[go: up one dir, main page]

JPS6120913A - Optical transmitter of laser diode - Google Patents

Optical transmitter of laser diode

Info

Publication number
JPS6120913A
JPS6120913A JP59142705A JP14270584A JPS6120913A JP S6120913 A JPS6120913 A JP S6120913A JP 59142705 A JP59142705 A JP 59142705A JP 14270584 A JP14270584 A JP 14270584A JP S6120913 A JPS6120913 A JP S6120913A
Authority
JP
Japan
Prior art keywords
fiber
face
noise
whose
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59142705A
Other languages
Japanese (ja)
Inventor
Katsuyuki Fujito
藤戸 克行
Toshihiro Fujita
俊弘 藤田
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59142705A priority Critical patent/JPS6120913A/en
Publication of JPS6120913A publication Critical patent/JPS6120913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To suppress the noise to transmit signals of high quality by leading the output light of a laser diode LD to a multimode fiber, whose end face is inclined, through a single mode fiber whose one end is a vertical end face and is coated with a reflecting mirror. CONSTITUTION:The laser beam from an active layer 101 of an LD1 placed on a stem 2 is led to a core 102 of a short single mode pigtail fiber 3, whose one end is worked to a taper ending ball and the other end is coated with a mirror 4 having a prescribed reflection factor, through a taper ending ball 103. The light emitted from the mirror end 4 of the fiber 3 is led to a core 10 of a multimode fiber 5 for transmission, whose end face is inclined, and is transmitted. Thus, the wavelength shift of the LD due to LD direct current modulation is suppressed to suppress the signal distortion for multimode fiber transmission, and the LD noise is oscillated in the single mode to reduce the LD noise, and the modal noise is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、LD(レーザダイオード)を光源とした光通
信、特に、LDを直接アナログ信号電流で強度変調して
光伝送を行なう装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical communication using an LD (laser diode) as a light source, and more particularly to a device that performs optical transmission by directly modulating the intensity of an LD with an analog signal current.

従来例の構成とその問題点 LDを光源として、マルチモードファイバにより光伝送
を行なう方式は、LDの直線性の良さ、ファイバの広帯
域性により、良好なアナログ信号伝送系として期待され
ていたが、実際にはモーダルノイズの発生や、LDへの
反射再注入光によるLD自身のノイズ増大現象のため、
実用に供されていないのが現状である。またモーダルノ
イズの主因はLDのコヒーレンスの良さであるとし、低
減策として、高周波重畳や、光フィードバック等によシ
、光源をマルチモード化したり、スペクトル線幅を拡げ
たりする方式も提案され検討されている、。しかしなが
ら、この方法では、スペクトル拡がりによるノイズの増
大を伴う事が、欠点であり、ビデオ信号1 ah程度の
伝送は可能であるが、複数ah (例えば周波数多重(
FDM)信号)の信号を送る事はできない。
Conventional configuration and its problems The method of transmitting light using a multi-mode fiber using an LD as a light source was expected to be a good analog signal transmission system due to the good linearity of the LD and the broadband properties of the fiber. In reality, due to the occurrence of modal noise and the phenomenon of increased noise of the LD itself due to reflected reinjected light to the LD,
At present, it is not put into practical use. Furthermore, it is assumed that the main cause of modal noise is the good coherence of the LD, and methods such as high-frequency superposition, optical feedback, multi-mode light source, and broadening of the spectral linewidth have been proposed and studied as mitigation measures. ing,. However, this method has the disadvantage of increasing noise due to spectrum broadening, and although it is possible to transmit video signals of approximately 1 ah, multiple ah (e.g. frequency multiplexing)
FDM) signals cannot be sent.

発明の目的 本発明は、従来例に述べた如き、LDとマルチモードフ
ァイバ使用によるモーダルノイズや反射ノイズの発生を
LDをマルチモード化する事なく、かつ簡単な方法で抑
圧する事を目的としてなされたものである。
Purpose of the Invention The present invention has been made for the purpose of suppressing the generation of modal noise and reflection noise due to the use of an LD and a multimode fiber using a simple method without making the LD multimode, as described in the conventional example. It is something that

発明の構成 本発明はLDを光源とし、その出力光をシングルモード
ファイバを介してマルチモードをファイバに導キ、前記
シングルモードファイバの一端は垂直端面で反射コート
され、前記垂直端面に対向するマルチモードファイバの
端面は斜め端面とし、モーダルノイズやノイズの発生を
抑圧するものである。
Structure of the Invention The present invention uses an LD as a light source, and guides its output light into a multi-mode fiber through a single-mode fiber.One end of the single-mode fiber is coated with a reflection coating on a vertical end surface, and a multi-mode light source is guided into a multi-mode fiber opposite to the vertical end surface. The end face of the mode fiber is an oblique end face to suppress the generation of modal noise and noise.

実施例の説明 本発明の基本は、LDに外部共振器を付加する事により
、LDのスペクトルの単一化と直接電流変調した時のL
D発振周波数偏移の抑圧とが可能となる事を利用したも
のである。(詳細については、電子通信学会光量ニレ研
究会資料QQE83゜76 「光帰還型半導体レーザの
雑音及び変調特性」参照) 本発明の基本構成を第1図に示す。LDlは、ステム2
上に置かれており、LDlの活性層1o1からのレーザ
光は、片端がテーバ先球加工され、もう一端は、反射率
Rのミラー4がコーティングされた短いシングルモード
のビングチイルファイバ3のコア1’ 02に、テーパ
先球103を介して導かれる。短ファイバ3のミラーコ
ート端4から出射した光は、端面が斜めになった伝送用
のマルチモードファイバ6のコア104に導かれて伝送
される。このような構成において、LDを電流により輝
度変調した場合の特性について以下に述、べろ。
DESCRIPTION OF EMBODIMENTS The basics of the present invention are to unify the spectrum of the LD by adding an external resonator to the LD, and to reduce the L when directly modulating the current.
This takes advantage of the fact that the D oscillation frequency shift can be suppressed. (For details, refer to IEICE Light Quantity Elm Study Group Material QQE83゜76 "Noise and Modulation Characteristics of Optical Feedback Semiconductor Laser") The basic configuration of the present invention is shown in FIG. LDl is stem 2
The laser beam from the active layer 1o1 of the LDl is transmitted through a short single-mode Bingtil fiber 3 whose one end has a Taber tip and whose other end is coated with a mirror 4 with a reflectance R. It is guided to the core 1' 02 via the tapered ball 103. The light emitted from the mirror-coated end 4 of the short fiber 3 is guided to the core 104 of the transmission multimode fiber 6, which has an oblique end face, and is transmitted. In such a configuration, the characteristics when the LD is modulated in brightness by current will be described below.

今、第1図に示す構成を簡略化して第2図に示す。1は
LD、4は反射ミラー、101はLD活性層であり、図
に示すように、LD長を41活性層屈折率をn2反射ミ
ラーとLDの実効長をLlLDの両端面の振幅反射率を
r 1. r 2.反射ミラーの振幅反射率をroとす
る。この様な場合に、反射ミラー4が無い時の変調によ
るLDの波長偏移をΔλ′ミラーのある時の波長偏移を
Δλとした場合、ミラー有無による波長偏移抑圧度Δλ
/Δλ′と、L/rJの関係をro(R−r′O)をパ
ラメータとして第3図に示す。この特性から、L/n7
)6゜かつr。>0.2の場合、波長偏移抑圧度は0.
6以下になる。つまり単位電流当シのLDの発振波長偏
移が%以下になる。通常LD長lはo、3fi程度であ
り、屈折率はn+3.5程度であるため、nlは約lf
f1mとなる。
Now, the configuration shown in FIG. 1 is simplified and shown in FIG. 2. 1 is the LD, 4 is the reflection mirror, and 101 is the LD active layer.As shown in the figure, the LD length is 41, the active layer refractive index is n2, the effective length of the reflection mirror and LD is L, the amplitude reflectance of both end faces of LD is r1. r2. Let the amplitude reflectance of the reflecting mirror be ro. In such a case, if the wavelength shift of the LD due to modulation when there is no reflecting mirror 4 is Δλ', and the wavelength shift when there is a mirror is Δλ, then the degree of wavelength shift suppression due to the presence or absence of the mirror is Δλ
The relationship between /Δλ' and L/rJ is shown in FIG. 3 using ro(R-r'O) as a parameter. From this characteristic, L/n7
) 6° and r. >0.2, the wavelength shift suppression degree is 0.2.
Becomes 6 or less. In other words, the oscillation wavelength shift of the LD per unit current is less than %. Normally, the LD length l is about o,3fi, and the refractive index is about n+3.5, so nl is about lf
It becomes f1m.

変調による波長偏移は、マルチモード伝送後の信号歪量
と密接に関係し、偏移量の少ない程、歪の劣化も少ない
。そのため、外部キャビティ長(LDとミラー間の光学
距離)が長い程、偏移抑圧度が大きく、歪の劣化も少な
くなる。しかし、外部キャビティ長を大きくすると、L
Dが単一モード発振を維持できる変調度が小さくなる。
The wavelength shift due to modulation is closely related to the amount of signal distortion after multimode transmission, and the smaller the amount of shift, the less deterioration of distortion. Therefore, the longer the external cavity length (the optical distance between the LD and the mirror), the greater the degree of shift suppression and the less deterioration of distortion. However, if the external cavity length is increased, L
The modulation degree at which D can maintain single mode oscillation becomes smaller.

そのため、外部キャビティ長としては、6flF〜30
’Crn程度が適当である。最適キャビティ長は、用途
すなわち、変調周波数や変調度により異なるが6m以下
では波長偏移抑圧度が小さくなるし、30cm以上では
、LDが単一モードで発振できる変調度が非常に小さく
なってしまうのでこの範囲が妥当である。
Therefore, the external cavity length is 6flF~30
'Crn level is appropriate. The optimum cavity length varies depending on the application, ie, modulation frequency and modulation degree, but if it is less than 6 m, the degree of wavelength shift suppression will be small, and if it is more than 30 cm, the modulation degree that allows the LD to oscillate in a single mode will be extremely small. Therefore, this range is appropriate.

ところで、ファイバの屈折率は1.5であるため、ピッ
グティルファイバ3の長さとしては、4wn〜20cm
が適当な長さとなる。
By the way, since the refractive index of the fiber is 1.5, the length of the pig-til fiber 3 is 4wn to 20cm.
is the appropriate length.

次に、ミラー4の反射率について述へる。第3図から、
反射光強度は出射光強度の数%以上であれば充分な偏移
量抑圧が可能である事がわかる。
Next, the reflectance of the mirror 4 will be described. From Figure 3,
It can be seen that sufficient deviation can be suppressed if the intensity of the reflected light is several percent or more of the intensity of the emitted light.

そこで、LDとチーツメ先球ファイバの結合効率を4o
%、逆方向の結合効率を10〜40%と仮定すると、反
射ミラーの反射率は30%以下では、LDへの反射光強
度比が6%以下になるだめ、効果が小さくなる。逆に反
射率が9Q%以上になると、反射ミラーを透過する光強
度が小さくなるため、伝送パワーが小さくなってしまう
Therefore, the coupling efficiency between the LD and the tip fiber is 4o.
%, and assuming that the coupling efficiency in the reverse direction is 10 to 40%, if the reflectance of the reflecting mirror is 30% or less, the effect will be small because the reflected light intensity ratio to the LD will be 6% or less. On the other hand, when the reflectance is 9Q% or more, the intensity of light transmitted through the reflection mirror becomes small, resulting in a reduction in transmission power.

次に、伝送用の光ファイバについて述べる。使用する伝
送用光ファイバは、端面をすべて斜めにして、端面反射
光がLDに戻らないようにしである。ところで、ピッグ
ティルファイバ3の一端は垂直にして反射コーティング
を施して、LDに反射光を戻し、外部キャビティを構成
している。このピッグティルファイバ3の出力光は、斜
め端面のマルチモードファイバ6のコア104に導かれ
るが、ピッグティルファイバ3のコア径は10μm以下
、マルチモードファイバのコア径は60μmであるため
、この結合部における損失は非常に小さい。また、この
結合部は、一方が垂直、一方が斜めであるため、通常の
垂直端面のコネクタ結合において問題となる多重反射に
よる伝送光の歪の変動も、発生しない。
Next, the optical fiber for transmission will be described. The transmission optical fiber used has all end faces slanted to prevent light reflected from the end face from returning to the LD. Incidentally, one end of the pig-tilt fiber 3 is made vertical and is coated with a reflective coating to return reflected light to the LD to form an external cavity. The output light of this pig-til fiber 3 is guided to the core 104 of the multi-mode fiber 6 with an oblique end face, but since the core diameter of the pig-til fiber 3 is 10 μm or less and the core diameter of the multi-mode fiber is 60 μm, this coupling The loss in the area is very small. Furthermore, since one side of this coupling part is vertical and the other side is oblique, fluctuations in distortion of transmitted light due to multiple reflections, which is a problem in normal connector coupling of vertical end faces, do not occur.

ピッグティルファイバ3が数釧以下の場合は、LDlと
、ビングチイルファイバ3を同一の基板上に組みだて、
1つのモジュールとし、伝送用ファイバには、斜め研摩
したコネクタを用いると非常に使い易い。また長いピッ
グティルファイバの場合には、出力端をコネクタとして
、アダプタを介して伝送用の斜め研摩コネクタに結合す
る構成が可能である。
If the number of pig till fibers 3 is several pieces or less, the LDl and the pig till fiber 3 are assembled on the same substrate,
It is very easy to use if it is made into one module and a diagonally polished connector is used for the transmission fiber. Furthermore, in the case of a long pigtil fiber, it is possible to configure the output end as a connector and connect it to a diagonal polished connector for transmission via an adapter.

第4図に、本発明の実施例として伝送信号として周波数
多重されたTV信号の伝送に応用した例を示す。アンテ
ナ6で受信されだ1“V信号(複数ah)idヘッドエ
ンド(HE)7で、レベル合わせや自主放送信号分の多
重を受けた後、アンプ8て増幅されLDモジュール9の
LDlに印加される。
FIG. 4 shows an example in which the present invention is applied to the transmission of frequency-multiplexed TV signals as transmission signals. The 1"V signal (multiple AH) received by the antenna 6 is level-matched and multiplexed for independent broadcasting signals by the ID head end (HE) 7, then amplified by the amplifier 8 and applied to the LDl of the LD module 9. Ru.

このモジュールは、LDlと、前述のピッグティルファ
イバ3とAPC(自動パワー制御)用のフォトディテク
タ12、光出力用光アダプタ102から成る。フォトデ
ィテクタ12出力はAPC回路13に入り、LDのバイ
アス電流IBを制御し、LD出力を一定にする、LDモ
ジュール9は、ATC(自動温度制御)回路11により
温朋安定化され、LD特性の安定化を図る。モジュール
9の光出力は、アダプタ1oにより、端面が斜め萌犀さ
れた光コネクタ14により、伝送用光ファイバ16に結
合される。伝送用光ファイバの出力端は、同様の端面が
斜め研摩されたコネクタ16により、受光用モジュール
17と結合され、出力がアンプ18により増幅され、T
V受像機に送られる。
This module consists of the LD1, the above-mentioned pig-tilt fiber 3, a photodetector 12 for APC (automatic power control), and an optical adapter 102 for optical output. The output of the photodetector 12 enters the APC circuit 13, which controls the LD bias current IB and makes the LD output constant.The LD module 9 is warmly stabilized by the ATC (automatic temperature control) circuit 11, and the LD characteristics are stabilized. We aim to make this possible. The optical output of the module 9 is coupled to a transmission optical fiber 16 by an adapter 1o and an optical connector 14 whose end face is slanted. The output end of the transmission optical fiber is connected to a light receiving module 17 by a connector 16 whose end face is polished diagonally, and the output is amplified by an amplifier 18.
It is sent to the V receiver.

この実施例は、TV信号の伝送用であるが、他の信号伝
送用にも適用可能である事は明白である。
Although this embodiment is for the transmission of TV signals, it is obvious that it can also be applied to other signal transmissions.

発明の効果 以上、本発明のLD光伝送装置においては、外部共振器
との結合がファイバとの結合部と共用されるため、簡単
な構成の外部共振器付LDモジュールが作製可能であり
、また、LD直接電流変調によるLDの波長偏移量が抑
圧されるため、マルチモードファイバ伝送時の信号の歪
の抑圧が可能であり、その上、LDは単一モードで発振
するため、LDノイズの発生が少なく、かつモーダルノ
イズの抑圧された、非常に高品質な信号の伝送が可能に
なる。
In addition to the effects of the invention, in the LD optical transmission device of the present invention, since the coupling part with the external resonator is also used as the coupling part with the fiber, it is possible to manufacture an LD module with an external cavity with a simple configuration. , since the amount of LD wavelength shift due to LD direct current modulation is suppressed, it is possible to suppress signal distortion during multimode fiber transmission.Furthermore, since the LD oscillates in a single mode, LD noise can be suppressed. It becomes possible to transmit very high quality signals with less generation and suppressed modal noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のLD光伝送装置における基
本構成図、−第2図は同LD光伝送装置における外部共
振器の構成図、第3図は同LD光伝送装置におけるLD
の発振波長偏移の抑圧度を示す特性図、第4図は同LD
光伝送装置を応用したTV信号伝送装置の構成図である
。 1・・・・・・LD、2・・・・・・ステム、3・・呻
ファイバ、4・・山・ミラーコート端、5・・・・・・
マルチモードファイバ、1o1・・・・・・活性層、1
o2・・・・・・コア、1o3・・・・・・テーパ先球
、1o4・・・・・・コア。。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 ! 第3図 −6:
Fig. 1 is a basic configuration diagram of an LD optical transmission device according to an embodiment of the present invention, - Fig. 2 is a configuration diagram of an external resonator in the same LD optical transmission device, and Fig. 3 is a diagram of the LD
Figure 4 is a characteristic diagram showing the degree of suppression of the oscillation wavelength shift of the LD.
FIG. 1 is a configuration diagram of a TV signal transmission device to which an optical transmission device is applied. 1... LD, 2... Stem, 3... Groaning fiber, 4... Mountain/mirror coat end, 5...
Multimode fiber, 1o1...Active layer, 1
o2...core, 1o3...tapered ball, 1o4...core. . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2! Figure 3-6:

Claims (3)

【特許請求の範囲】[Claims] (1)直接輝度変調されるLDと、LD出力光を一端が
垂直端面で反射コートされた短いシングルモードファイ
バに導き、前記反射コート端面からの光出力を端面が斜
めになった伝送用マルチモードファイバに導き、前記マ
ルチモードファイバの他の端面をも斜めにした事を特徴
とするLD光伝送装置。
(1) An LD whose brightness is directly modulated and the LD output light is guided to a short single-mode fiber whose one end is reflectively coated with a vertical end face, and the optical output from the reflective coated end face is converted into a transmission multi-mode fiber whose end face is oblique. An LD optical transmission device characterized in that the other end face of the multimode fiber is also made oblique.
(2)シングルモードファイバとして、長さが4mm以
上20cm以下のものを用いた事を特徴とする特許請求
の範囲第1項記載のLD光伝送装置。
(2) The LD optical transmission device according to claim 1, wherein a single mode fiber having a length of 4 mm or more and 20 cm or less is used.
(3)シングルモードファイバの端面強度反射率を30
%〜90%にした事を特徴とする特許請求の範囲第1項
記載のLD光伝送装置。
(3) The end face intensity reflectance of the single mode fiber is 30
% to 90%. LD optical transmission device according to claim 1.
JP59142705A 1984-07-10 1984-07-10 Optical transmitter of laser diode Pending JPS6120913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142705A JPS6120913A (en) 1984-07-10 1984-07-10 Optical transmitter of laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142705A JPS6120913A (en) 1984-07-10 1984-07-10 Optical transmitter of laser diode

Publications (1)

Publication Number Publication Date
JPS6120913A true JPS6120913A (en) 1986-01-29

Family

ID=15321642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142705A Pending JPS6120913A (en) 1984-07-10 1984-07-10 Optical transmitter of laser diode

Country Status (1)

Country Link
JP (1) JPS6120913A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019193A1 (en) * 1996-10-28 1998-05-07 Siemens Aktiengesellschaft Device for injecting light into the end of a multimode optical fibre
EP0918238A1 (en) * 1997-10-23 1999-05-26 Hewlett-Packard Company Optical device for connecting a semiconductor device and a waveguide.
WO2001048874A3 (en) * 1999-12-27 2001-12-13 Optical Technologies Italia Semiconductor laser element having a diverging region
JP2003307657A (en) * 2002-04-15 2003-10-31 Mitsubishi Cable Ind Ltd Fiber for high-output pulse light and optical amplifier
US6826220B2 (en) 1999-12-27 2004-11-30 Corning O.T.I. S.R.L. Semiconductor laser element having a diverging region
WO2017164037A1 (en) * 2016-03-24 2017-09-28 日本電気株式会社 Light source device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019193A1 (en) * 1996-10-28 1998-05-07 Siemens Aktiengesellschaft Device for injecting light into the end of a multimode optical fibre
EP0918238A1 (en) * 1997-10-23 1999-05-26 Hewlett-Packard Company Optical device for connecting a semiconductor device and a waveguide.
WO2001048874A3 (en) * 1999-12-27 2001-12-13 Optical Technologies Italia Semiconductor laser element having a diverging region
US6826220B2 (en) 1999-12-27 2004-11-30 Corning O.T.I. S.R.L. Semiconductor laser element having a diverging region
JP2003307657A (en) * 2002-04-15 2003-10-31 Mitsubishi Cable Ind Ltd Fiber for high-output pulse light and optical amplifier
WO2017164037A1 (en) * 2016-03-24 2017-09-28 日本電気株式会社 Light source device
CN108886235A (en) * 2016-03-24 2018-11-23 日本电气株式会社 Light supply apparatus
JPWO2017164037A1 (en) * 2016-03-24 2018-12-13 日本電気株式会社 Light source device

Similar Documents

Publication Publication Date Title
US5448390A (en) Wavelength division multiplex bothway optical communication system
US4995696A (en) Optical amplifier module
US4886334A (en) Optical amplifying repeater
JP3346570B2 (en) laser
US6433920B1 (en) Raman-based utility optical amplifier
US5598491A (en) Optical fiber amplifier and optical fiber transmission apparatus
CA2381046A1 (en) Wavelength-locked external cavity lasers with an integrated modulator
US4955014A (en) Broadband optical communication system, particularly in the subscriber area
CA1251261A (en) Coherent lightwave transmitter with plurality of optical paths
JP5022015B2 (en) Semiconductor laser device and optical module using the same
JPH1168215A (en) Light generating system for optical fiber network
EP0150214B1 (en) Coupled cavity laser
JPS6120913A (en) Optical transmitter of laser diode
CA2108213C (en) Optical semiconductor amplifier
US6524016B1 (en) Semiconductor laser module
US6819703B1 (en) External cavity laser
US20050105575A1 (en) Multi-channel light source and multi-channel optical module using the same
US6226309B1 (en) Semiconductor laser and light source
JP2002072030A (en) System containing optical semiconuctor waveguide device
JPS6122311A (en) Ld analog optical transmitter
EP1780848A2 (en) Signal band antireflection coating for pump facet
JPS5843413A (en) Optical transmission device
JPS63124633A (en) Wide band optical communication system especially for subscriber domain
US20230246417A1 (en) Tunable laser having ring resonators with low q
JPS63218909A (en) Optical signal transmission device