はハイドロキノン等の還元剤或は硫化水素ガス等が
存在する場合には更に顕著に現われる。即ち、内部液中
に溶出した銀イオンが液絡部接触界面において被検液中
の還元剤に接触すると、A;  A)  なる還元反応
により銀粒子となって液絡部に目詰りを生ぜしめ、又、
被検液中に硫化水素ガスが存在する場合には、2A;+
5−−13r S  なる反応により難溶性の沈澱物が
液絡部に生成されて矢張り目詰り等を生ずる。
The phenomenon that leads to clogging of the liquid junction due to the elution of silver ions and chloride ions into the internal solution can occur if reducing agents such as hydrazine or hydroquinone or hydrogen sulfide gas, etc. are present in the test solution. appears even more prominently. That is, when the silver ions eluted into the internal liquid come into contact with the reducing agent in the test liquid at the contact interface of the liquid junction, they turn into silver particles through the reduction reaction A; A), causing clogging of the liquid junction. ,or,
If hydrogen sulfide gas is present in the test liquid, 2A; +
Due to the reaction 5--13r S , poorly soluble precipitates are generated at the liquid junction, resulting in clogging and the like.

更に、ガラス電極においても内部基準電極を銀−塩化銀
電極を以て形成した場合には、内部液中に溶出した銀イ
オン及び塩素イオンが長い間に塩化銀となって感応ガラ
ス膜の内壁面に沈着し、ガラス膜に生ずる電位を正常値
からずらせる原因となる。
Furthermore, when the internal reference electrode of a glass electrode is formed using a silver-silver chloride electrode, the silver ions and chloride ions eluted into the internal solution become silver chloride over a long period of time and are deposited on the inner wall surface of the sensitive glass membrane. However, this causes the potential generated in the glass membrane to deviate from its normal value.

上記の各現象は、塩化銀の溶解、銀イオン及び塩素イオ
ンとしての移動という形をとるため、このような現象に
よる測定誤差の発生を防ぐために、従来は、次のような
対策がとられている。
Each of the above phenomena takes the form of dissolution of silver chloride and movement of silver ions and chloride ions. Conventionally, the following measures have been taken to prevent measurement errors caused by such phenomena. There is.

即ち、例えば内部液中に錯形成化合物を混入して内部液
中に溶出した銀イオンと反応せしめ、結晶とルで容易に
沈澱しない可溶性錯体を形成せしめる方法がとられてい
るが、可溶性錯体といえども一定の溶解平衡作用を呈す
るから、銀イオン濃度が高くなった場合には沈澱のおそ
れがある。
That is, for example, a method has been used in which a complex-forming compound is mixed into the internal solution and reacted with silver ions eluted into the internal solution to form a soluble complex that does not easily precipitate with crystals. However, since it exhibits a certain dissolution equilibrium effect, there is a risk of precipitation if the silver ion concentration becomes high.

又、銀イオン及び塩素イオンが液絡部又はガラス膜に到
達し難い構造を有する障壁を、銀−塩化銀電極と液絡部
又はガラス膜との間に設ける方法も用いられているが、
この方法においても溶出した銀イオン及び塩素イオンの
移動を完全に防ぐことは不可能である。
Also, a method is used in which a barrier having a structure that makes it difficult for silver ions and chloride ions to reach the liquid junction or glass membrane is provided between the silver-silver chloride electrode and the liquid junction or glass membrane.
Even with this method, it is impossible to completely prevent the movement of eluted silver ions and chloride ions.

本発明は、従来のように、内部液に溶出した銀イオン及
び塩素イオンに対して移動沈着を防止する対策を講する
ものとは異なり、温度変化等による銀イオン及び塩素イ
オンの内部液中への溶出向 体を阻止する根本的な対策
を講することによって従来の欠点を一掃し、極めて寿命
の長い電極を実現することを目的とする。
The present invention differs from conventional methods that take measures to prevent silver ions and chloride ions eluted into the internal solution from migrating and depositing. The aim is to eliminate the drawbacks of conventional methods and create an electrode with an extremely long lifespan by taking fundamental measures to prevent the elution of particles.

(問題点を解決するための手段) 陽イオン交換膜は陽イオンを透過せしめるが、通常の状
態においては陰イオンの透過を阻止し、陰イオン交換膜
は陰イオンを透過せしめるが、通常の状態においては陽
イオンの透過を阻止すること周知の通りであるが、本発
明は、このようなイオン交換膜の性質に着目してなされ
たもので、銀棒の表面に付着せしめた塩化銀膜の表面を
陰イオン交換膜及び陽イオン交換膜を以て二重に被覆す
るか、陰イオン交換膜又は陽イオン交換膜のみを以て被
覆することにより、塩化銀膜の表面において溶解した銀
イオン及び塩素イオンの外部への溶出、即ち、内部液中
への溶出を陰イオン交換膜及び陽イオン交換膜によって
阻止するか、又は、少なくとも銀イオン或はクロロ錯体
化した銀イオンの外部への溶出を阻止するように構成し
たものである。
(Means for solving the problem) Cation exchange membranes allow cations to pass through, but under normal conditions they block anions from passing through, and anion exchange membranes allow anions to pass through, but under normal conditions they block anions from passing through. It is well known that ion exchange membranes block the permeation of cations, but the present invention was made by focusing on the properties of such ion exchange membranes. By coating the surface double with an anion exchange membrane and a cation exchange membrane, or by coating only with an anion exchange membrane or a cation exchange membrane, the silver ions and chloride ions dissolved on the surface of the silver chloride membrane can be removed from the outside. In other words, the elution into the internal solution is prevented by an anion exchange membrane and a cation exchange membrane, or at least the elution of silver ions or chloro-complexed silver ions to the outside is prevented. It is composed of

尚、実際には塩化銀膜とイオン交換膜との間に存在する
微小空隙に保持される銀イオン及び塩素イオンの濃度と
、イオン交換膜の外側のイオン濃度との間における濃度
差に応じてイオン交換膜の内外間に生ずる浸透圧によっ
て若干のイオン流出を生ずるおそれがあると思われるが
、実用上は無視し得る程度に過ぎないことを明らかにす
ることが出来た。
In fact, depending on the concentration difference between the concentration of silver ions and chloride ions held in the microscopic voids that exist between the silver chloride membrane and the ion exchange membrane, and the ion concentration outside the ion exchange membrane. Although there is a possibility that some ion outflow may occur due to the osmotic pressure generated between the inside and outside of the ion-exchange membrane, it has been found that this is negligible in practical terms.

又、イオン交換膜は各種何れも本来親水性であるため、
イオン交換膜を介在せしめることによって、銀−塩化銀
電極と内部液間を電気的に絶縁することなく、良好な電
気的導通を保ち得るので、電位差検出系の作動に悪影響
を及ぼすおそれは全くない。
In addition, since all types of ion exchange membranes are inherently hydrophilic,
By interposing the ion exchange membrane, good electrical continuity can be maintained between the silver-silver chloride electrode and the internal liquid without electrical insulation, so there is no risk of adversely affecting the operation of the potential difference detection system. .

(実施例) 第1図は、本発明の一実施例を示す断面図で、1及び2
は銀−塩化銀電極を形成する銀棒及び塩化銀膜で、例え
ば、外径はぼ3.5 mmの銀棒1を加熱して塩化銀の
結晶中に挿入することにより、塩化銀膜2を銀棒1の先
端部における適宜軸長範囲の表面に付着せしめである。
(Example) FIG. 1 is a sectional view showing an example of the present invention.
are a silver rod and a silver chloride film forming a silver-silver chloride electrode; for example, by heating a silver rod 1 with an outer diameter of about 3.5 mm and inserting it into a silver chloride crystal, a silver chloride film 2 is formed. is attached to the surface of the tip of the silver rod 1 in an appropriate axial length range.

尚、塩化銀膜2を銀棒1の表面に付着せしめるには、上
記従来と同様に の方法の外、従来公知の方法の中、適宜の方法註って付
着せしめて差支えない。3は陰イオン交換膜で、例えば
、内径はぼ0.6 mmの陰イオン交換膜チューブ内に
銀棒1を挿入して塩化銀膜2の表面部分を覆っである。
Incidentally, in order to attach the silver chloride film 2 to the surface of the silver rod 1, in addition to the conventional method described above, any suitable method among conventionally known methods may be used. Reference numeral 3 denotes an anion exchange membrane, for example, a silver rod 1 is inserted into an anion exchange membrane tube having an inner diameter of approximately 0.6 mm to cover the surface portion of the silver chloride membrane 2.

4は陽イオン交換膜で、例えば、内径はぼ0.9 mm
の陽イオン交換膜チューブより成り、陰イオン交換膜3
の表面を覆うように設けである。5は密封剤で、例えば
シリコン接着剤より成り、陽イオン交換膜4の上端と銀
棒1間を密封すると共に、陽イオン交換膜4の下端部を
密封し、更に、必要に応じて内部液と接触するおそれの
ある銀棒1の部分の表面を覆っである。
4 is a cation exchange membrane, for example, the inner diameter is approximately 0.9 mm.
It consists of a cation exchange membrane tube, an anion exchange membrane 3
It is provided to cover the surface of the A sealant 5 is made of silicone adhesive, for example, and seals between the upper end of the cation exchange membrane 4 and the silver rod 1, as well as the lower end of the cation exchange membrane 4, and further seals the internal liquid as necessary. This covers the surface of the part of the silver rod 1 that may come into contact with the metal.

このように形成した電極体を実際に使用する内部液と同
じ濃度の塩化カリウム(KO/)溶液に浸漬しておくこ
とにより、塩化カリウム溶液がイオン交換膜4及び3を
介して塩化銀膜2の表面にまで浸潤して内極としての機
能を備えるに到る。
By immersing the electrode body thus formed in a potassium chloride (KO/) solution having the same concentration as the internal solution actually used, the potassium chloride solution passes through the ion exchange membranes 4 and 3 to the silver chloride membrane 2. It infiltrates the surface of the membrane and functions as an inner pole.

陰イオン交換膜6の外側に陽イオン交換膜4を設ける代
りに、最外側に陰イオン交換膜を設けてもよく、陰イオ
ン交換膜6及び陽イオン交換膜4を各多重に設けてもよ
い。この場合、陰イオン交換膜を多重に設け、その外側
又は内側に多重陽イオン交換膜を設けてもよく、陰イオ
ン交換膜と陽イオン交換膜とを交互に配設してもよい。
Instead of providing the cation exchange membrane 4 on the outside of the anion exchange membrane 6, an anion exchange membrane may be provided on the outermost side, or an anion exchange membrane 6 and a cation exchange membrane 4 may be provided in multiple layers. . In this case, anion exchange membranes may be provided in multiple layers, and multiple cation exchange membranes may be provided on the outside or inside of the anion exchange membranes, or anion exchange membranes and cation exchange membranes may be provided alternately.

更に、陰イオン交換膜と陽イオン交換膜とを別個に形成
する代りに、共通の単膜内に陰イオン交換基及び陽イオ
ン交換基を導入して1枚の膜によって陰イオン交換機能
及び陽イオン交換機能を呈し得るように形成したイオン
交換膜を以て塩化銀膜の表面を覆うように構成してもよ
い。
Furthermore, instead of forming an anion exchange membrane and a cation exchange membrane separately, an anion exchange group and a cation exchange group are introduced into a common single membrane so that an anion exchange function and a cation exchange function can be achieved by a single membrane. The surface of the silver chloride film may be covered with an ion exchange membrane formed to exhibit an ion exchange function.

尚、銀イオンのみを捕捉する目的で陰イオン交換膜のみ
を以て塩化銀膜の表面を覆うか、クロロ錯体化した銀イ
オンを捕捉する目的で塩化銀膜の表面を陽イオン交換膜
のみを以て覆うようにしてもよく、これらの場合には、
イオンの溶出阻止効果は多少低下するが、従来に較べる
ときはイオンの溶出移動に因る悪影響を遥かに効果的に
抑えることが出来る。
In addition, the surface of the silver chloride membrane may be covered with only an anion exchange membrane for the purpose of capturing only silver ions, or the surface of the silver chloride membrane may be covered with only a cation exchange membrane for the purpose of capturing chloro-complexed silver ions. In these cases,
Although the effect of inhibiting ion elution is somewhat reduced, the adverse effects caused by ion elution and movement can be suppressed much more effectively than in the past.

第2図は、本発明電極体を用いて構成したpH測定用電
極の一例を示す断面図で、6は第1図に示した電極体、
7はガラス管、8は液絡部、9は内部液である。
FIG. 2 is a cross-sectional view showing an example of a pH measuring electrode constructed using the electrode body of the present invention, and 6 is the electrode body shown in FIG.
7 is a glass tube, 8 is a liquid junction, and 9 is an internal liquid.

(本発明の効果) 本発明においては、塩化銀膜の表面をイオン交換膜によ
り覆うことによってイオンの内部液中への溶出自体を阻
止するように構成しであるので、内部液中に溶出したイ
オンに対する対策を請じた従来のものに比し、イオンに
よる悪影響を遥かに効果的に除くことが出来る。
(Effects of the present invention) In the present invention, the surface of the silver chloride membrane is covered with an ion exchange membrane to prevent the elution of ions into the internal liquid. Compared to conventional methods that require countermeasures against ions, the negative effects of ions can be removed far more effectively.

次に、第1図に示した本発明電極体の試作品によって本
発明者が行った実験結果を示す。
Next, the results of an experiment conducted by the present inventor using a prototype of the electrode assembly of the present invention shown in FIG. 1 will be shown.

(実験1) 直径はぼQ、 5 mmの銀棒の表面に、はぼ20 m
mの軸長に亙って塩化銀膜を付着せしめた電極体におい
ては、塩化銀膜に含まれる銀の量がほぼ2.6mgであ
ることが重量測定によって明らかになし得たが、この電
極体の中、塩化銀膜の表面を陰イオン交換膜及び陽イオ
ン交換膜の二重腹鼓にシリコン接着剤で覆うと共に、塩
化銀膜を付着せしめていない銀棒の部分をシリコン接着
剤で覆った電極体を、3Mの塩化カリウム溶液33 m
/を入れたビーカー内に投入し、又、塩化銀膜の表面を
イオン交換膜で覆うことなく、銀棒の部分のみをシリコ
ン接着剤で覆った電極体を、前記と同様3Mの塩化カリ
ウム溶液3Q m/を入れたビーカー内に投入し、両ヒ
ーカーをホットプレート上で7時間煮沸した後、各ビー
カー内における塩化カリウム溶液中の銀イオン濃度を原
子吸光装置によって測定した結果、塩化銀膜を露出した
電極体においては、塩化銀膜に含まれる銀のほぼ20%
に当る0、47rngの銀が塩化カリウム溶液中に溶出
したが、塩化銀膜の表面をイオン交換膜で覆った電極体
においては、はぼ1,7%に当る0、 04 mgの銀
が溶出したに過ぎず、本発明の効果の大なることを示し
ている(実験2) 前記と同様、塩化銀膜の表面を二重のイオン交換膜及び
シリコン接着剤で覆うと共に、銀棒の部分をシリコン接
着剤で覆った電極体を1Mの塩化カリウム溶液中に浸し
、イオン交換膜の外表面と銀棒間の電気抵抗を測定した
結果、600n/備で、本発明電極体を電位差測定系に
使用しても同等問題のないことが明らかとなった。
(Experiment 1) A diameter of Q is 20 m on the surface of a 5 mm silver rod.
In the electrode body to which the silver chloride film was attached over the axial length of m, it was clearly determined by weight measurement that the amount of silver contained in the silver chloride film was approximately 2.6 mg. Inside the body, the surface of the silver chloride membrane was covered with silicone adhesive on the double belly of the anion exchange membrane and cation exchange membrane, and the part of the silver rod to which the silver chloride membrane was not attached was covered with silicone adhesive. The electrode body was soaked in 33 m of 3M potassium chloride solution.
/ into a beaker containing 3M potassium chloride solution as above, and the electrode body, in which only the silver rod part was covered with silicone adhesive without covering the surface of the silver chloride film with an ion exchange membrane, was placed in a 3M potassium chloride solution as above. After boiling both heaters on a hot plate for 7 hours, the concentration of silver ions in the potassium chloride solution in each beaker was measured using an atomic absorption spectrometer. In the exposed electrode body, approximately 20% of the silver contained in the silver chloride film
However, in the electrode body in which the surface of the silver chloride film was covered with an ion exchange membrane, 0.04 mg of silver, equivalent to 1.7%, was eluted in the potassium chloride solution. (Experiment 2) In the same way as above, the surface of the silver chloride film was covered with a double ion exchange membrane and silicone adhesive, and the part of the silver rod was The electrode body covered with silicone adhesive was immersed in a 1M potassium chloride solution and the electrical resistance between the outer surface of the ion exchange membrane and the silver rod was measured. It has become clear that there are no similar problems when used.

(実験3) 第6図は、本発明電極体をガラス管に内装した第2図示
の電極と、従来のダブルジャンクション形比較電極とを
3Mの塩化カリウム溶液に浸し、従来の比較電極電位を
基準として電位測定を行った結果を示すもので、横軸は
経過時間T(単位、日)、縦軸は検出電位E(単位、m
V)で、図から明らかなように、はぼ1ケ月に亙って検
出電位は極めて安定に保たれた。
(Experiment 3) Figure 6 shows that the electrode shown in Figure 2, in which the electrode body of the present invention is housed in a glass tube, and a conventional double-junction reference electrode are immersed in a 3M potassium chloride solution, and the potential of the conventional reference electrode is referenced. The horizontal axis is the elapsed time T (unit, days), and the vertical axis is the detected potential E (unit, m
As is clear from the figure, the detected potential was kept extremely stable for about one month.

(実験4) 第1図に示した本発明電極体を、ダブルジャンクション
形比較電極の内極として比較電極を構成し、従来のダブ
ルジャンクション形比較電極を基準として各種サンプル
液の電位測定を行った結果は、次表の通りである。
(Experiment 4) The electrode body of the present invention shown in Fig. 1 was used as the inner electrode of a double-junction type comparison electrode to form a comparison electrode, and the potentials of various sample liquids were measured using the conventional double-junction type comparison electrode as a reference. The results are shown in the table below.

表から明らかなように、水道水、各種pH標準液はもと
より、高アルカリ液及び高酸液に対しても検出電位はほ
とんど変化することなく、本発明電極体を用いて構成し
た比較電極の性能は優れたものがある。
As is clear from the table, there is almost no change in the detection potential not only for tap water and various pH standard solutions, but also for highly alkaline and highly acidic solutions, and the performance of the comparison electrode constructed using the electrode assembly of the present invention is shown. There are some excellent ones.

以上の説明から明らかなように、本発明電極体は、塩化
銀膜の表面を陰イオン交換膜及び陽イオン交換膜で覆っ
て銀イオン及び塩素イオンの内部液中への溶出自体を阻
止するように構成した場合は 、又は、塩化銀膜の表面を陰イオン交換膜のみ或^陽イ
オン交換膜のみを以て覆って銀イオンの溶出のみを阻止
するか或はクロロ錯体化した銀イオンの溶出のみを阻止
するように構成した場合の何れにおいても、従来除き得
なかったイオンの溶出移動に因る悪影響を、はぼ完全に
抑え得ると共に、基準電極としての条件も十分に備え、
かつ、寿命も長いもので、pHの他、各種イオン濃度、
酸化還元電位、酸素濃度等の測定用電極として用いて効
果甚だ大である。
As is clear from the above description, the electrode body of the present invention covers the surface of the silver chloride film with an anion exchange membrane and a cation exchange membrane to prevent the elution of silver ions and chloride ions into the internal solution. Alternatively, the surface of the silver chloride membrane is covered with only an anion exchange membrane or only a cation exchange membrane to prevent only the elution of silver ions, or to prevent only the elution of chloro-complexed silver ions. In either case, the negative effects caused by the elution and movement of ions, which could not be eliminated in the past, can be almost completely suppressed, and the conditions as a reference electrode are sufficiently provided.
Moreover, it has a long lifespan, and in addition to pH, various ion concentrations,
It is extremely effective when used as an electrode for measuring oxidation-reduction potential, oxygen concentration, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す断面図、第2図は、
本発明電極体を内装したpH測定用電極の一例を示す断
面図、第6図は、本発明電極体の特性を示す曲線図で、
1:銀棒、2:塩化銀膜、6:陰イオン交換膜、4:@
イオン交換膜、5:密封剤、6:本発明電極体、7:ガ
ラス管、8:液絡部、9:内部液である。
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
FIG. 6 is a cross-sectional view showing an example of a pH measuring electrode incorporating the electrode body of the present invention, and is a curve diagram showing the characteristics of the electrode body of the present invention.
1: Silver rod, 2: Silver chloride membrane, 6: Anion exchange membrane, 4: @
ion exchange membrane, 5: sealant, 6: electrode body of the present invention, 7: glass tube, 8: liquid junction, 9: internal liquid.

Claims (6)

【特許請求の範囲】[Claims] (1)銀棒の表面に付着した塩化銀膜の表面をイオン交
換膜を以て覆ったことを特徴とするpH等の測定用電極
体。
(1) An electrode body for measuring pH, etc., characterized in that the surface of a silver chloride film attached to the surface of a silver rod is covered with an ion exchange membrane.
(2)イオン交換膜が陰イオン交換膜及び陽イオン交換
膜を重ねた二重膜より成る特許請求の範囲第1項記載の
pH等の測定用電極体。
(2) The electrode assembly for measuring pH and the like according to claim 1, wherein the ion exchange membrane is a double membrane in which an anion exchange membrane and a cation exchange membrane are stacked.
(3)イオン交換膜が陰イオン交換膜及び陽イオン交換
膜を三重以上に重ねた多重膜より成る特許請求の範囲第
1項記載のpH等の測定用電極体。
(3) The electrode assembly for measuring pH and the like as set forth in claim 1, wherein the ion exchange membrane is a multilayer membrane in which an anion exchange membrane and a cation exchange membrane are stacked three or more times.
(4)イオン交換膜が共通の単膜に陰イオン交換基及び
陽イオン交換基を導入して成る特許請求の範囲第1項記
載のpH等の測定用電極体。
(4) The electrode assembly for measuring pH and the like as set forth in claim 1, wherein the ion exchange membrane is formed by introducing an anion exchange group and a cation exchange group into a common single membrane.
(5)イオン交換膜が陰イオン交換膜より成る特許請求
の範囲第1項記載のpH等の測定用電極体。
(5) The electrode assembly for measuring pH, etc. according to claim 1, wherein the ion exchange membrane is an anion exchange membrane.
(6)イオン交換膜が陽イオン交換膜より成る特許請求
の範囲第1項記載のpH等の測定用電極体。
(6) The electrode assembly for measuring pH, etc. according to claim 1, wherein the ion exchange membrane is a cation exchange membrane.
JP5126085A 1985-03-14 1985-03-14 Electrode body for measuring ph and the like Granted JPS61209351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5126085A JPS61209351A (en) 1985-03-14 1985-03-14 Electrode body for measuring ph and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5126085A JPS61209351A (en) 1985-03-14 1985-03-14 Electrode body for measuring ph and the like

Publications (2)

Publication Number Publication Date
JPS61209351A true JPS61209351A (en) 1986-09-17
JPH046906B2 JPH046906B2 (en) 1992-02-07

Family

ID=12881975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5126085A Granted JPS61209351A (en) 1985-03-14 1985-03-14 Electrode body for measuring ph and the like

Country Status (1)

Country Link
JP (1) JPS61209351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149779A (en) * 2010-01-20 2011-08-04 Sharp Corp Electrochemical measurement electrode, electrochemical measurement electrode chip, electrochemical measuring method using them, and analyzing method
JP2012141295A (en) * 2010-12-17 2012-07-26 Horiba Ltd Reference electrode
JP2014102125A (en) * 2012-11-19 2014-06-05 Nikkiso Co Ltd Reference electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149779A (en) * 2010-01-20 2011-08-04 Sharp Corp Electrochemical measurement electrode, electrochemical measurement electrode chip, electrochemical measuring method using them, and analyzing method
US8702963B2 (en) 2010-01-20 2014-04-22 Sharp Kabushiki Kaisha Electrochemical measurement electrode, electrochemical measurement electrode chip, and electrochemical measuring method and analysis method using the same
JP2012141295A (en) * 2010-12-17 2012-07-26 Horiba Ltd Reference electrode
JP2014102125A (en) * 2012-11-19 2014-06-05 Nikkiso Co Ltd Reference electrode

Also Published As

Publication number Publication date
JPH046906B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
Cattrall et al. Coated-wire ion-selective electrodes
US4256561A (en) Electrochemical measuring electrode
US4267023A (en) Chemically integrating dosimeter and gas analysis methods
US5834633A (en) Device for concentrating trace components in a liquid
EP0400042A4 (en) Metal oxide electrodes
Bowles Adsorption of cations on platinum—II. Charging curve studies for thallium
JPS61209351A (en) Electrode body for measuring ph and the like
US20080011607A1 (en) Reference electrode with non-blocking liquid junction
US20100051053A1 (en) Washing storage solution for glass electrode and the like
US3438886A (en) Organic liquid ion-exchanger electrode
Inman et al. The application of the galvanostatic potential—time technique to analysis in molten salts
Babcock et al. Selective ion electrode system for fluoride analysis
US3740326A (en) Chloride selective electrode
US3349012A (en) Potentiometric sensor with presaturator
Buck Heterogeneous-site glass membrane potentials. Solid-state approach
JPH0517501B2 (en)
Newton et al. Kinetics of the reaction between neptunium (III) and iron (III) in aqueous perchlorate solutions
JPS6130207Y2 (en)
JPS6225250A (en) Oil acidity and basicity detection method and reference electrode
JPS6117946A (en) Reference electrode
Ullmann et al. Voltammetric Determination of Metals in Low Concentrations.
Dietz et al. Review of materials for pH sensing for nuclear waste containment
Shirvington et al. The polarography of beryllium
JPS61223645A (en) Reference electrode
Carter Experience with Ion-Selective Rubber Membrane Electrodes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees