[go: up one dir, main page]

JPS61208222A - Plasma treatment method and device - Google Patents

Plasma treatment method and device

Info

Publication number
JPS61208222A
JPS61208222A JP4830285A JP4830285A JPS61208222A JP S61208222 A JPS61208222 A JP S61208222A JP 4830285 A JP4830285 A JP 4830285A JP 4830285 A JP4830285 A JP 4830285A JP S61208222 A JPS61208222 A JP S61208222A
Authority
JP
Japan
Prior art keywords
electrode
sample
processing
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4830285A
Other languages
Japanese (ja)
Inventor
Yoshinao Kawasaki
義直 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4830285A priority Critical patent/JPS61208222A/en
Publication of JPS61208222A publication Critical patent/JPS61208222A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、プラズマ処理方法及び装rILIこ関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma processing method and apparatus.

〔発明の背景〕[Background of the invention]

試料である半導体素子基板(以下、基板と略)をプラズ
マを利用して、例えば、エツチング処理する場合、電界
の不均一分布に起因するエツチング速度の不均一すなわ
ちエツチング処理の不均一を抑制することを目的として
、基板が設置された試料電極を処理期間中に回転するも
のが知られている。(笑公巳石’5”l−5貿2号公8
.)しかし、このようなものでは、プラズマ利用による
試料の処理期間中に試料の被処理面内の処理尺 不均一部における処理ガスの活性化を図ることで、プラ
ズマ処理の均一性を向上させようとする認識を有してい
ない。
For example, when etching a semiconductor element substrate (hereinafter referred to as a substrate), which is a sample, using plasma, it is necessary to suppress the non-uniformity of the etching rate caused by the non-uniform distribution of the electric field, that is, the non-uniformity of the etching process. For this purpose, a method is known in which a sample electrode on which a substrate is installed is rotated during the processing period. (lol Komiseki '5" l-5 Trade No. 2 Ko 8
.. ) However, in such a case, it is possible to improve the uniformity of plasma processing by activating the processing gas in the non-uniform processing length within the processing surface of the sample during the processing of the sample using plasma. There is no recognition that

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラズマ利用による試料の処理期間中
に試料の被処理面内の処理不均一部における処理ガスの
活性化を図ることで、プラズマ処理の均一性を向上でき
るプラズマ処理方法及び装置を提供することにある。
It is an object of the present invention to provide a plasma processing method and apparatus capable of improving the uniformity of plasma processing by activating processing gas in non-uniform processing areas within the surface of the sample to be processed during the processing of the sample using plasma. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、対向電極と試料電極とが対向して内設された
処理室と、該処理室内を減圧排気する排気系と、前記対
向電極を介し前記試料電極に向って放出される処理ガス
を供給するガス供給系と、前記対向電極と前記試料電極
との間で放電を生じさせる電源とを具備し、前記対向電
極を電極板と電極カバーとで構成して前記電極板と前記
1!極カバーとを相対的に回転可能、かつ、該回転によ
り前記処理ガスの放出位置若しくは放出位置と放出量と
を変化可能に構設した装置により、プラズマ利用による
試料の処理期間中に処理ガスの放出位置若しくは放出位
置と放出量を試料の被処理面に対して変化させることで
、プラズマ利用による試料の処理期間中に試料の被処理
面内の処理不均一部における処理ガスの活性化を図り、
これによりプラズマ処理の均一性を向上させようとする
ものである。
The present invention provides a processing chamber in which a counter electrode and a sample electrode are disposed facing each other, an exhaust system that depressurizes and exhausts the inside of the processing chamber, and a processing gas discharged toward the sample electrode via the counter electrode. A gas supply system, and a power source for causing discharge between the counter electrode and the sample electrode, and the counter electrode is composed of an electrode plate and an electrode cover, and the electrode plate and the 1! A device configured to be able to rotate the electrode cover relative to the pole cover and to change the release position or release position and release amount of the processing gas by the rotation allows the processing gas to be released during the sample processing using plasma. By changing the release position or release position and release amount with respect to the surface to be processed of the sample, the processing gas can be activated in non-uniform processing areas within the surface to be processed of the sample during the processing of the sample using plasma. ,
This is intended to improve the uniformity of plasma processing.

〔発明の実施例〕[Embodiments of the invention]

例えば、M膜、多結晶Si膜等を有する試料をプラズマ
を利用して、例えば、エツチング処理した場合、電界の
集中現象等により試料の被処理面内の中心から半径方向
のエツチング速度分布は、第1図番こ実線で示すように
試料の被処理面周辺部でのエツチング速度が太き(中心
部に近づくにつれて小さくなる分布傾向を示す。
For example, when a sample having an M film, a polycrystalline Si film, etc. is etched using plasma, the etching rate distribution in the radial direction from the center of the surface of the sample to be processed is As shown by the solid line in Figure 1, the etching rate is thicker at the periphery of the surface to be processed of the sample (the distribution tends to decrease as it approaches the center).

本発明者は、この状態で、処理ガスの放出位置を試料の
被処理面、特に処理不均一部、この場合は、被処理面周
辺部を除く他の部分に対して変化させて実験を実施した
。その結果、例えば、処理ガスの放出位置を最もエツチ
ング速度が小さい被処理面中心部にセリトした場合、第
1図に破線で示すように被処理面周辺部を除く他の部分
でのエツチング速度が増大し、この分布の均一性が大幅
に改善できることがわかった。これは5)被処理面に対
応する処理ガスと反応生成物とのガス分率が改善されて
処理ガスの活性化が図られたためである。この結果は、
試料の処理期間中に処理ガスの放出状況、つまり、処理
ガスの放出位置若しくは放出位置と放出量とを試料の被
処理面に対して変化させることで、プラズマ処理の均一
性を向上できることを意味する。本発明は、このような
観点のもとになされたものである。
In this state, the inventor conducted an experiment by changing the release position of the processing gas with respect to the surface to be processed of the sample, especially the non-uniform processing area, in this case, other parts other than the periphery of the surface to be processed. did. As a result, for example, if the release position of the processing gas is set to the center of the surface to be processed, where the etching rate is the lowest, the etching rate will be lower in other parts of the surface than the periphery of the surface, as shown by the broken line in Figure 1. It was found that the uniformity of this distribution can be significantly improved. This is because 5) the gas fraction between the processing gas and the reaction product corresponding to the surface to be processed was improved, and the processing gas was activated. This result is
This means that the uniformity of plasma processing can be improved by changing the release status of the processing gas, that is, the release position or release position and release amount of the processing gas, relative to the surface to be processed of the sample during the sample processing period. do. The present invention has been made based on this viewpoint.

本発明の一実施例を第2図〜9E4図により説明する。An embodiment of the present invention will be described with reference to FIGS. 2 to 9E4.

′@2図で、処理室lOには、対向電極Jを構成する電
極板21と試料型[!菊を構成する電極板31とが。
'@2 In Figure 2, the processing chamber lO includes the electrode plate 21 that constitutes the counter electrode J and the sample mold [! The electrode plate 31 that constitutes the chrysanthemum.

この場合、上下方向に対向して内設されている。In this case, they are provided internally facing each other in the vertical direction.

排気糸切は、この場合、真空ポンプ41と可変抵抗弁稔
と排気管招とで構成されている。処理室10の底壁には
、排気ノズル11が設けられている。排気管4の一端は
、排気ノズル11に連結され、その他端は、真空ポンプ
41に連結されている。可変抵抗弁社は、排気管4に設
けられている。
In this case, the exhaust thread cutter is composed of a vacuum pump 41, a variable resistance valve stem, and an exhaust pipe pipe. An exhaust nozzle 11 is provided on the bottom wall of the processing chamber 10 . One end of the exhaust pipe 4 is connected to an exhaust nozzle 11, and the other end is connected to a vacuum pump 41. A variable resistance valve is provided in the exhaust pipe 4.

第2図で、対向電極加は、電極板4と電極カバーnと電
極軸スとで構成されている。電極軸りは、処 下端部を処理室10内に突出し処理室lOの頂壁に気密
を保持し回転可能醗こ設けられている。処理室10と電
極軸nとは電気的に絶縁されている。電極軸スな回転さ
せる手段は、この場合、モータ(資)とピニオン51と
歯車52とで構成されている。歯車52は、電極軸器の
処理室10外優こ設けられている。ピニオン51は、歯
車52と噛合してモータ父に設けられている。電極軸、
23は、ブラシωを介して接地されている。ガス供給系
πは、処理ガス源71とガス流量制御装置(以下、MF
Cと略)72とガス供給管nとで構成されている。ガス
供給管73の一端は、処理ガス源nに連結されている。
In FIG. 2, the counter electrode is composed of an electrode plate 4, an electrode cover n, and an electrode shaft. The electrode shaft has its lower end protruding into the processing chamber 10, and is rotatably provided on the top wall of the processing chamber 10 in an airtight manner. The processing chamber 10 and the electrode axis n are electrically insulated. In this case, the means for rotating the electrode shaft is composed of a motor, a pinion 51, and a gear 52. The gear 52 is provided outside the processing chamber 10 of the electrode shaft device. A pinion 51 is provided on the motor shaft and meshes with a gear 52. electrode axis,
23 is grounded via a brush ω. The gas supply system π includes a processing gas source 71 and a gas flow rate control device (hereinafter referred to as MF
C) 72 and a gas supply pipe n. One end of the gas supply pipe 73 is connected to a processing gas source n.

ガス供給管nの他端は、回転継手74を介し電極軸器に
連結されている。ガス供給管nは、電極軸nに形成され
たガス供給路スに連通させられている。MFC72は、
ガうに放射状方向に、この場合、8個のガス分散用溝6
が等間隔で形成されている。ガス分散用溝5は、電極板
31に向って開放されている。なお、ガス分散用?1t
25の個数並びに間隔は、電極板31の試料設置個所数
並びに間隔にもとづいて設定される。
The other end of the gas supply pipe n is connected to the electrode shaft via a rotary joint 74. The gas supply pipe n is communicated with a gas supply path S formed on the electrode shaft n. MFC72 is
In this case, eight gas dispersion grooves 6 are provided in a radial direction.
are formed at equal intervals. The gas dispersion groove 5 is open toward the electrode plate 31. By the way, is it for gas dispersion? 1t
The number and spacing of 25 are set based on the number of sample installation locations on the electrode plate 31 and the spacing.

ガス分散用溝5は、ガス供給路冴に連通させられている
。電極カバーnは、電極板31のガス分散用。
The gas dispersion groove 5 is communicated with the gas supply path. The electrode cover n is for gas dispersion of the electrode plate 31.

溝5が形成された面に対応し、かつ、電極板21の回転
を阻害しないように設けられている。即ち、電極カバー
nの縦断面形状は、この場合、凹形であり、電極板21
を収容可能な寸法、形状となっている。電極カバー4の
側壁端は、処理室lOの頂壁に設けられている。電極カ
バーnの底壁部には、第4図に示すように、この場合、
ガス放出孔3が多数穿設されている。即ち、電極板21
のガス分散用溝5と所定角度θを有する線上で、かつ、
電極板阻の試料設置位置に対応可能にガス放出孔3ば穿
設されている。なお、ガス放出孔3が穿設される範囲は
、試料(資)の被処理面の、例えば、処理不均一部(試
料がM、  Po1y−8tの場合は、周縁端から2/
4の周辺部を除(部分)に対応させられている。
It is provided so as to correspond to the surface on which the groove 5 is formed and not to inhibit the rotation of the electrode plate 21. That is, the longitudinal cross-sectional shape of the electrode cover n is concave in this case, and the electrode plate 21
It has a size and shape that can accommodate. A side wall end of the electrode cover 4 is provided on the top wall of the processing chamber IO. In this case, on the bottom wall of the electrode cover n, as shown in FIG.
A large number of gas discharge holes 3 are provided. That is, the electrode plate 21
on a line having a predetermined angle θ with the gas dispersion groove 5, and
A gas discharge hole 3 is provided so as to correspond to the sample installation position of the electrode plate. The range in which the gas release holes 3 are drilled is, for example, the non-uniform processing area of the surface to be processed of the sample (material) (if the sample is M or Po1y-8t, 2/2 from the peripheral edge).
The peripheral part of 4 is made to correspond to the (part).

第2図で、試料電極□□□は、電極板31と電極軸nと
で構成されている。電極軸&は、上端部を処理室10内
に突出し処理室lOの底壁に気密に保持し設けられてい
る。処理室10と1s極軸シとは、電気的に絶縁されて
いる。電極軸部の軸、C司よ、電極軸回の軸心と一致さ
せられている。電極板31は、試料設置面を上面として
電極軸32の上端に設けられている。電極板31の大き
さは、同一円周上で試料間を、この場合、8個同時に設
置可能な大きさである。
In FIG. 2, the sample electrode □□□ is composed of an electrode plate 31 and an electrode axis n. The electrode shaft & is provided with its upper end protruding into the processing chamber 10 and held airtight on the bottom wall of the processing chamber IO. The processing chamber 10 and the 1s polar axis are electrically insulated. The axis of the electrode shaft, C., is aligned with the axis of the electrode shaft. The electrode plate 31 is provided at the upper end of the electrode shaft 32 with the sample installation surface facing upward. The size of the electrode plates 31 is such that, in this case, eight electrode plates can be placed simultaneously between samples on the same circumference.

第2図で、[源、例えば、高周波電源匍は、処理室10
外に設置されている。高周波電源匍には、電極軸nの下
端部が接続されている。高周波電源匍は接地されている
In FIG. 2, a source, for example a high frequency power source, is
It is installed outside. The lower end of the electrode shaft n is connected to the high frequency power source. The high frequency power source is grounded.

第2図〜第4図で、処理室工0内には、外部より試料8
0が8個搬入され電極板31の試料設置位置に被処理面
上向姿勢をこで設置される。一方、処理室10内は、真
空ポンプ41の作動で所定圧力(こ減圧排気される。そ
の後、M F C72で流量制御された処理ガスが対向
型tf!(9)を介し試料型fF!30に向って放出さ
れる。これと共に、この放出された処理ガスの一部は、
真空ポンプ41により排気され処理室10内は、可変抵
抗弁42の作用により所定の処理圧カーに調整される。
In Figures 2 to 4, a sample 8 is inserted into the processing chamber 0 from the outside.
0 is carried in and placed on the sample installation position of the electrode plate 31 with the surface to be treated facing upward. On the other hand, the inside of the processing chamber 10 is evacuated to a predetermined pressure by the operation of the vacuum pump 41. Thereafter, the processing gas whose flow rate is controlled by the MFC72 is passed through the opposed type tf! (9) to the sample type fF!30. Along with this, a part of this released processing gas is
The inside of the processing chamber 10, which is evacuated by the vacuum pump 41, is adjusted to a predetermined processing pressure by the action of the variable resistance valve 42.

その後、電極板mには、高周波型N90より電極軸nを
介して高周波電圧が印加される。これにより、電極板2
1と電極板31との間畳こは、グロー放電が生じて処理
ガスはプラズマ化される。
Thereafter, a high frequency voltage is applied to the electrode plate m via the electrode axis n from a high frequency type N90. As a result, the electrode plate 2
Glow discharge occurs between the electrode plate 1 and the electrode plate 31, and the processing gas is turned into plasma.

このプラズマを利用して試料(資)の被処理面は所定処
理、この場合、エツチング処理される。このような処理
期間中にモータ関を作動させることで電極板21は、矢
印100方向に回転させられる。この回転により、ガス
供給路スを流通しガス分散用溝3に分散させられた処理
ガスは人からBの方向(!J4図)に順次放出位置が変
化するガス放出孔がから放出されるようになる。これに
より上記した現象が生じ、この結果、ニーIチング処理
の均一性が向上する。なお、エツチング処理が完了した
時点で、電極板40回回転外理ガスの供給および高周波
電圧の印加が停止され、その後、処理済みの試料邪は、
電極板Aから除去されて処理室10外へ搬出される。
Using this plasma, the surface of the sample (material) to be processed is subjected to a predetermined process, in this case an etching process. By operating the motor during this processing period, the electrode plate 21 is rotated in the direction of arrow 100. Due to this rotation, the processing gas that has passed through the gas supply path and been dispersed in the gas dispersion groove 3 is released from the gas release hole whose release position changes sequentially from the person in the direction of B (Fig. J4). become. This causes the above-mentioned phenomenon, and as a result, the uniformity of the kneeling process is improved. When the etching process is completed, the electrode plate is rotated 40 times, and the supply of the gas and the application of the high frequency voltage are stopped, and then the processed sample is
It is removed from the electrode plate A and carried out to the outside of the processing chamber 10.

本実施例では、次のような効果を得ることができる。In this embodiment, the following effects can be obtained.

(1)試料のエツチング処理期間中に試料の被処理面内
の処理不均一部における処理ガスの活性化を図ることが
できるため、試料の被処理面内の各位置でのエツチング
速度の均一性を向上できるエツチング処理の均一性が向
上する。
(1) During the etching process of the sample, it is possible to activate the processing gas in non-uniform areas on the surface of the sample to be processed, so that the etching rate is uniform at each position on the surface of the sample to be processed. The uniformity of the etching process is improved.

(2)試料の被処理面内でのニーIチング速度の平均値
が、例えば、1!1図に破線で示すように向上しスルー
プットが向上する。
(2) The average kneeching speed within the surface of the sample to be processed is improved, for example, as shown by the broken line in Figure 1!1, and the throughput is improved.

第5図は、本発明の第2の実施例を示すもので、本発明
の上記一実施例を示す第2図と大きく異なる点は、対向
電極I′において電極板21′を固定して設は電極カバ
ーn′を回転可能【二設けた点である。
FIG. 5 shows a second embodiment of the present invention, and is largely different from FIG. 2 which shows the above embodiment of the present invention. The point is that the electrode cover n' is rotatable.

第5図で、電極カバーn′は、電極板21′をその内部
にほぼ含む部分と、電極軸nの下端部を含む部分とを有
している。この場合、電極軸回は、処理室10の頂壁に
固定されている。電極カバープは、電極板21′および
電極軸回の下端部を含み電極軸3に処理室lO内の気密
を保持し回転可能に設けられている。歯車52は、処理
室10外で電極カバーn′に設けられている。また、1
!極板21′の電極カバーn′の底壁に対応する面には
、電極力バーブの底壁とガス分散室nを構成する凹が形
成されている。ガス分散室nは、ガス供給路Uに連通さ
せられている。また、ガス供給管73の他端は、ガス供
給路Uに連通して電極軸23tこ連結され、電極軸nは
接地されている。なお、第5図で、その他′@2図およ
び第4図と同−装置等は同一符号で示し説明を省略する
In FIG. 5, the electrode cover n' has a portion that substantially includes the electrode plate 21' therein, and a portion that includes the lower end of the electrode shaft n. In this case, the electrode shaft is fixed to the top wall of the processing chamber 10. The electrode cover includes the electrode plate 21' and the lower end of the electrode shaft, and is rotatably provided on the electrode shaft 3 while keeping the inside of the processing chamber 10 airtight. The gear 52 is provided on the electrode cover n' outside the processing chamber 10. Also, 1
! A recess that forms the bottom wall of the electrode force bar and the gas dispersion chamber n is formed on the surface of the electrode plate 21' that corresponds to the bottom wall of the electrode cover n'. The gas distribution chamber n is communicated with the gas supply path U. Further, the other end of the gas supply pipe 73 communicates with the gas supply path U and is connected to the electrode shaft 23t, and the electrode shaft n is grounded. Note that in FIG. 5, other devices that are the same as those in FIG. 2 and FIG.

本実施例では、上記一実施例での効果と同様の効果を得
ることができ、更に、試料の被処理面からみて処理ガス
の放出位置が円周方向にも変化するため、更にニーy9
−ング処理の均一性が向上する。
In this embodiment, it is possible to obtain the same effect as in the above-mentioned embodiment, and furthermore, since the release position of the processing gas also changes in the circumferential direction when viewed from the surface to be processed of the sample, the knee y9
- The uniformity of the processing is improved.

@6図は、本発明の$3の実施例を示すもので、本発明
の上記一実施例を示す第4図と異なる点は、電極カバー
nに穿設されたガス放出孔がのA、  B両端部の孔径
に比べ中央部の孔径が大きくなっている点である。
Figure @6 shows the embodiment of $3 of the present invention, and differs from Fig. 4 which shows the above-mentioned embodiment of the present invention in that the gas discharge holes formed in the electrode cover n are A, B: The hole diameter at the center is larger than the hole diameter at both ends.

本実施例では、上記一実施例での効果と同様の効果を得
ることができ、更に、ガス放出位置だけでなくガス放出
量も変化できるため、試料の被処理面中心部でのエツチ
ング速度が更に小さい場合1こは、より有効である。゛ 第7図は、本発明の第4の実施例を示すもので、本発明
の上記一実施例を示す第4図と異なる点は、電極カバー
nにガス放出孔ではなくガス放出溝Zが形成されている
点である。また、この場合、ガス放出溝Zの溝幅は、A
、  B両端部で狭く中央部で広くなっている。
In this example, it is possible to obtain the same effect as in the above-mentioned example, and furthermore, since not only the gas release position but also the gas release amount can be changed, the etching rate at the center of the surface to be processed of the sample can be changed. If it is even smaller, it is more effective.゛ Fig. 7 shows a fourth embodiment of the present invention, and the difference from Fig. 4 showing the above-mentioned embodiment of the present invention is that the electrode cover n has gas release grooves Z instead of gas release holes. This is the point where it is formed. In addition, in this case, the groove width of the gas release groove Z is A
, B It is narrow at both ends and wide at the center.

本実施例では、上記第3の実施例での効果と同様の効果
を得ることができる。
In this embodiment, the same effects as those in the third embodiment can be obtained.

@8図は、本発明の第5の実施例を示すもので。@8 Figure shows the fifth embodiment of the present invention.

本発明の上記一実施例を示す第4図と異なる点は、電極
カバー4に穿設されたガス放出孔がのA、 B間の中央
部に他のガス放出孔部′がガス放出孔5の周りで穿設さ
れている点である。
The difference from FIG. 4, which shows the above embodiment of the present invention, is that the gas discharge hole formed in the electrode cover 4 is located in the center between A and B. It is a point that is perforated around the .

本実施例では、上記第3の実施例での効果と同様の効果
を得ることができる。
In this embodiment, the same effects as those in the third embodiment can be obtained.

第9図は、本発明の第6の実施例を示すもので、本発明
の上記一実施例を示す第3図と異なる点は、対向電極頭
の電極根回の試料電極間の電極板31と対向する面にガ
ス分散用溝3′が螺旋状に形成されている点である。ガ
ス分散用溝5′の一端部、二の場合は、電極根回の中心
部側端は、ガス供給路スに連通させられている。
FIG. 9 shows a sixth embodiment of the present invention, and differs from FIG. 3 showing the above-mentioned embodiment of the present invention in that the electrode plate 31 between the sample electrodes at the electrode base of the counter electrode head is A gas dispersion groove 3' is spirally formed on the surface facing the . One end of the gas dispersion groove 5', and in the second case, the end on the center side of the electrode root gyre, are communicated with the gas supply path.

本実施例では、上記一実施例での効果と同様の効果を得
ることができる。
In this embodiment, the same effects as those in the above embodiment can be obtained.

なお、上記第3〜第5の実施例では、対向電極において
電極カバーを固定して電極板を回転させるようにしてい
るが、この他昏こ、上記第2の実施例に示すように電極
板を固定して電極カバーを回転させるようにしても良い
In the third to fifth embodiments described above, the electrode cover is fixed at the opposing electrode and the electrode plate is rotated. The electrode cover may be rotated while being fixed.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、プラズマ利用による試
料の処理期間中に試料の被処理面内の処理不均一部にお
ける処理ガスの活性化を図ることができるので、プラズ
マ処理の均一性を向上できるという効果がある。
As explained above, the present invention can activate the processing gas in non-uniform processing areas within the surface of the sample to be processed during the sample processing using plasma, thereby improving the uniformity of plasma processing. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

@i図は、ガス放出位置とエツチング速度との関係模式
図、第2図は1本発明を実施したプラズマ処理装置の一
例を示す要部縦断面図、@3図は、$2図の対向電極の
電極板の平面図、第4図は、同じ(電極カバーの平面図
、第5図は、未発明を実施したプラズマ処理装置の第2
の例を示す要部縦断面図、第6図〜tJ8図は1本発明
を実施したプラズマ処理装置の第3〜第5の例を示すも
ので、対向電極の電極カバーの平面図、第9図は、本発
明を実施したプラズマ処理装置の第6の例を示すもので
、対向電極の電極板の平面図である。 10・・・・・・処理室、20.20’・・・・・・対
向電極、21.21’・・・電極板、22. Z2’・
・・・・・電極カバー、25.25’・・・・・・ガス
分散用溝、26・・・・・・ガス放出孔、が′・・・・
・・他のガス放出孔、n・・・・・・ガス分散室、甥・
・・・・・ガス放出溝、(資)・・・・・・試料電極、
切・・・・・・排気系、父・・・・・・モータ、51・
・・・・・歯車、70・・・・・・ガス供給系、■・・
・・・・高周波電源11図 ンJ1の翔(9甲面ヂl込・tらの距離第2口 才3図 第4図 第5目 矛 6 凹 オフ図 18図 オ9図
Figure @i is a schematic diagram of the relationship between the gas release position and etching rate, Figure 2 is a vertical sectional view of the main part showing an example of a plasma processing apparatus in which the present invention is implemented, and Figure @3 is the opposite of Figure $2. The plan view of the electrode plate of the electrode, FIG. 4, is the same (the plan view of the electrode cover, FIG.
FIGS. 6 to 8 are longitudinal cross-sectional views of main parts showing examples of the present invention, and FIGS. The figure shows a sixth example of a plasma processing apparatus embodying the present invention, and is a plan view of an electrode plate of a counter electrode. 10...Processing chamber, 20.20'...Counter electrode, 21.21'...Electrode plate, 22. Z2'・
...Electrode cover, 25.25'...Gas dispersion groove, 26...Gas release hole, 2'...
...Other gas release holes, n...Gas dispersion chamber, nephew...
...Gas release groove, (capital) ...Sample electrode,
Off: Exhaust system, Father: Motor, 51.
...Gear, 70...Gas supply system, ■...
・・・High frequency power supply 11 Figure N J1's sho (9 Ko side jilt included, t et al distance 2nd mouth 3 Figure 4 5th arrow 6 Concave off Figure 18 Figure O 9

Claims (1)

【特許請求の範囲】 1、プラズマ利用による試料の処理期間中に、処理ガス
の放出位置若しくは放出位置と放出量とを前記試料の被
処理面に対して変化させることを特徴とするプラズマ処
理方法。 2、対向電極と試料電極とが対向して内設された処理室
と、該処理室内を減圧排気する排気系と、前記対向電極
を介し前記試料電極に向って放出される処理ガスを供給
するガス供給系と、前記対向電極と前記試料電極との間
で放電を生じさせる電源とを具備し、前記対向電極を電
極板と電極カバーとで構成して前記電極板と前記電極カ
バーとを相対的に回転可能、かつ、該回転により前記処
理ガスの放出位置若しくは放出位置と放出量とを変化可
能に構設したことを特徴とするプラズマ処理装置。
[Claims] 1. A plasma processing method characterized by changing the release position or the release position and release amount of a processing gas with respect to the surface to be processed of the sample during a sample processing period using plasma. . 2. A processing chamber in which a counter electrode and a sample electrode are disposed facing each other, an exhaust system for evacuating the inside of the processing chamber under reduced pressure, and supplying a processing gas discharged toward the sample electrode via the counter electrode. The counter electrode includes a gas supply system and a power source that generates a discharge between the counter electrode and the sample electrode, the counter electrode is configured with an electrode plate and an electrode cover, and the electrode plate and the electrode cover are arranged relative to each other. 1. A plasma processing apparatus, characterized in that the plasma processing apparatus is configured to be rotatable, and to be able to change the release position or the release position and release amount of the processing gas by said rotation.
JP4830285A 1985-03-13 1985-03-13 Plasma treatment method and device Pending JPS61208222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4830285A JPS61208222A (en) 1985-03-13 1985-03-13 Plasma treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4830285A JPS61208222A (en) 1985-03-13 1985-03-13 Plasma treatment method and device

Publications (1)

Publication Number Publication Date
JPS61208222A true JPS61208222A (en) 1986-09-16

Family

ID=12799634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4830285A Pending JPS61208222A (en) 1985-03-13 1985-03-13 Plasma treatment method and device

Country Status (1)

Country Link
JP (1) JPS61208222A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125424A (en) * 1988-07-18 1990-05-14 Tokyo Electron Ltd Processor
US4986216A (en) * 1989-05-10 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor manufacturing apparatus
US5015331A (en) * 1988-08-30 1991-05-14 Matrix Integrated Systems Method of plasma etching with parallel plate reactor having a grid
JPH03148118A (en) * 1989-11-02 1991-06-24 Fujitsu Ltd Semiconductor manufacturing apparatus
US5186756A (en) * 1990-01-29 1993-02-16 At&T Bell Laboratories MOCVD method and apparatus
US5366557A (en) * 1990-06-18 1994-11-22 At&T Bell Laboratories Method and apparatus for forming integrated circuit layers
US5445699A (en) * 1989-06-16 1995-08-29 Tokyo Electron Kyushu Limited Processing apparatus with a gas distributor having back and forth parallel movement relative to a workpiece support surface
US5451290A (en) * 1989-08-14 1995-09-19 Applied Materials, Inc. Gas distribution system
JPH08236295A (en) * 1994-12-05 1996-09-13 Hughes Aircraft Co Cooled gas distribution system for plasma reactor
US5589002A (en) * 1994-03-24 1996-12-31 Applied Materials, Inc. Gas distribution plate for semiconductor wafer processing apparatus with means for inhibiting arcing
US6379466B1 (en) 1992-01-17 2002-04-30 Applied Materials, Inc. Temperature controlled gas distribution plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125424A (en) * 1988-07-18 1990-05-14 Tokyo Electron Ltd Processor
US5015331A (en) * 1988-08-30 1991-05-14 Matrix Integrated Systems Method of plasma etching with parallel plate reactor having a grid
US4986216A (en) * 1989-05-10 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor manufacturing apparatus
US5445699A (en) * 1989-06-16 1995-08-29 Tokyo Electron Kyushu Limited Processing apparatus with a gas distributor having back and forth parallel movement relative to a workpiece support surface
US5451290A (en) * 1989-08-14 1995-09-19 Applied Materials, Inc. Gas distribution system
JPH03148118A (en) * 1989-11-02 1991-06-24 Fujitsu Ltd Semiconductor manufacturing apparatus
US5186756A (en) * 1990-01-29 1993-02-16 At&T Bell Laboratories MOCVD method and apparatus
US5366557A (en) * 1990-06-18 1994-11-22 At&T Bell Laboratories Method and apparatus for forming integrated circuit layers
US6379466B1 (en) 1992-01-17 2002-04-30 Applied Materials, Inc. Temperature controlled gas distribution plate
US5589002A (en) * 1994-03-24 1996-12-31 Applied Materials, Inc. Gas distribution plate for semiconductor wafer processing apparatus with means for inhibiting arcing
JPH08236295A (en) * 1994-12-05 1996-09-13 Hughes Aircraft Co Cooled gas distribution system for plasma reactor

Similar Documents

Publication Publication Date Title
US5110437A (en) Plasma processing apparatus
KR100895913B1 (en) Method and apparatus for treating a surface of at least one substrate
JPS61208222A (en) Plasma treatment method and device
JPH057861B2 (en)
US5087341A (en) Dry etching apparatus and method
KR101840294B1 (en) Ccp plasma device
JPH0613196A (en) Plasma generating method and generating device
JPH0423429A (en) Device and method for plasma processing of semiconductor device
JPH0116312B2 (en)
JPS63141318A (en) Gas evacuating device for sample treatment
JPS5610932A (en) Plasma treating apparatus
KR102721405B1 (en) Substrate processing apparatus and substrate processing method
JPS60123033A (en) Plasma treating device
JPH0791642B2 (en) Surface treatment equipment
JP2733316B2 (en) Dry etching apparatus and method
JPH0210828A (en) Etching device and method thereof
JPS60137021A (en) Plasma etching device
JPS61281881A (en) Dry etching device
JPS61174623A (en) Sample processor
JPS62296521A (en) Plasma processor
JPS5913328A (en) Dry etching device
JPS61245529A (en) plasma processing equipment
JPS60126833A (en) Plasma etching device
JPH0730355A (en) Method and apparatus for adjusting frequency of piezoelectric element
JPS61128526A (en) Plasma etching device