JPS61209012A - Preparation of separation membrane - Google Patents
Preparation of separation membraneInfo
- Publication number
- JPS61209012A JPS61209012A JP5007885A JP5007885A JPS61209012A JP S61209012 A JPS61209012 A JP S61209012A JP 5007885 A JP5007885 A JP 5007885A JP 5007885 A JP5007885 A JP 5007885A JP S61209012 A JPS61209012 A JP S61209012A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- glass
- glass layer
- pores
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 40
- 239000012528 membrane Substances 0.000 title claims abstract description 35
- 239000011521 glass Substances 0.000 claims abstract description 61
- 239000011148 porous material Substances 0.000 claims abstract description 52
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000919 ceramic Substances 0.000 claims abstract description 11
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 11
- 238000010828 elution Methods 0.000 claims abstract description 10
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 30
- 239000012071 phase Substances 0.000 claims description 22
- 239000010409 thin film Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000012808 vapor phase Substances 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 27
- 238000005191 phase separation Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 241000700605 Viruses Species 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910003439 heavy metal oxide Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000001612 separation test Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はガス分離をはじめ、精密濾過、限界濾過、逆浸
透法等の広範な用途に用いられる分離膜の製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a separation membrane used in a wide range of applications such as gas separation, precision filtration, ultrafiltration, and reverse osmosis.
(従来の技術)
混合ガスから特定ガスをガス拡散法によって分離するガ
ス分離等の分野においては、ガス分子の平均自由行程よ
りもはるかに小さい孔径数十〜数百人の細孔を持つ分離
膜が用いられている。従来のこの種の分離膜としては通
常は有機高分子膜が使用されているが、100℃以上の
温度で使用することができないうえに耐薬品性、耐久性
に劣り、実用上に種々の問題が残されている。一方、耐
熱性を向上させる目的で金属粉末やセラミック粉末を焼
結して多孔質の分離膜を製造する方法も知られているが
、この方法による分離膜は強度上の問題から1fi以下
の膜厚とすることは困難であり、可能な限り膜厚を薄く
して分離効率を向上させることが望まれるガス分離用の
分離膜としてはやはり実用性に欠ける面があった。そこ
で、特開昭59−59223号公報に示されるように、
セラミック焼結体のような多孔体に溶液状のアルミニウ
ムアルコラード又はアルミニウムキレート等の隔膜形成
成分を含浸させ、加水分解後に乾燥、焼成して多層の多
孔質体よりなる隔膜を得る試みもなされているが、この
方法では溶液中の水分や有機バインダーが飛散する際に
隔膜中にクランクや気泡を残し易く、隔膜中の細孔を孔
径数十〜数百人にコントロールしてもクランクによる数
十μの貫通孔を通って大部分のガスが拡散してしまい、
望ましいガス分離を行わせ難い欠点があった。(Prior art) In the field of gas separation, which separates a specific gas from a mixed gas by the gas diffusion method, separation membranes with pores of several tens to hundreds of pores, which are much smaller than the mean free path of gas molecules, are used. is used. Organic polymer membranes are usually used as conventional separation membranes of this type, but they cannot be used at temperatures above 100°C, have poor chemical resistance and durability, and have various practical problems. is left behind. On the other hand, there is also a known method of manufacturing porous separation membranes by sintering metal powder or ceramic powder for the purpose of improving heat resistance, but separation membranes made by this method are membranes of 1 fi or less due to strength issues. It is difficult to increase the thickness, and as a separation membrane for gas separation, where it is desired to improve separation efficiency by reducing the membrane thickness as much as possible, it is still impractical. Therefore, as shown in Japanese Patent Application Laid-Open No. 59-59223,
Attempts have also been made to impregnate a porous body such as a ceramic sintered body with a diaphragm-forming component such as aluminum alcoholade or aluminum chelate in the form of a solution, and then dry and sinter it after hydrolysis to obtain a diaphragm made of a multilayered porous body. However, this method tends to leave cracks and air bubbles in the diaphragm when the water and organic binder in the solution scatters, and even if the pores in the diaphragm are controlled to have a pore size of several tens to hundreds of pores, the cranks will cause dozens of cracks. Most of the gas diffuses through the μ through-hole,
There was a drawback that it was difficult to perform the desired gas separation.
(発明が解決しようとする問題点)
本発明はこのような従来の問題点を解決して、耐熱性、
耐薬品性、耐久性に優れ、ガス分離に適した孔径が5〜
2000人の均一な多数の細孔を備えた分離膜をクラン
クを生ずることなく製造することができる分離膜の製造
方法を目的として完成されたものである。(Problems to be solved by the invention) The present invention solves these conventional problems and improves heat resistance,
Excellent chemical resistance and durability, and pore size of 5~ suitable for gas separation
It was completed with the aim of creating a method for manufacturing a separation membrane that can manufacture a separation membrane with a large number of 2,000 uniform pores without producing a crank.
(問題点を解決するための手段)
本発明は分相可能なガラス層を分相処理してシリカリフ
チなガラス相とアルカリリッチなガラス相とに分相させ
たのち、その表面に気相法によって孔径5〜2000人
の多数の細孔を持つ薄膜を形成し、次に溶出処理により
ガラス層からアルカリリッチなガラス相を溶出させるこ
とを特徴とするものである。(Means for Solving the Problems) The present invention involves phase-separating a phase-separable glass layer to separate it into a silica-rich glass phase and an alkali-rich glass phase. The method is characterized by forming a thin film having a large number of pores with a pore size of 5 to 2000, and then eluting an alkali-rich glass phase from the glass layer by elution treatment.
ガラスの分相はガラス相の内部に2種類以上のガラスを
分離させたものであって、一般的にはシリカリッチなガ
ラス相とアルカリリッチなガラス相との分離を利用する
0分相可能なガラスとしてはNa、O−Bg03−3
ioz系、NatO−BxOs S i OH−重金
属酸化物系、NatO−BzOx −Ce O* ・
3 N b ioz系、pJ a ! O−P z05
−Sing系、Na、O−B、O,−3ioz−Gem
、系等のガラスが用いられる0代表的なN a to
BxOs S i Ot系のガラスは均質な硼珪酸
塩ガラスの内部に熱処理によってほとんど5iotのみ
からなるシリカガラス相と、Na。Phase separation of glass is the separation of two or more types of glass inside the glass phase, and generally, 0-separation is possible, which utilizes the separation of a silica-rich glass phase and an alkali-rich glass phase. Glass: Na, O-Bg03-3
ioz system, NatO-BxOs Si OH-heavy metal oxide system, NatO-BzOx -Ce O* ・
3 N bioz system, pJ a! O-P z05
-Sing system, Na, O-B, O, -3ioz-Gem
, 0 representative glasses are used, such as N a to
BxOs S i Ot glass is a homogeneous borosilicate glass that is heat treated to create a silica glass phase consisting of almost 5iot and Na.
0− B z Osを主成分とするガラス相とを数十人
のオーダーで分相させるもので、分相し易いようにN
a 寞0 / B g O2はモル比で115の近傍と
し、また溶出処理後の強度保持上、Sin、を50%以
上含有させておくことが望ましい、このような分相可能
なガラスは加熱溶融されて薄板や円筒等の任意形状のガ
ラス層に成形される。この場合にはハンドリングのため
に十分な強度を得るために0.5鰭以上の厚さを持たせ
ることが好ましい。It separates the glass phase whose main component is 0-BzOs on the order of several dozen people, and N is added to facilitate the phase separation.
a 寞0 / B g O2 should be in the vicinity of 115 in molar ratio, and in order to maintain strength after elution treatment, it is desirable to contain 50% or more of Sin. Such a phase-separable glass is heated and melted. Then, it is formed into a glass layer of arbitrary shape such as a thin plate or cylinder. In this case, it is preferable to have a thickness of 0.5 fin or more in order to obtain sufficient strength for handling.
なお、実用的には第1図に模式的に示すように0゜5〜
30μの孔径の連続孔(1)を持つアルミナ、ムライト
、コージライトのようなセラミック多孔体(2)の表面
に分相可能なガラス層(3)をlO〜500μの厚さに
被覆したものとして、ガラス層(3)のみのものよりも
更に大きい強度を待たせることが好ましい0次に、この
ようなガラス層(3)を分相処理して、第2図に示され
るようにガラス層(3)をシリカリッチなガラス相(4
)とアルカリリッチなガラス相(5)とに分相させる0
分相処理は一般的には150〜800℃で0.5時間以
上、分相可能なガラスとしてNago+ B、o、−3
i OH系のガラスを用いた場合には400〜700℃
で行われる。低温で短時間の分相処理を行うと分相は微
細であり、高温で長時間となるほど分相が進行するので
、アルカリリッチなガラス相(5)の断面積が10〜5
000人となるように分相処理の条件を設定する、この
ようにガラスN(3)の分相を行わせたのち、その表面
に第3図のように金属質又はセラミックス質の薄膜(6
)が気相方によって形成される。気相法は薄膜を形成さ
せようとする物質もしくはその原材料からなる物質に熱
又は運動量を加えて原子、分子又は集合体に分解したう
え、別の場所の基体上に結合あるいは凝縮させる方法と
して定義され、化学反応法(CVD法)と物理蒸着法(
pvD法)とに大別される。化学反応法は狭義の化学反
応法、化学輸送法、基板反応法、スプレー法等に更に分
類されるが、いずれも薄膜となる素材を気化し易い化合
物に変え、気相を通して運搬したうえで基板表面で化学
反応を行わせて膜を形成する方法である。また、物理蒸
着法は真空蒸着法、イオンブレーティング法、スパッタ
リング法、プラズマ法のような真空中で素材に物理的な
エネルギを加えて蒸発させたうえ基板上へ蒸着させて膜
を形成する方法である。これらの気相法によりガラス層
(3)上に生成される薄膜(6)は基板の温度及び雰囲
気圧等を適当な値に制御しつつ処理を行えば、生成過程
における核成長あるいは自己陰影効果によって多孔性の
柱状構造を持ち、5〜2000人の孔径の均一な細孔を
持つ薄膜(6)となる、孔径が5人未満であるとガスの
透過速度が小さくなって実用性が失われ、2000人を
試すとガスの分離性能の低下が生ずるので、孔径が5〜
2000人となるように制御を行うものとする。その膜
厚は10Å〜100μが適当であり、またその材質とし
ては酸化物、炭化物、窒化物のほか金属、金属間化合物
を用いることもできる。このようにして分相したガラス
層(3)の表面に気相法により薄膜(6)を形成したの
ち、90℃以上の熱水あるいは60〜100℃のO0旧
〜0.I Nの塩酸、硫酸、硝酸等を用いて溶出処理を
行えば、第4図に示すようにアルカリリッチなガラス相
(5)は′gtIll(6)を表面に残したまま溶出し
て、ガラス層+3)は10〜5000人の孔径の網状細
孔(刀を持つシリカリッチな多孔体(8)となる。In addition, in practice, as schematically shown in Figure 1, the temperature is 0°5~
A ceramic porous body (2) such as alumina, mullite, or cordierite having continuous pores (1) with a pore diameter of 30μ is coated with a phase-separable glass layer (3) to a thickness of 10 to 500μ. , it is preferable to have a strength even greater than that of the glass layer (3) alone.Next, such a glass layer (3) is subjected to a phase separation treatment to form a glass layer (3) as shown in FIG. 3) into a silica-rich glass phase (4
) and an alkali-rich glass phase (5).
Phase separation treatment is generally performed at 150 to 800°C for 0.5 hours or more.
i 400-700℃ when using OH glass
It will be held in When phase separation is carried out for a short time at a low temperature, the phase separation is fine, and the longer it is at a high temperature, the more the phase separation progresses, so the cross-sectional area of the alkali-rich glass phase (5)
After phase separation of glass N (3) is performed in this way, a metallic or ceramic thin film (6
) is formed by the gas phase. The gas phase method is defined as a method in which the substance to be formed into a thin film or its raw material is decomposed into atoms, molecules, or aggregates by applying heat or momentum, and then bonded or condensed on a substrate in another location. chemical reaction method (CVD method) and physical vapor deposition method (
pvD method). Chemical reaction methods are further classified into chemical reaction methods in a narrow sense, chemical transport methods, substrate reaction methods, spray methods, etc., but all of them involve changing the material that will form a thin film into a compound that easily vaporizes, transporting it through a gas phase, and then applying it to a substrate. This method involves forming a film by causing a chemical reaction on the surface. In addition, physical vapor deposition is a method such as vacuum evaporation, ion blasting, sputtering, and plasma that applies physical energy to a material in a vacuum to evaporate it, and then deposits it onto a substrate to form a film. It is. The thin film (6) produced on the glass layer (3) by these vapor phase methods can be processed while controlling the temperature of the substrate, atmospheric pressure, etc. to appropriate values. This results in a thin film (6) with a porous columnar structure and uniform pores with a pore size of 5 to 2000 pores. If the pore size is less than 5 pores, the gas permeation rate becomes low and practicality is lost. , if 2,000 people are tested, the gas separation performance will deteriorate, so the pore size should be 5 to 5.
It is assumed that control is performed so that the number of people is 2,000. The film thickness is suitably 10 Å to 100 μm, and the material may be oxides, carbides, nitrides, metals, or intermetallic compounds. After forming a thin film (6) on the surface of the glass layer (3) which has been phase-separated in this manner by a vapor phase method, it is coated with hot water of 90°C or higher or with O0 old to 0.5°C of 60-100°C. If elution treatment is performed using IN hydrochloric acid, sulfuric acid, nitric acid, etc., the alkali-rich glass phase (5) will be eluted while leaving 'gtIll (6) on the surface, as shown in Figure 4, and the glass phase will be dissolved. Layer +3) becomes a silica-rich porous body (8) with reticular pores (swords) with a pore size of 10 to 5000 people.
(作用)
このように本発明においては気相法による薄膜形成がこ
れに適する平坦平滑である程度の強度を有する分相した
ガラス層(3)の表面上に行われるので、孔径5〜20
00人の均一かつ微小な細孔を持つ薄膜(6)を安定し
て形成することができる。しかも薄膜形成後にガラス層
(3)の溶出処理を行うことにより表面に薄膜(6)を
残したままでガラス層(3)のみを10〜5ooo人の
網状細孔(7)を持つガス透過性の高いシリカリッチな
ガラス質の多孔体(8)とすることができる、従ってガ
ス透過性の高いガラス質の多孔体(8)の表面に均一か
つ微小な細孔を持つ薄膜(6)を形成した分離膜を安定
して製造することができ、また、気相法による薄膜形成
条件やガラス層(3)の分相処理条件の調整によって任
意の孔径及び膜厚の分離膜を製造することができる。(Function) In this way, in the present invention, the thin film is formed by the vapor phase method on the surface of the phase-separated glass layer (3) which is flat and smooth and has a certain degree of strength.
A thin film (6) having uniform and minute pores of 0.00 mm can be stably formed. Moreover, by performing an elution process on the glass layer (3) after forming the thin film, the glass layer (3) alone can be made into a gas-permeable material having 10 to 5000 mesh pores (7) while leaving the thin film (6) on the surface. A thin film (6) having uniform and minute pores was formed on the surface of the glassy porous body (8), which can be made into a highly silica-rich glassy porous body (8) and therefore has high gas permeability. Separation membranes can be stably manufactured, and separation membranes with arbitrary pore diameters and membrane thickness can be manufactured by adjusting the thin film formation conditions using the gas phase method and the phase separation treatment conditions of the glass layer (3). .
本発明の方法により得られた分離膜は従来の有機高分子
膜とは異なり、ガラス質とセラミック質あるいは金属質
からなるものであるので耐熱性、耐薬品性、耐久性に優
れ、また従来のセラミック焼結体等にアルミニウムアル
コラード等を含浸させ加水分解後に乾燥して得られた多
層の多孔体のようにクラックが存在することもなく、効
率良くガス分離を行わせるに通したものである。Unlike conventional organic polymer membranes, the separation membrane obtained by the method of the present invention is made of glass, ceramic, or metal, so it has excellent heat resistance, chemical resistance, and durability, and is superior to conventional organic polymer membranes. Unlike multi-layered porous bodies obtained by impregnating aluminum alcolade etc. into ceramic sintered bodies, hydrolyzing them and drying them, there are no cracks, and gas separation can be carried out efficiently. .
(実施例)
実施例I
Na冨0−B、O,−S i O□系の分相可能なガラ
スを溶融して厚さ1mの平板を成形したうえ、500℃
、12時間の分相処理を行った。その分相処理したガラ
スの表面に反応管中で気相化学反応法によりAltos
質からなる平均細孔径200人の細孔を持つ膜厚10μ
の薄膜を形成した。(Example) Example I A flat plate with a thickness of 1 m was formed by melting a phase-separable glass of the Na-density 0-B, O, -S i O□ system, and then heated at 500°C.
, a phase separation treatment was performed for 12 hours. Altos was applied to the surface of the phase-separated glass using a gas phase chemical reaction method in a reaction tube.
Membrane thickness 10μ with average pore diameter 200 pores
A thin film was formed.
原料ガスはA I CIs 、 H!Oであり、キャリ
アガスはAt、Oxで反応温度は900℃とした。The raw material gas is AICIs, H! The carrier gas was At and Ox, and the reaction temperature was 900°C.
その後90℃、0.INの塩酸により溶出処理を施し、
分相したガラス層を平均細孔径2000人の網状細孔を
持つシリカリッチなガラス質の多孔体とした。この結果
、ガラス質の多孔体の表面に気相法による膜厚10μの
薄膜が形成された分離膜が得られた。Then 90℃, 0. Perform elution treatment with IN hydrochloric acid,
The phase-separated glass layer was made into a silica-rich glassy porous body having network pores with an average pore diameter of 2,000 pores. As a result, a separation membrane was obtained in which a thin film having a thickness of 10 μm was formed on the surface of a glassy porous body by a vapor phase method.
実施N2
Nago−BgOi S i Ox系の分相可能な
ガラスを溶融して厚さ1鶴の平板を成形したうえ、40
0℃10時間の分相処理を行った。これを反応管中で真
空蒸着方により平板の表面に平均細孔径50人の細孔を
持つ膜厚2μのAI、O,質のm膜を形成した。蒸発源
はAI、雰囲気は01 %圧力は1G−’torrであ
り、分相したガラスからなる平板の温度を400℃に保
った。冷却後、。Implementation N2 A flat plate with a thickness of 1 crane was formed by melting Nago-BgOi Si Ox-based glass that can be separated into phases, and then
Phase separation treatment was performed at 0°C for 10 hours. This was deposited in a reaction tube by vacuum evaporation to form a 2 μm-thick film of AI, O, and pores having an average pore diameter of 50 pores on the surface of a flat plate. The evaporation source was AI, the atmosphere was 0.1%, the pressure was 1 G-'torr, and the temperature of the flat plate made of phase-separated glass was maintained at 400°C. After cooling.
90℃、0.INの塩酸により溶出処理してガラス層を
平均細孔径tooo人の網状細孔を持っシリカ分よりな
るガラス質の多孔体とした。この結果、ガラス質の多孔
体の表面に気相法にょる膜厚2μの薄膜が形成された分
離膜が得られた。90℃, 0. The glass layer was subjected to an elution treatment with IN hydrochloric acid to form a glassy porous body made of silica and having network pores with an average pore diameter of too much. As a result, a separation membrane was obtained in which a thin film having a thickness of 2 μm was formed on the surface of a glassy porous body by a vapor phase method.
実施例3
アルミナ質の粒状体を焼成して平均細径1μ、厚さ1m
のセラミック多孔体よりなる平板上にNa。Example 3 Alumina granules were fired to produce particles with an average diameter of 1μ and a thickness of 1m.
Na on a flat plate made of a ceramic porous body.
0−Bgos S i OH系の分相可能なガラスを
厚さ300諺になるように塗布し、加熱溶融し、これを
500℃12時間の分相処理を行った。これを反応管中
でスパッタリング法により分相可能なガラスの表面に平
均細孔径100人の細孔を持つ膜厚0,1 μのAIN
の薄膜を形成した。陰極材料はAIで、Ar5X10弓
torrsNx2X10−”torrの雰囲気下で、平
板温度200℃として放電させた。冷却後90℃、0.
INの塩酸により溶出処理、アルミナ質の多孔体のガラ
ス層を平均細孔径2000人の網状細孔を持つガラス質
の多孔体とした。この結果、アルミナ質の多孔体に被覆
されたガラス質の多孔体の表面に気相法による膜厚0.
1 μの薄膜が形成された分離膜が得られた。0-Bgos S i OH-based phase-separable glass was applied to a thickness of 300 mm, heated and melted, and subjected to phase-separation treatment at 500° C. for 12 hours. This is coated with an AIN film with a thickness of 0.1 μm and an average pore size of 100 pores on the surface of a glass that can be phase-separated by sputtering in a reaction tube.
A thin film was formed. The cathode material was AI, and discharge was performed in an atmosphere of Ar5X10 torrsNx2X10-'' torr at a flat plate temperature of 200°C.After cooling, the temperature was 90°C and 0.5°C.
The glass layer of the alumina porous body was subjected to elution treatment with IN hydrochloric acid to form a glass porous body having network pores with an average pore diameter of 2,000 pores. As a result, the surface of the glassy porous body coated with the alumina porous body was coated with a film having a thickness of 0.00 mm by vapor phase method.
A separation membrane in which a 1 μm thin film was formed was obtained.
上記の実施例1〜3の分離膜のほか、比較例としてガラ
スを分相処理して得られた厚さ1鶴、平均細孔径50人
のガラス質の多孔体のみからなる分離膜を作成し、流通
式ガス分離装置を用いてH第50(体積)%、Nz5o
%の混合ガスの分離テストを行った。供給側圧力5.0
kg/d、流出側圧力1kg/cd、温度300℃の
条件でテストした結果、次表のとおりの結果が得られた
。In addition to the separation membranes of Examples 1 to 3 above, as a comparative example, a separation membrane consisting only of a vitreous porous material with a thickness of 1 mm and an average pore diameter of 50 mm obtained by phase separation treatment of glass was prepared. , 50% (by volume) of H, Nz5o using a flow-through gas separation device
% mixed gas separation test was conducted. Supply side pressure 5.0
As a result of testing under the following conditions: kg/d, outlet pressure of 1 kg/cd, and temperature of 300°C, the results shown in the following table were obtained.
(発明の効果) ′
本発明は以上の説明からも明らかなように、表面が平滑
である程度の強度のある分相したガラス層の表面に気相
法により孔径5〜2000人の均一かつ微小な細孔を持
つ薄膜を形成したうえで、この薄膜を残したまま溶出処
理してガラス層をガス透過性の高い多孔体とすることに
よって、ガス分離に適した細孔を持つ薄膜と、ガス透過
性の高い多孔体とからなる分離膜を安定して得ることが
できるものである0本発明の方法により得られた分離膜
は、細孔の均一性、耐熱性、耐薬品性、耐久性、機械的
強度に優れたもので、特に図示のようにガラス層をセラ
ミック多孔体の表面に被覆形成したものは実用的に優れ
た強度を示すものである。また本発明の方法により得ら
れた分離膜は任意の膜厚や細孔径のものを製造すること
ができるうえに、クラックのないものであるから、特に
効率良くガス分離を行わせるに好適なものである。(Effects of the Invention) As is clear from the above description, the present invention provides uniform and fine pores with a diameter of 5 to 2000 by a vapor phase method on the surface of a phase-separated glass layer with a smooth surface and a certain degree of strength. After forming a thin film with pores, the glass layer is made into a porous material with high gas permeability by elution treatment with this thin film left in place. The separation membrane obtained by the method of the present invention has excellent pore uniformity, heat resistance, chemical resistance, durability, It has excellent mechanical strength, and in particular, a ceramic porous body whose surface is coated with a glass layer as shown in the figure shows excellent strength in practical use. Furthermore, the separation membrane obtained by the method of the present invention can be manufactured to any thickness and pore size, and is crack-free, making it particularly suitable for efficient gas separation. It is.
このように本発明により得られた分離膜は製鉄所の副生
ガスからのH2回収、C1化学における合成ガス(Co
−H,)の混合比調整、天然ガスからのHeの濃縮等の
ガス分離の分野に有益であるが、水溶液や有機溶媒の濾
過、酵母やかび類の濾過、細菌やウィルスの濾過のよう
な精密濾過の分野、およびタンパク質の濃縮、回収、精
製、ワクチン、酵素、ビールス、核酸等の生理活性物質
の濃縮、回収、精製等の限界濾過の分野のほか、海水、
塩水等の淡水化、純水、無菌水の製造等の逆浸透法の分
野にも有効に利用することができるものである。よって
本発明は従来のこの種分離膜製造上の問題点を一掃した
ものとして、産業の発展に寄与するところは極めて大で
ある。The separation membrane obtained according to the present invention is useful for recovering H2 from by-product gas in steel plants, and for synthesizing gas (Co) in C1 chemistry.
It is useful in the field of gas separation, such as adjusting the mixing ratio of -H,) and concentrating He from natural gas, but it is also useful for filtration of aqueous solutions and organic solvents, filtration of yeast and molds, and filtration of bacteria and viruses. In addition to the field of ultrafiltration, such as the concentration, recovery, and purification of proteins, concentration, recovery, and purification of physiologically active substances such as vaccines, enzymes, viruses, and nucleic acids, seawater,
It can also be effectively used in the field of reverse osmosis, such as desalination of salt water, production of pure water, and sterile water. Therefore, the present invention can greatly contribute to the development of industry by eliminating the problems associated with the production of conventional separation membranes of this type.
第1図〜第4図は本発明の分離膜の製造工程を模式的に
示す部分拡大断面図である。
(3)ニガラス層、(61: Fl膜。1 to 4 are partially enlarged sectional views schematically showing the manufacturing process of the separation membrane of the present invention. (3) Nigarasu layer, (61: Fl film.
Claims (1)
ガラス相とアルカリリッチなガラス相とに分権させたの
ち、その表面に気相法によって孔径5〜2000Åの多
数の細孔を持つ薄膜を形成し、次に溶出処理によりガラ
ス層からアルカリリッチなガラス相を溶出させることを
特徴とする分離膜の製造方法。 2、ガラス層がセラミック多孔体上に10〜500μの
厚さに被覆されたものである特許請求の範囲第1項記載
の分離膜の製造方法。 3、薄膜を10Å〜100μの厚さに形成する特許請求
の範囲第1項又は第2項記載の分離膜の製造方法。[Claims] 1. After phase-separating the phase-separable glass layer to separate it into a silica-rich glass phase and an alkali-rich glass phase, pores with a diameter of 5 to 2000 Å are formed on the surface by a vapor phase method. A method for producing a separation membrane, which comprises forming a thin film with a large number of pores, and then eluting an alkali-rich glass phase from the glass layer through elution treatment. 2. The method for producing a separation membrane according to claim 1, wherein the glass layer is coated on a ceramic porous body to a thickness of 10 to 500 μm. 3. The method for producing a separation membrane according to claim 1 or 2, wherein the thin film is formed to a thickness of 10 Å to 100 μ.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5007885A JPS61209012A (en) | 1985-03-13 | 1985-03-13 | Preparation of separation membrane |
US06/832,218 US4689150A (en) | 1985-03-07 | 1986-02-24 | Separation membrane and process for manufacturing the same |
EP86301512A EP0195549B1 (en) | 1985-03-07 | 1986-03-04 | A separation membrane and process for manufacturing the same |
DE8686301512T DE3675961D1 (en) | 1985-03-07 | 1986-03-04 | SEPARATION MEMBRANE AND METHOD FOR THEIR PRODUCTION. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5007885A JPS61209012A (en) | 1985-03-13 | 1985-03-13 | Preparation of separation membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61209012A true JPS61209012A (en) | 1986-09-17 |
Family
ID=12848972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5007885A Pending JPS61209012A (en) | 1985-03-07 | 1985-03-13 | Preparation of separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61209012A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4931843A (en) * | 1972-07-21 | 1974-03-22 | ||
JPS56164035A (en) * | 1980-04-28 | 1981-12-16 | Nat Res Dev | Porous glass membrane for reverse osmosis desalination |
JPS58199745A (en) * | 1982-05-14 | 1983-11-21 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of tubular porous glass film |
-
1985
- 1985-03-13 JP JP5007885A patent/JPS61209012A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4931843A (en) * | 1972-07-21 | 1974-03-22 | ||
JPS56164035A (en) * | 1980-04-28 | 1981-12-16 | Nat Res Dev | Porous glass membrane for reverse osmosis desalination |
JPS58199745A (en) * | 1982-05-14 | 1983-11-21 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of tubular porous glass film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4689150A (en) | Separation membrane and process for manufacturing the same | |
US4473476A (en) | Method of reverse osmosis employing an improved porous glass membrane | |
JP3927941B2 (en) | Method for producing silica composite film having excellent thermal stability by impregnation-rolling method | |
CN108283889B (en) | A composite membrane, its preparation method and application in gas separation and purification | |
JPS61209005A (en) | Separation membrane and its preparation | |
CN101371972A (en) | A kind of method for preparing inorganic membrane middle layer | |
US7655277B2 (en) | Titania composite membrane for water/alcohol separation, and preparation thereof | |
JPS61209012A (en) | Preparation of separation membrane | |
JPS61209013A (en) | Preparation of separation membrane | |
KR101136853B1 (en) | Method for Thin Film Coating of Palladium Alloy on Porous Metal Substrate | |
US4340408A (en) | High silica glass | |
JPH039074B2 (en) | ||
JPS61209004A (en) | Separation membrane and its preparation | |
US4661138A (en) | Method of strengthening the alkali resistance of a porous glass | |
CN102389715A (en) | Method for preparing porous inorganic membrane by particle sintering process assisted by carbon skeleton | |
JPH0582B2 (en) | ||
JP4584474B2 (en) | Zeolite molded body, zeolite laminated intermediate, and method for producing zeolite laminated composite | |
JPH0717780A (en) | Method for producing porous ceramic film | |
JPS61204006A (en) | Separation membrane and its production | |
JP2008514387A (en) | Gas separation system and method of manufacturing the system | |
JP4522761B2 (en) | Method for producing inorganic porous body | |
JPH06239674A (en) | Porous ceramic membrane, gas separation membrane using the same, and method for producing the same | |
JP2005246340A (en) | Manufacturing method of inorganic filter with one-dimensional penetrating nanoporous membrane | |
JPH0977572A (en) | Porous ceramic membrane member | |
JP5414015B2 (en) | Porous carbon membrane and method for producing the same |