JPS61207892A - Turbomolecule pump - Google Patents
Turbomolecule pumpInfo
- Publication number
- JPS61207892A JPS61207892A JP60046526A JP4652685A JPS61207892A JP S61207892 A JPS61207892 A JP S61207892A JP 60046526 A JP60046526 A JP 60046526A JP 4652685 A JP4652685 A JP 4652685A JP S61207892 A JPS61207892 A JP S61207892A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- bearing
- magnetic
- axial
- axial bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004575 stone Substances 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 1
- 230000005287 neuromuscular process controlling balance Effects 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0476—Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C43/00—Assembling bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/44—Centrifugal pumps
- F16C2360/45—Turbo-molecular pumps
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はターボ分子ポンプに係り、特に磁気的軸受によ
ってロータを無接触で支承するターボ分子ポンプに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a turbo-molecular pump, and particularly to a turbo-molecular pump in which a rotor is supported in a non-contact manner by a magnetic bearing.
ターボ分子ポンプは動翼と静翼を交互に数段ないし数十
膜配置し、動翼を高速で回転させることにより、気体分
子を一方に移送させ高真空を得るものである。従来のタ
ーボ分子ポンプにおいては高速回転ロータの軸受に潤滑
用の軸受油を不可欠とする機械的接触型の転り軸受が使
用されてきたが、運転中は吸気口側から排気口側への気
体分子の流れによって潤滑油の漏洩ないし蒸発、拡散に
よる真空の汚染は避けられ清浄な真空は得られるものの
、転り軸受によるものでは振動等の面から回転能力に限
界があり、また一度運転を停止すると上記軸受の潤滑油
の油蒸気が高真空側まで拡散し、ポンプの羽根や真空チ
ャンバを汚染する恐れがあった。これに対処するために
1例えば特公昭57−30998号公報に開示されるよ
うな軸受形式を有するターボ分子ポンプが考えられるよ
うになった。これは回転以外の5自由度を能動制御する
制御形磁気軸受としたものであるが、磁気的な軸方向軸
受はロータの内部に収納されているので、装置の小形化
には有効である。しかし、この構造では組立を行う際、
ロータバランス作業を実施した後にスラストヨークを分
解し、再組立しなけれ4fならず、ロータのバランス状
態が狂うことになり、数百回転で回転する高速回転体で
は振動が増大することになる。A turbomolecular pump has rotor blades and stator blades arranged alternately in several stages to several tens of layers, and by rotating the rotor blades at high speed, gas molecules are transferred to one side and a high vacuum is obtained. Conventional turbomolecular pumps have used mechanical contact type rolling bearings that require bearing oil for lubrication in the high-speed rotor bearings, but during operation, gas flows from the intake port to the exhaust port. Although the flow of molecules prevents leakage, evaporation, and diffusion of lubricating oil from contaminating the vacuum and provides a clean vacuum, rolling bearings have limited rotational capacity due to vibrations and other factors, and must be stopped once. Then, the oil vapor of the lubricating oil in the bearing would spread to the high vacuum side, potentially contaminating the pump blades and the vacuum chamber. In order to cope with this problem, a turbo-molecular pump having a bearing type has been considered, for example, as disclosed in Japanese Patent Publication No. 57-30998. This is a controlled magnetic bearing that actively controls five degrees of freedom other than rotation, and since the magnetic axial bearing is housed inside the rotor, it is effective in downsizing the device. However, with this structure, when assembling,
After performing rotor balancing work, the thrust yoke must be disassembled and reassembled, which takes 4 hours, which causes the rotor to become unbalanced, and vibrations increase in a high-speed rotating body that rotates at several hundred revolutions.
また、2組の磁気的な径方向軸受を用いてロータの軸方
向位置を制御すると共に、各々の磁気軸受において半径
方向の位置を制御する軸受装置として特開昭59−93
992号公報のようなものがあるが、この方式では磁気
軸受は一体形で構成され、また複雑な磁路構造により上
記の機能を達成するようにしている。しかし、この構造
では2組の径方向軸受が必要であり、径方向の磁気力と
軸方向の磁気力を個別に制御できない問題がある。Furthermore, as a bearing device that controls the axial position of the rotor using two sets of magnetic radial bearings, and also controls the radial position of each magnetic bearing, Japanese Patent Laid-Open No. 59-93
There is a system such as that disclosed in Japanese Patent No. 992, but in this system, the magnetic bearing is constructed in one piece, and the above-mentioned function is achieved through a complicated magnetic path structure. However, this structure requires two sets of radial bearings, and there is a problem that the radial magnetic force and the axial magnetic force cannot be controlled separately.
本発明は組立前に実施する精密なロータバランスを狂わ
すことのないように構成したターボ分子ポンプを提供す
ることを目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a turbomolecular pump that is constructed so as not to disturb the precise rotor balance performed before assembly.
本発明はケーシング内にその軸線方向に沿って多段に設
けた静翼と、静翼間に位置しかつケーシングの中心に位
置するロータ外周に設けられた動翼とを備え、ロータを
磁気的な径方向軸受と磁気的に軸方向軸受により能動的
に支承し、径方向軸受と軸方向軸受との間に配置した駆
動モータでロータを高速回転させる形式のターボ分子ポ
ンプに係るもので、ロータの外周下端にスラストヨーク
を設け、スラストヨークの軸方向の対応面に軸方向軸受
をロータの支持部材より延在して配置し、軸方向軸受を
周方向に少なくとも2分割の磁極構成にし、このターボ
分子ポンプの吸込側を核融合装置等の真空装置に接続し
、ロータを回転させ、多段に設けた静翼と、この静翼間
に臨ませた動翼との間でタービン圧縮作用で上記真空装
置からの排気を行い高真空化をはかる。また、ロータの
スラストヨークを取外すことなく組立られる技術手段を
講じたものである。The present invention includes stator vanes provided in multiple stages along the axial direction within a casing, and rotor blades provided on the outer periphery of the rotor located between the stator vanes and located at the center of the casing. This type of turbo molecular pump is actively supported by a radial bearing and a magnetically axial bearing, and the rotor is rotated at high speed by a drive motor placed between the radial bearing and the axial bearing. A thrust yoke is provided at the lower end of the outer periphery, an axial bearing is arranged on the axially corresponding surface of the thrust yoke extending from the support member of the rotor, and the axial bearing is configured with magnetic poles divided into at least two parts in the circumferential direction. The suction side of the molecular pump is connected to a vacuum device such as a nuclear fusion device, the rotor is rotated, and the vacuum is generated by the turbine compression action between the stator blades provided in multiple stages and the rotor blades facing between the stator blades. Evacuate the equipment to create a high vacuum. Furthermore, a technical means has been taken that allows assembly without removing the thrust yoke of the rotor.
以下、本発明の実施例を第1図〜第7図を用いて説明す
る。Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.
第1図において、1はターボ分子ポンプであり、円筒形
のケーシング2の上部には吸込口Aを備え、この先に排
気すべき真空チャンバ(図示せず)がフランジ3により
結合される。ケーシング2の下部には回転体4の支持部
材5がフランジ6により結合され、支持部材5には吐出
口Bが備えられている。In FIG. 1, reference numeral 1 denotes a turbo-molecular pump, which has a suction port A at the top of a cylindrical casing 2, to which a vacuum chamber (not shown) to be evacuated is connected via a flange 3. A support member 5 of the rotating body 4 is connected to the lower part of the casing 2 by a flange 6, and the support member 5 is provided with a discharge port B.
ケーシング2内にはその軸線方向に沿って多段に静翼7
が設けられ、この静翼7間には動翼8が配置されている
。動翼8はケーシング2の中心に位置するロータ9の外
周に固定されている。ロータ9の中心にはインナーロー
タを構成するシャフト10が取付けられている。動翼8
を備えたロータ9は径方向、軸方向共に磁気軸受によっ
て支承され、ターボ分子ポンプの有効な特性を得るため
におよそ2〜3万回転以上の高速で回転する。このロー
タ9の駆動はシャフト10に取付けたモータロータll
aと、このモータロータllaに対向する支持部材5よ
り延在する筒状部材12に取付けたモータステータll
bとからなる駆動モータ11で行う。ロータ9の径方向
の軸支承する磁気的な径方向軸受13は筒状部材12に
設けた電磁1石13aと、これに対応してシャフト10
に設けた継鉄13bおよび径方向位置センサ14で構成
し、径方向位置センサ14で検出したロータの偏心量が
減少するように電磁石13aの電流を制御することによ
りロータ9を径方向の所定個所に支承する。軸方向軸受
15はロータ9下端に設けたスラストヨーク15aと、
このヨーク15aの軸方向対応面に設けた電磁石15b
、15cと、軸方向位置センサ16とよりなり、この電
磁石15b、15cは周方向に少なくとも2分割される
ように構成され、ロータ9を支持する支持部材5より延
在して配置される。Stator blades 7 are arranged in multiple stages along the axial direction of the casing 2.
are provided, and moving blades 8 are arranged between the stationary blades 7. The moving blades 8 are fixed to the outer periphery of a rotor 9 located at the center of the casing 2. A shaft 10 constituting an inner rotor is attached to the center of the rotor 9. Moving blade 8
The rotor 9 is supported by magnetic bearings in both the radial and axial directions, and rotates at a high speed of approximately 20,000 to 30,000 revolutions or more in order to obtain the effective characteristics of a turbomolecular pump. This rotor 9 is driven by a motor rotor ll attached to a shaft 10.
a, and a motor stator ll attached to a cylindrical member 12 extending from the support member 5 facing the motor rotor lla.
This is done by a drive motor 11 consisting of b. A magnetic radial bearing 13 that supports the rotor 9 in the radial direction includes an electromagnetic magnet 13a provided on the cylindrical member 12, and a shaft 10 corresponding to the electromagnetic magnet 13a.
The rotor 9 is moved to a predetermined position in the radial direction by controlling the current of the electromagnet 13a so that the amount of eccentricity of the rotor detected by the radial position sensor 14 is reduced. support. The axial bearing 15 includes a thrust yoke 15a provided at the lower end of the rotor 9,
Electromagnet 15b provided on the axially corresponding surface of this yoke 15a
, 15c, and an axial position sensor 16, the electromagnets 15b, 15c are configured to be divided into at least two parts in the circumferential direction, and are arranged to extend from the support member 5 that supports the rotor 9.
本発明は上記のように構成されているので、軸方向軸受
15は周方向に分割され組立時にスラストヨークをロー
タ9から取外す必要がなくなる。Since the present invention is constructed as described above, the axial bearing 15 is divided in the circumferential direction, and there is no need to remove the thrust yoke from the rotor 9 during assembly.
したがって、ロータバランスが組立作業時により狂うこ
とがなくなり、低振動ロータの実現が可能になる。また
、軸方向軸受15をロータの外周部分に設けたので、ス
ラストヨーク15aと軸受15b、15cの間隙調整が
容易になり組立性が向上する。Therefore, the rotor balance will not be disturbed during assembly work, and a low-vibration rotor can be realized. Further, since the axial bearing 15 is provided on the outer circumferential portion of the rotor, the gap between the thrust yoke 15a and the bearings 15b and 15c can be easily adjusted, and the ease of assembly is improved.
軸方向軸受15の例えば軸受15bは第2図。For example, the bearing 15b of the axial bearing 15 is shown in FIG.
第3図のように構成される。この場合は軸受を周方向に
4分割して構成したものを例示する。第2図は軸受16
bの平面図で、第3図は第2図の!−1断面図である。It is configured as shown in FIG. In this case, a configuration in which the bearing is divided into four parts in the circumferential direction will be exemplified. Figure 2 shows bearing 16
Fig. 3 is a plan view of Fig. 2 of Fig. b. -1 sectional view.
4分割された各磁極15b。Each magnetic pole 15b is divided into four.
〜15b、には各々コイル17が図示のように巻回され
ており、各磁極の極性が一致するように各コイルに電流
を流す構成になっているにのような構成にすることによ
り一体構成の磁極と同様な機能を実現できる。また、そ
の断面は第3図に示すようにE形電極石になっている。A coil 17 is wound around each of ~15b as shown in the figure, and a current is passed through each coil so that the polarity of each magnetic pole matches. It can achieve the same function as magnetic poles. Moreover, its cross section is an E-shaped electrode stone as shown in FIG.
次に1本発明の他の実施例を第4図〜第7図について説
明する。Next, another embodiment of the present invention will be described with reference to FIGS. 4 to 7.
第4図において、第1図と同じ個所には同じ符号を付し
て説明を省略する。In FIG. 4, the same parts as in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.
本実施例ではロータ9の支承はこのロータ9の中心から
延びるシャフト10を磁気的な1組の径方向軸受13と
、ロータ9下端に設けた磁気的な1組の軸方向軸受15
によって行われ、軸受15は径方向軸受の機能も兼ねる
。その駆動はシャフト10に取付けたモータロータll
aと筒状部材12に取付けたモータステータllbから
なる駆動モータ11によって行われる。軸方向、径方向
位置の制御は位置センサ14,16によって行われる。In this embodiment, the rotor 9 is supported by a shaft 10 extending from the center of the rotor 9 by a pair of magnetic radial bearings 13 and a pair of magnetic axial bearings 15 provided at the lower end of the rotor 9.
The bearing 15 also functions as a radial bearing. Its drive is done by a motor rotor attached to the shaft 10.
This is performed by a drive motor 11 consisting of a motor stator llb attached to a cylindrical member 12. Axial and radial position control is performed by position sensors 14 and 16.
上記の構成とすることにより、磁気的な1組の径方向軸
受が不要となり、またシャフト10を短縮することが可
能になる。With the above configuration, a set of magnetic radial bearings is not required, and the shaft 10 can be shortened.
ロータの危険速度とシャフトの軸寸法との関係を第5図
について説明する。The relationship between the critical speed of the rotor and the axial dimension of the shaft will be explained with reference to FIG.
図は本実施例の場合と従来この種の装置における場合の
危険速度通過の状態を対比したもので、軸長の長い従来
の場合では仕様回転数に到達するのに3ケ所の危険速度
を通過する必要がある0本実施例の構成では1次、2次
の危険速度を通過すればよいので制御が容易である。1
次、2次の危険速度はシャフトの曲げモーメントが発生
しない剛体モードの振動であり、3次の危険速度はシャ
フトが片持梁状態に振動する曲げモーメントとなるので
制御が難しい問題がある。実線は本実施例の場合を、ま
た破線は従来の場合を示す0本実施例の磁気軸受システ
ムで安定な回転が得られることを第6図、第7図を用い
て説明する。第6図は3分割した磁気構成を示す図、第
7図は第6図において各磁極に作用する磁気力の合力を
示す図である。The figure compares the state of passing the critical speed in the case of this embodiment and in the case of a conventional device of this type.In the conventional case with a long shaft length, three critical speeds were passed to reach the specified rotation speed. In the configuration of this embodiment, it is only necessary to pass through the primary and secondary critical speeds, so control is easy. 1
The second and second critical speeds are vibrations in a rigid body mode in which no bending moment of the shaft occurs, and the third critical speed is a bending moment that causes the shaft to vibrate in a cantilevered state, making it difficult to control. The solid line indicates the case of this embodiment, and the broken line indicates the conventional case. The fact that stable rotation can be obtained with the magnetic bearing system of this embodiment will be explained with reference to FIGS. 6 and 7. FIG. 6 is a diagram showing a magnetic configuration divided into three parts, and FIG. 7 is a diagram showing the resultant force of the magnetic forces acting on each magnetic pole in FIG. 6.
径方向、軸方向兼用の軸受は径方向X+ yおよび軸方
向2の3自由度を制御する必要があるので、周方向に少
なくとも3分割した磁極構成とする必要がある。第7図
において、磁気力の合力をF2゜F、、 F3を作用半
径をr9着力点を各磁極の弧の中心と仮定すると、軸方
向(2方向)の力Flly軸まわりのモーメント荷重を
M、、x軸まわりのモーメント荷重をM、とじた場合力
の釣り合いは式(1)で表わされる。Since it is necessary to control three degrees of freedom in the radial direction and the axial direction in a bearing that can be used both in the radial direction and in the axial direction, it is necessary to have a magnetic pole configuration that is divided into at least three parts in the circumferential direction. In Figure 7, assuming that the resultant force of the magnetic force is F2°F, F3 is the radius of action r9, and the point of force is the center of the arc of each magnetic pole, then the force in the axial direction (two directions) Flly is the moment load around the axis M ,, When the moment load around the x-axis is M, the force balance is expressed by equation (1).
軸方向位置センサ17の出力A z r位置センサ15
のX軸およびy軸方向の出力をΔx+Ayとすると、着
力点で変位δ1.δ2.δ、は式(2)ここで、Aは3
行3列の座標変換マトリックスである。各磁極に作用す
る磁気力は着力点の変位の関数(各々f1(δt) 、
f、 (δ、)、f、(δ、))となるので。Output of axial position sensor 17 A z r position sensor 15
If the output in the X-axis and y-axis directions is Δx+Ay, the displacement δ1. δ2. δ is the formula (2), where A is 3
This is a coordinate transformation matrix with three rows and three columns. The magnetic force acting on each magnetic pole is a function of the displacement of the point of force (f1(δt),
Since f, (δ,), f, (δ,)).
で与えられる。したがって、センサ出力Az。is given by Therefore, the sensor output Az.
lx、/Jyが設定値に一致するように制御することが
可能である。It is possible to control lx and /Jy so that they match set values.
尚、変位センサ(位置センサ)の設置位置を磁極の弧の
中心部にすればδ1.δ2.δ3を直接計測できるので
、式(2)の座標変換が不要となり、演算速度を早くす
ることができる。Note that if the displacement sensor (position sensor) is installed at the center of the arc of the magnetic pole, δ1. δ2. Since δ3 can be directly measured, the coordinate transformation of equation (2) is not necessary, and the calculation speed can be increased.
以上のように本実施例の方式の磁気軸受によっても安定
な回転が実現できる。As described above, stable rotation can also be achieved by the magnetic bearing of this embodiment.
以上説明したように、本発明によればロータ外周下端に
スラストヨークを設け、このスラストヨークの対応面に
分割した電極石を配置し磁気的な軸受を構成するように
したので、ロータの構成部材を組立時に分解する必要が
ないから組立前に実施する精密なロータバランスが狂う
ことがなくなる。As explained above, according to the present invention, a thrust yoke is provided at the lower end of the outer circumference of the rotor, and divided electrode stones are arranged on the corresponding surface of this thrust yoke to constitute a magnetic bearing. Since there is no need to disassemble the rotor during assembly, the precise rotor balance performed before assembly will not be disrupted.
第1図は本発明の一実施例を示すターボ分子ポンプの縦
断面図、第2図は第1図における軸方向軸受の平面図、
第3図は第2図の1−1線に沿う断面図、第4図は本発
明の他の実施例を示すターボ分子ポンプの縦断面図、第
5図は軸寸法と危険速度の関係を示す説明図、第6図は
第4図の軸方向軸受の平面図、第7図は第6図の各磁極
に作用する磁気力の合力を示す説明図である。
1・・・ターボ分子ポンプ、2・・・ケーシング、5・
・・支持部材、7・・・静翼、8・・・動翼、9・・・
ロータ、10・・・シャフト、11a・・・モータロー
タ、llb・・・モータステータ、12・・・筒状部材
、14・・・径方向位置センサ、15a・・・スラスト
ヨーク、15・・・軸方¥ 1 図
寮2図
ts bt
5b
Y d 図
冨5図
車古寸シ太
冨 乙 口
霞
第 7 図FIG. 1 is a longitudinal sectional view of a turbomolecular pump showing an embodiment of the present invention, FIG. 2 is a plan view of the axial bearing in FIG. 1,
Fig. 3 is a sectional view taken along the line 1-1 in Fig. 2, Fig. 4 is a longitudinal sectional view of a turbomolecular pump showing another embodiment of the present invention, and Fig. 5 shows the relationship between shaft dimensions and critical speed. 6 is a plan view of the axial bearing shown in FIG. 4, and FIG. 7 is an explanatory view showing the resultant force of the magnetic force acting on each magnetic pole in FIG. 6. 1...Turbo molecular pump, 2...Casing, 5...
...Supporting member, 7... Stator blade, 8... Moving blade, 9...
Rotor, 10... Shaft, 11a... Motor rotor, llb... Motor stator, 12... Cylindrical member, 14... Radial position sensor, 15a... Thrust yoke, 15... Shaft ¥ 1 Zuryo 2 drawing ts bt 5b Y d Drawing 5 drawing Car old size Shitomi Otsu Kuchi Kasumi No. 7
Claims (1)
静翼と、前記静翼間に位置しかつケーシングの中心に位
置するロータ外周に設けられた動翼とを備え、前記ロー
タを磁気的な径方向軸受と磁気的な軸方向軸受で支承し
、前記径方向軸受と前記軸方向軸受との間に配置した駆
動モータで前記ロータを高速回転させるようにしたター
ボ分子ポンプにおいて、前記ロータの外周下端にスラス
トヨークを設け、前記スラストヨークの軸方向に対応面
に軸方向軸受を前記ロータの支持部材より延在して配置
し、前記軸方向軸受を周方向に少なくとも2分割の磁極
構成にしたことを特徴とするターボ分子ポンプ。 2、特許請求の範囲第1項において、前記ロータ内に磁
気的な1組の径方向軸受を設け、かつ前記スラストヨー
クの軸方向の対応面に磁気的な1組の軸方向軸受を配置
し、前記軸方向軸受は周方向に少なくとも3分割の磁極
構成にして径方向軸受を兼ねるようにしたことを特徴と
するターボ分子ポンプ。 3、特許請求の範囲第1項または第2項において、分割
された前記軸方向軸受は磁極の極性が一致するように各
コイルに電流が流されるように構成されていることを特
徴とするターボ分子ポンプ。 4、特許請求の範囲第1項または第2項において、前記
径方向軸受及び軸方向軸受を構成する電極石の断面はE
形の鉄心構造であることを特徴とするターボ分子ポンプ
。 5、特許請求の範囲第1項または第2項において、前記
駆動モータは前記ロータ内のシャフトに取り付けたモー
タロータと、前記モータロータに対向し前記支持部材よ
り延在する筒状部材に取付けたモータステータとからな
ることを特徴とするターボ分子ポンプ。[Scope of Claims] 1. A rotor blade provided within a casing in multiple stages along its axial direction, and a moving blade provided on the outer periphery of the rotor located between the stator vanes and located at the center of the casing. , a turbo molecule in which the rotor is supported by a magnetic radial bearing and a magnetic axial bearing, and the rotor is rotated at high speed by a drive motor disposed between the radial bearing and the axial bearing. In the pump, a thrust yoke is provided at the lower end of the outer periphery of the rotor, an axial bearing is disposed on an axially corresponding surface of the thrust yoke extending from a supporting member of the rotor, and the axial bearing is arranged at least in the circumferential direction. A turbo molecular pump characterized by a two-part magnetic pole configuration. 2. In claim 1, a set of magnetic radial bearings is provided in the rotor, and a set of magnetic axial bearings is arranged on axially corresponding surfaces of the thrust yoke. . A turbo molecular pump, wherein the axial bearing has a magnetic pole structure divided into at least three parts in the circumferential direction so that it also serves as a radial bearing. 3. The turbo according to claim 1 or 2, wherein the divided axial bearing is configured such that a current is passed through each coil so that the polarities of the magnetic poles match. molecular pump. 4. In claim 1 or 2, the cross section of the electrode stone constituting the radial bearing and the axial bearing is E.
A turbo molecular pump characterized by a shaped iron core structure. 5. In claim 1 or 2, the drive motor includes a motor rotor attached to a shaft within the rotor, and a motor stator attached to a cylindrical member facing the motor rotor and extending from the support member. A turbo molecular pump characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046526A JPS61207892A (en) | 1985-03-11 | 1985-03-11 | Turbomolecule pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046526A JPS61207892A (en) | 1985-03-11 | 1985-03-11 | Turbomolecule pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61207892A true JPS61207892A (en) | 1986-09-16 |
Family
ID=12749721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60046526A Pending JPS61207892A (en) | 1985-03-11 | 1985-03-11 | Turbomolecule pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207892A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134796U (en) * | 1988-03-08 | 1989-09-14 | ||
JPH01166292U (en) * | 1988-05-11 | 1989-11-21 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55131954A (en) * | 1979-03-30 | 1980-10-14 | Philips Nv | Xxray tube |
JPS5812478A (en) * | 1981-07-15 | 1983-01-24 | Hitachi Ltd | Manufacturing method of solid-state imaging device |
-
1985
- 1985-03-11 JP JP60046526A patent/JPS61207892A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55131954A (en) * | 1979-03-30 | 1980-10-14 | Philips Nv | Xxray tube |
JPS5812478A (en) * | 1981-07-15 | 1983-01-24 | Hitachi Ltd | Manufacturing method of solid-state imaging device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01134796U (en) * | 1988-03-08 | 1989-09-14 | ||
JPH01166292U (en) * | 1988-05-11 | 1989-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101164576B1 (en) | Electric supercharger | |
JP2870604B2 (en) | Vacuum pump | |
KR101204633B1 (en) | Turbo-molecular pump and method of assembling turbo-molecular pump | |
JP2007336737A (en) | Motor rotor and method for correcting rotation balance thereof | |
JP6331491B2 (en) | Vacuum pump | |
CN111043055B (en) | Vacuum pump | |
JPS61207892A (en) | Turbomolecule pump | |
WO2023226916A8 (en) | Magnetic suspension type centrifugal pump | |
US7896625B2 (en) | Vacuum pumping system and method of operating a vacuum pumping arrangement | |
JP2022023779A (en) | How to manufacture an electric motor or a vacuum device with an electric motor | |
JP2000110771A (en) | Turbo molecular pump | |
JP2601803Y2 (en) | Turbo molecular pump | |
JP2000274391A (en) | Over hang type turbo molecular pump | |
JPS5946394A (en) | turbo molecular pump | |
JP2006509953A (en) | Vacuum pump discharge device and operating method thereof | |
JP7435901B2 (en) | Motor rotor and supercharger | |
JPH0645115U (en) | Thrust magnetic bearing for turbo machinery | |
JP2525848Y2 (en) | Vacuum pump | |
JPH0710492U (en) | Turbo molecular pump | |
JPH03237295A (en) | Turbo-molecular pump | |
GB2619515A (en) | Magnetic bearing hub and vacuum pump | |
JPH08338392A (en) | Vacuum pump | |
JPH0297713A (en) | Rotating machine using five-axis control magnetic bearing | |
JPH0536094U (en) | Vacuum pump | |
JPS62111194A (en) | Turbo molecular pump |