JPS6120892A - Earthquakeproof supporter for vessel of nuclear reactor - Google Patents
Earthquakeproof supporter for vessel of nuclear reactorInfo
- Publication number
- JPS6120892A JPS6120892A JP59142614A JP14261484A JPS6120892A JP S6120892 A JPS6120892 A JP S6120892A JP 59142614 A JP59142614 A JP 59142614A JP 14261484 A JP14261484 A JP 14261484A JP S6120892 A JPS6120892 A JP S6120892A
- Authority
- JP
- Japan
- Prior art keywords
- reactor vessel
- radial key
- radial
- vessel
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Buffer Packaging (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、液体金属の循環によって冷却される炉心及び
その関連装置を内部に収容している原子炉容器の熱膨張
による変位兼を吸収し、地震時にその原子炉容器を安全
に支持することのできる原子炉容器の耐震支持装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides a system for absorbing displacement due to thermal expansion of a nuclear reactor vessel housing a reactor core cooled by circulation of liquid metal and related equipment therein; The present invention relates to an earthquake-resistant support device for a nuclear reactor vessel that can safely support the reactor vessel during an earthquake.
公知の如く、液体金属によυ冷却する原子炉においては
、第5図に示すように炉心1、炉心支持構造物2などは
原子炉容器3の中に収容されていて、その原子炉容器3
は、その上部フランジ4を原子炉建屋壁から張シ出した
ペデスタル5に乗せて、支持されている。As is well known, in a nuclear reactor cooled by liquid metal, the reactor core 1, core support structure 2, etc. are housed in a reactor vessel 3, as shown in FIG.
is supported by placing its upper flange 4 on a pedestal 5 extending from the wall of the reactor building.
原子炉容器は発電容量の太番量化に伴いその容積が大き
くなった場合、固有振動周波数が小さくなり、その耐震
設計が極めて困難になる。When the volume of a nuclear reactor vessel increases as power generation capacity increases, its natural vibration frequency decreases, making its seismic design extremely difficult.
例えば、剛構造であれば耐震設計用水平地震力が100
0 gatであるのに対し、剛構造でなく、しかもその
固有振動周波数が小さい場合には、その値が5000な
いし6000 gatになシ、設計上極めて困難な条件
となる。このために、従来構造では、例えば第5図に示
すように原子炉容器3の下部外周に放射状に数個所オイ
ルダンツヤ6などを備えた耐震支持装置を設け、原子炉
容器3の固有振動数を高めることによシ、原子炉容器3
に作用する地震力を軽減する等の対策がなされている。For example, if the structure is rigid, the horizontal seismic force for seismic design is 100
0 gat, but if it is not a rigid structure and its natural vibration frequency is small, the value will be 5000 to 6000 gat, which is an extremely difficult condition in terms of design. For this purpose, in the conventional structure, for example, as shown in FIG. 5, an earthquake-resistant support device is provided with oil dampers 6 at several locations radially around the lower outer periphery of the reactor vessel 3 to increase the natural frequency of the reactor vessel 3. Especially reactor vessel 3
Measures are being taken to reduce the seismic force acting on the earthquake.
しかしながら、このように耐震支持装置として、メカニ
カルスナツパやオイルスナッ/S等のいわゆる耐震用防
振器を使用した場合、次のような問題があった。However, when a so-called seismic vibration isolator such as a mechanical snapper or an oil snapper/S is used as an earthquake-resistant support device, the following problems occur.
(1) 原子炉容器が大型化するに従って大きな地震
反力に耐えられる大容量のスナツパを必要とする。(1) As the reactor vessel becomes larger, a large-capacity snapper that can withstand large earthquake reaction forces is required.
(2)原子炉容器の大型化に伴う熱変位量の増大に対応
できるスナツパを必要とし、構造が複雑化する。(2) A snapper that can cope with an increase in thermal displacement due to an increase in the size of the reactor vessel is required, which complicates the structure.
(3)高放射線レベル下での可動部分の点検やオイル交
換等の保守・補修作業を行う必要がある。(3) It is necessary to perform maintenance and repair work such as inspecting moving parts and changing oil under high radiation levels.
本発明は上記問題を解決するためになされたもので、そ
の目的とするところは簡単な構造で大きな地震反力に耐
えられ、原子炉容器の熱膨張による熱変位量を吸収でき
、高放射線下での保守・点検作業を低減できる原子炉容
器の耐震支持装置を提供することにある。The present invention was made to solve the above problems, and its purpose is to have a simple structure that can withstand large earthquake reaction forces, absorb thermal displacement due to thermal expansion of the reactor vessel, and be able to operate under high radiation conditions. An object of the present invention is to provide an earthquake-resistant support device for a nuclear reactor vessel that can reduce maintenance and inspection work in a nuclear reactor vessel.
〔発明の概要〕
本発明は上記の目的を達成するために、上部フランジを
原子炉建屋壁から張シ出したペデスタルに載置して支持
された原子炉容器の下部外周に突出して設けられたラジ
アルキーと、このラジアルキーの突出側の端面に上下方
向に潜って設けられたスリットと、前記ラジアルキーの
両側面と所定間隔をおいて対向し前記原子炉容器外周を
覆うガードベッセルの内面に取付けられたラジアルキー
受けとを具備したものである。[Summary of the Invention] In order to achieve the above-mentioned object, the present invention provides a nuclear reactor vessel whose upper flange is provided protruding from the outer periphery of the lower part of the reactor vessel, which is supported by being placed on a pedestal extending from the wall of the reactor building. A radial key, a slit provided vertically in the protruding end surface of the radial key, and an inner surface of a guard vessel that faces both sides of the radial key at a predetermined interval and covers the outer periphery of the reactor vessel. It is equipped with an attached radial key holder.
以下、本発明の一実施例を第1図ないし第4図を参照し
て説明する。Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 4.
第1図は本発明の一実施例を示すタンク型高速増殖炉の
断面図である。このタンク型高速増殖炉の原子炉容器3
は、その上部フランジ4をリングガータ7を介して原子
炉建屋壁から張シ出したペデスタル5に乗せて、支持さ
れている。FIG. 1 is a sectional view of a tank-type fast breeder reactor showing one embodiment of the present invention. Reactor vessel 3 of this tank-type fast breeder reactor
is supported by placing its upper flange 4 on a pedestal 5 extending from the reactor building wall via a ring gutter 7.
この原子炉容器3の上端開口部には固定プラグ8および
回転プラグ9からなるルーフスラブ10が設置され、原
子炉容器3の上端開口部を閉塞している。ルーフスラブ
10には中間熱交換器11、夙
循環ポンプ12、炉心上部機構13、燃料交換器14等
が搭載され、中間熱交換器11及び循環ポンプ12はル
ーフスラブ10の周方向に活って交互に複数台搭載され
ている。炉心支持構造物2は円筒状の吊多胴15を介し
てルーフスラブ10よシ吊シ下げられておシ、多数の燃
料集合体からなる炉心1を収容・支持している。また、
原子炉容器3内は吊シ胴15の外壁と原子炉容器3の内
壁とに結合された隔壁16により上部の高温Na部(ホ
ットプール)17と下部の低温Na部(コールドプール
)18とに仕切られている。原子炉容器3内の冷却材(
液体ナトリウム)はコールドゾール18では通常的35
0℃程度であり、循環ポンプ12の流入孔19よシ吸込
まれ、炉心l下方の高圧プレナム構造20へ送シ込まれ
る。高圧プレナム構造20に送シ込まれた冷却材は炉心
1を通過して上昇し、その際炉心1の核反応熱によシ約
500℃程度に昇温して吊り胴15内側のホットプール
12へ流出する。ホットプールzyKi出した冷却材は
吊り胴15に形成されたフローホール21を通って中間
熱交換器1ノの流入孔22に入シ、2次側の冷却材と熱
交換をして約350℃程度に冷却された後、出口ノズル
23よりコールドプール18に戻されるようになってい
る。A roof slab 10 consisting of a fixed plug 8 and a rotating plug 9 is installed at the upper end opening of the reactor vessel 3, and closes the upper end opening of the reactor vessel 3. The roof slab 10 is equipped with an intermediate heat exchanger 11, a circulation pump 12, a core upper mechanism 13, a fuel exchanger 14, etc., and the intermediate heat exchanger 11 and the circulation pump 12 operate in the circumferential direction of the roof slab 10. Multiple units are installed alternately. The core support structure 2 is suspended from the roof slab 10 via a cylindrical suspension shell 15, and accommodates and supports the core 1 made up of a large number of fuel assemblies. Also,
The inside of the reactor vessel 3 is divided into an upper high temperature Na part (hot pool) 17 and a lower low temperature Na part (cold pool) 18 by a partition wall 16 connected to the outer wall of the suspended shell 15 and the inner wall of the reactor vessel 3. It's partitioned off. Coolant inside the reactor vessel 3 (
Liquid sodium) is usually 35 in coldsol 18
The temperature is about 0° C., and it is sucked in through the inflow hole 19 of the circulation pump 12 and sent to the high-pressure plenum structure 20 below the reactor core. The coolant injected into the high-pressure plenum structure 20 passes through the reactor core 1 and rises, and at this time, the temperature rises to about 500°C due to the heat of the nuclear reaction in the reactor core 1, and the coolant is heated to a temperature of about 500° C. leaks to. The coolant discharged from the hot pool zyKi passes through the flow hole 21 formed in the suspension shell 15, enters the inlet hole 22 of the intermediate heat exchanger 1, and exchanges heat with the coolant on the secondary side to reach approximately 350°C. After being cooled to a certain degree, it is returned to the cold pool 18 through the outlet nozzle 23.
また、原子炉容器3の下部外周とガードベッセル24と
の間には本発明による耐震支持装置100が設けられて
いる。この耐震支持装置100は第2図に示すように原
子炉容器3の周方向に沿って等ピッチで複数膜けられ、
ラジアルキー構造となっている。すなわち、この耐震支
持装置100は第3図および第4図に示すように原子炉
容器3の下部外周に突出して設けられたラジアルキー1
01と、このラジアルキー101の両側面と対向するラ
ジアルキー受ケ102とからなシ、このラジアルキー1
02は原子炉容器外周を覆うガードベッセル24に取付
けられている。また、上記ラジアルキー101の突出側
の端面には複数のスリブ)703が上下方向に沿って設
けられている。そして、ラジアルキー10ノとラジアル
キー受け102との間にはL字形のスペーサ104,1
04が挿入され、ラジアルキー10ノの側面101aと
所定の間隙幅gを保っている。なお、上記スペーサ10
4はラジアルキー受け102の上面に取付ボルト105
によって固定されている。Furthermore, an earthquake-resistant support device 100 according to the present invention is provided between the lower outer periphery of the reactor vessel 3 and the guard vessel 24. As shown in FIG. 2, this seismic support device 100 is provided with a plurality of layers at equal pitches along the circumferential direction of the reactor vessel 3.
It has a radial key structure. That is, as shown in FIGS. 3 and 4, this seismic support device 100 has a radial key 1 protruding from the lower outer periphery of the reactor vessel 3.
01 and the radial key receiver 102 facing both sides of this radial key 101, this radial key 1
02 is attached to a guard vessel 24 that covers the outer periphery of the reactor vessel. Furthermore, a plurality of sleeves 703 are provided on the protruding end surface of the radial key 101 along the vertical direction. An L-shaped spacer 104, 1 is provided between the radial key 10 and the radial key receiver 102.
04 is inserted, maintaining a predetermined gap width g with the side surface 101a of the radial key 10. Note that the spacer 10
4 is a mounting bolt 105 on the top surface of the radial key receiver 102
Fixed by
次に作用を説明する。原子炉容器3は運転時高温となシ
、原子炉容器の鉛直方向及び半径方向とも数10ffi
++程度の熱膨張をする。この熱膨張を拘束すると、原
子炉容器3に多大の応力を発生させることになるため、
耐震支持装置としては原子炉容器3が自由に熱膨張でき
るようにする必要がある。本発明による耐震支持装置1
00では、ラジアルキー101とラジアルキー受け10
2とは所定の間隙幅gをもって係合しているため、原子
炉容器3の鉛直方向及び半径方向の熱膨張を何ら拘束し
ないので、原子炉容器3には熱膨張反力は生じない。し
たがって、原子炉容器3の大型化に伴う熱変位量の増大
を十分吸収することができる。Next, the effect will be explained. The reactor vessel 3 is at a high temperature during operation, and the temperature is several tens of ffi in both the vertical and radial directions of the reactor vessel.
Thermal expansion is approximately ++. If this thermal expansion is restricted, a large amount of stress will be generated in the reactor vessel 3, so
As an earthquake-resistant support device, it is necessary to allow the reactor vessel 3 to thermally expand freely. Seismic support device 1 according to the present invention
In 00, radial key 101 and radial key receiver 10
2 with a predetermined gap width g, the vertical and radial thermal expansion of the reactor vessel 3 is not restricted in any way, so no thermal expansion reaction force is generated in the reactor vessel 3. Therefore, it is possible to sufficiently absorb an increase in the amount of thermal displacement due to an increase in the size of the reactor vessel 3.
次に地震時の作用について第2図舎参照して説明する。Next, the effects during an earthquake will be explained with reference to the second illustration.
地震によシ第2図中矢印で示す方向に水平地震力が作用
した場合、まず原子炉容器3全体が270°方向へラジ
アルキー101とラジアルキー受け102との間隙幅g
だけ移動したところで、0°及び180°方位におるラ
ジアルキー101a、101mとラジアルキー受け1θ
2a、102’mとがぶつかシ、原子炉容器3の水平方
向移動を拘束する。これによシラシアルキー101m、
101mとラジアルキー受け102a、102rnとの
間に反力が生じ、その反力によるラジアルキーの変位量
がV−Δθを越えたときに、次のラジアルキー10 l
b、1011とラジアルキー受け102b、1021と
が当シ始める。そして以下、ラジアルキーの取付角度に
応じて地震荷重を順次分担していく。従来の中実のラジ
アルキーではキーの剛性が非常に大きいために、最初に
当たるキーがa/cxsii l)変位するのに巨大な
力を要し、少数のキーで地震反力を支持する結果となっ
ていた。これに対して本発明によるスリット103を設
けたラジアル#−101では、スリット103によシラ
シアルキーの削性が低下し、小さな力で変位するために
地震荷重を分担するキーの個数が増し、1個当シのラジ
アルキーが受は持つ地震反力を大幅に低減できる。When a horizontal seismic force acts in the direction shown by the arrow in Figure 2 due to an earthquake, the entire reactor vessel 3 first moves in the 270° direction due to the gap width g between the radial key 101 and the radial key receiver 102.
When the radial keys 101a and 101m in the 0° and 180° directions and the radial key receiver 1θ
2a and 102'm collide with each other, restraining the horizontal movement of the reactor vessel 3. With this, Shirasial Key 101m,
101m and the radial key receivers 102a and 102rn, and when the amount of displacement of the radial key due to the reaction force exceeds V-Δθ, the next radial key 10 l
b, 1011 and the radial key receivers 102b, 1021 start operating. From then on, the earthquake load will be distributed in order according to the mounting angle of the radial key. With conventional solid radial keys, the rigidity of the key is extremely high, so it takes a huge force for the first key to be displaced, resulting in supporting the earthquake reaction force with a small number of keys. It had become. On the other hand, in the radial #-101 provided with the slit 103 according to the present invention, the slit 103 reduces the machinability of the sillial key, and since the slit 103 causes displacement with a small force, the number of keys that share the earthquake load increases. Our radial key can significantly reduce the seismic reaction force.
以上説明したように本発明によれば、熱膨張による原子
炉容器の変形を拘束することなく、地震時の反力を分散
して支持するだめにラジアルキーが分担すべき地震反力
の平坦化が可能となシ、ラジアルキ一部の応力が大幅に
低減される。また、ラジアルキーが取付けられている原
子炉容器に生ずる局部応力も大幅に低減され、構造強度
上の設計裕度が増加する。さらに、従来のラジアルキー
構造では荷重の均一化を図るためには、キーとキー受け
との間のギヤシブ幅を可能な限り小さくシ、キーの個数
を増やす等の対策が必要であったが、本発明によれば上
記の如き対策が不要となり、据付作業が容易となシ、物
量を削減することができる。また構造がすべて機械的で
、しかも静的なので信頼性が高く、故障の原因も少ない
。したがって、定期的な保守作業は不要となシ、簡単な
点検作業を行うだけでよいため、放射線下での作業は極
めて短時間となるなどの大きな効果がある。As explained above, according to the present invention, the earthquake reaction force that should be shared by the radial keys is flattened in order to disperse and support the reaction force during an earthquake without restricting the deformation of the reactor vessel due to thermal expansion. This makes it possible to significantly reduce some of the radial stress. In addition, the local stress generated in the reactor vessel to which the radial key is attached is significantly reduced, increasing design latitude in terms of structural strength. Furthermore, in the conventional radial key structure, in order to equalize the load, it was necessary to take measures such as reducing the gear width between the key and the key receiver as much as possible and increasing the number of keys. According to the present invention, the above-mentioned measures are not required, the installation work is easy, and the amount of materials can be reduced. Furthermore, since the structure is entirely mechanical and static, it is highly reliable and has fewer causes of failure. Therefore, there is no need for periodic maintenance work, and only simple inspection work is required, so the work under radiation can be done in an extremely short time, which has great effects.
第1図ないし第4図は本発明の一実施例を示す図で、第
1図はタンク型高速増殖炉の断面図、第2図は耐震支持
装置の取付状態を示す原子炉容器の水平断面図、第3図
は第2図のA部を示す拡大断面図、第4図は第3図の1
−1線矢視図、第5図は従来例を示す高速増殖炉の断面
図でおる。
1・・・炉心、3・・・原子炉容器、100・・・耐震
支持装置、101・・・ラジアルキー、102・・・ラ
ジアルキー受け、103・・・スリット。
第1図
第2図
第3図
L
第4図
第5図
しFigures 1 to 4 are diagrams showing an embodiment of the present invention, in which Figure 1 is a cross-sectional view of a tank-type fast breeder reactor, and Figure 2 is a horizontal cross-section of the reactor vessel showing the installation state of the seismic support device. Figure 3 is an enlarged sectional view showing part A in Figure 2, Figure 4 is 1 in Figure 3.
5 is a sectional view of a fast breeder reactor showing a conventional example. DESCRIPTION OF SYMBOLS 1...Reactor core, 3...Reactor vessel, 100...Earthquake support device, 101...Radial key, 102...Radial key receiver, 103...Slit. Figure 1 Figure 2 Figure 3 L Figure 4 Figure 5
Claims (1)
て支持された原子炉容器の下部外周に突出して設けられ
たラジアルキーと、このラジアルキーの突出側の端面に
上下方向に沿って設けられたスリットと、前記ラジアル
キーの両側面と所定間隔をおいて対向し前記原子炉容器
外周を覆うガードベッセルの内面に取付けられたラジア
ルキー受けとを具備したことを特徴とする原子炉容器の
耐震支持装置。A radial key is provided protruding from the outer periphery of the lower part of the reactor vessel, the upper part of which is placed and supported on a pedestal projecting from the wall of the reactor building, and a radial key is provided along the vertical direction on the end surface of the protruding side of the radial key. and a radial key receiver attached to the inner surface of a guard vessel that faces both sides of the radial key at a predetermined interval and covers the outer periphery of the reactor vessel. Support device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59142614A JPS6120892A (en) | 1984-07-10 | 1984-07-10 | Earthquakeproof supporter for vessel of nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59142614A JPS6120892A (en) | 1984-07-10 | 1984-07-10 | Earthquakeproof supporter for vessel of nuclear reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6120892A true JPS6120892A (en) | 1986-01-29 |
JPH0334834B2 JPH0334834B2 (en) | 1991-05-24 |
Family
ID=15319421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59142614A Granted JPS6120892A (en) | 1984-07-10 | 1984-07-10 | Earthquakeproof supporter for vessel of nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6120892A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5951673A (en) * | 1994-01-25 | 1999-09-14 | Yamaha Corporation | Digital signal processing device capable of selectively imparting effects to input data |
-
1984
- 1984-07-10 JP JP59142614A patent/JPS6120892A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5951673A (en) * | 1994-01-25 | 1999-09-14 | Yamaha Corporation | Digital signal processing device capable of selectively imparting effects to input data |
US6189085B1 (en) | 1994-01-25 | 2001-02-13 | Yamaha Corporation | Digital signal processing device |
Also Published As
Publication number | Publication date |
---|---|
JPH0334834B2 (en) | 1991-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3962032A (en) | Fast nuclear reactor | |
US3249507A (en) | Gas cooled nuclear reactor system with improved flowpath and shield arrangement | |
US4249995A (en) | Liquid-metal cooled reactor with practically static intermediate zone | |
FI74830C (en) | Nuclear reactor, whose core is shielded with a construction of rods and transverse plates. | |
US3293139A (en) | Prestressed concrete pressure vessel for nuclear reactors | |
US20080159465A1 (en) | Fast reactor | |
JPS6120892A (en) | Earthquakeproof supporter for vessel of nuclear reactor | |
US4123325A (en) | Containers for housing nuclear reactors | |
US3726759A (en) | Nuclear reactor condenser support structure | |
US4681731A (en) | Nuclear reactor construction with bottom supported reactor vessel | |
EP0349014A2 (en) | Support structure for a nuclear reactor | |
US4587081A (en) | Slab for closing the vessel of a fast neutron nuclear reactor | |
CN113948225B (en) | Reactor with top heat shield | |
JP2986348B2 (en) | Upper head reactor vessel | |
JPS58178285A (en) | Fast breeder | |
Berniolles et al. | Fast nuclear reactor | |
JP2731158B2 (en) | Fast breeder reactor | |
JPS6123890A (en) | Vibrationproof apparatus of internal pump | |
JPS6232384A (en) | Fast breeder reactor | |
JPS63246699A (en) | Support structure of nuclear-reactor in-core structure | |
Veronesi | Calandria | |
JPH0525317B2 (en) | ||
JPS61283892A (en) | Faster breeder | |
JPS60263891A (en) | Fast breeder reactor | |
JPS6140357B2 (en) |