JPS61207290A - Automatic controller for mooring rope - Google Patents
Automatic controller for mooring ropeInfo
- Publication number
- JPS61207290A JPS61207290A JP4753885A JP4753885A JPS61207290A JP S61207290 A JPS61207290 A JP S61207290A JP 4753885 A JP4753885 A JP 4753885A JP 4753885 A JP4753885 A JP 4753885A JP S61207290 A JPS61207290 A JP S61207290A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- mooring
- computer
- mooring line
- ship
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は係船索自動制御装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an automatic mooring line control device.
従来、第6図斜視図、第7因子面図、第8図側面図に示
すように、船を岸壁に係留しておくには、第9図部分斜
視図、第10図部分圧面図に示すように、船Aと岸壁B
の間に複数の係船索Cを垂直キャプスタンD及び水平キ
ャプスタンEを介して張ることによシ行っている。Conventionally, in order to moor a ship to a quay, as shown in the perspective view in Figure 6, the factor plane view in Figure 7, and the side view in Figure 8, it was necessary to So, ship A and quay B
A plurality of mooring lines C are stretched between vertical capstans D and horizontal capstans E.
そして、風圧や潮流は絶えず変化して係船力に影響し、
また、貨物の搭載や荷降ろしの際にも船Aの姿勢や吃水
が変化し係船力が変化するので、絶えず船Aの周りや船
A自体の状態に合わせて、各種係船索Cの引き出し量。Wind pressure and tidal currents constantly change and affect the mooring force.
In addition, when loading and unloading cargo, the attitude and swamp of ship A change and the mooring force changes, so the amount of pullout of various mooring lines C is constantly adjusted according to the surroundings of ship A and the condition of ship A itself. .
船Aとの水平角α1〜α5.船Aとの垂直角β1〜β5
及び係船力を乗組員が確認ないしは判断したうえ係船索
Cを調節している。Horizontal angles α1 to α5 with ship A. Vertical angle β1 to β5 with ship A
The crew adjusts the mooring line C after confirming or judging the mooring force.
しかしながら、このような手段では、これ等各種調節作
業はすべて乗組員に頼っているので、多くの労力を要す
るという欠点がある。However, such a method has the disadvantage that it requires a lot of labor since all of these various adjustment operations depend on the crew.
本発明は、このような事情に鑑みて提案されたもので、
係船中の船舶の係船索の調節作業を省人化する係船索自
動制御装置を提供することを目的とする。The present invention was proposed in view of these circumstances, and
An object of the present invention is to provide an automatic mooring line control device that saves labor in adjusting the mooring lines of a moored ship.
そのために本発明は、複数のキャプスタンを介して各係
船索をそれぞれ巻込み繰り出す複数のウィンチを具えた
船舶において、係船条件入力装置と、潮力センサー、風
速風力センサー1位置センサー、載荷状態センサー及び
後記する末端制御装置の出力をそれぞれ入力するコンピ
ューターと、各キャプスタンにそれぞれ付設され当該キ
ャプスタンの反力成分をそれぞれ検出する反力成分セン
サーと、各ウィンチにそれぞれ付設され対応係船索の張
力をそれぞれ検出する張力センサーと、上記反力成分セ
ンサー及び張力センサーの出力に基づいて各係船索の船
体に対する角度を演算しこれを上記コンピューターに出
力するとNもに上記コンピューターの出力に基づいて上
記各ウィンチを制御す゛る指令信号を出力する末端制御
装置とを具えたことを特徴とする。To this end, the present invention provides a mooring condition input device, a tidal force sensor, a wind speed and wind sensor 1 position sensor, and a loading state sensor in a ship equipped with a plurality of winches that wind and let out each mooring line through a plurality of capstans. and a computer that inputs the output of the terminal control device described later, a reaction force component sensor attached to each capstan that detects the reaction force component of the capstan, and a reaction force component sensor attached to each winch that detects the tension of the corresponding mooring line. The angle of each mooring line with respect to the ship's body is calculated based on the outputs of the tension sensor, the reaction force component sensor, and the tension sensor, respectively, and this is output to the computer. It is characterized by comprising a terminal control device that outputs a command signal to control the winch.
上述の構成により、係船中の船舶の係船索の調節作業を
省人化する係船索自動制御装置を得ることができる。With the above-described configuration, it is possible to obtain an automatic mooring line control device that saves labor in adjusting the mooring lines of a moored ship.
本発明の一実施例を図面について説明すると、第1図は
係船索の方向とキャプスタンの反力との力学的関係を示
すモデル図、第2図はキャプスタンを示す斜視図、第3
図は係船力の検知機構を示す平面図、第4図は本装置を
具えた船舶を示す側面図、第5図は第4図の装置の計算
手順を示す流れ図である。An embodiment of the present invention will be explained with reference to the drawings. Fig. 1 is a model diagram showing the mechanical relationship between the direction of the mooring line and the reaction force of the capstan, Fig. 2 is a perspective view showing the capstan, and Fig. 3 is a model diagram showing the mechanical relationship between the direction of the mooring line and the reaction force of the capstan.
The figure is a plan view showing a mooring force detection mechanism, FIG. 4 is a side view showing a ship equipped with this device, and FIG. 5 is a flowchart showing the calculation procedure of the device shown in FIG.
上図において、第6〜10図と同一の記号はそれぞれ同
図と同一の部材を示し、まず第2〜3図において、1は
ひずみゲージで、キャプスタン軸の周シにそれぞれの測
定方向が互いに垂直になるように付設された横方向ひず
みゲージ1x、縦方向ひずみゲージ1y。In the above figure, the same symbols as in Figs. 6 to 10 indicate the same members as in the same figure. First, in Figs. A horizontal strain gauge 1x and a vertical strain gauge 1y are attached so as to be perpendicular to each other.
高さ方向ひずみゲージ1zよ多構成されており、本実施
例では横方向ひずみゲージ1X及び縦方向ひずみゲージ
1yは垂直キャプスタン軸D1の基部に、高さ方向ひず
みゲージ1zは水平キャプスタン軸E1の基部に取付け
られ、それぞれ送信ライン1aにより末端制御装置乙に
接続されている。In this embodiment, the horizontal strain gauge 1X and the vertical strain gauge 1y are arranged at the base of the vertical capstan axis D1, and the height direction strain gauge 1z is arranged at the base of the horizontal capstan axis E1. are attached to the base of the terminal controller B, and each is connected to the terminal control device B by a transmission line 1a.
2はモーターG駆動のウィンチHに付設された張力セン
サーで、張力センサー2はデータ送信ライン2aによシ
末端制御装置3に接続されている。Reference numeral 2 denotes a tension sensor attached to a winch H driven by a motor G, and the tension sensor 2 is connected to a terminal control device 3 through a data transmission line 2a.
3はひずみゲージ1及び張力センサー2から送信された
データを瞬時に解析して、係船索と船体とのなす水平角
度θや係船索と船体とのなす垂直角度ψを割出し、その
データを更に後記する中央のコンピューター4へデータ
送信ライン3aを経て送ると\もに、コンピューター4
から指令送信ライン3bを経て送られる指令をモーター
qへ指令送信ライン3Cを経て伝える末端制御装置で、
末端制御装置3によシ、係船索Cの出し入れが自動的に
行われる。3 instantaneously analyzes the data sent from the strain gauge 1 and the tension sensor 2, determines the horizontal angle θ between the mooring line and the ship's body, and the vertical angle ψ between the mooring line and the ship's body, and further analyzes the data. When the data is sent to the central computer 4, which will be described later, via the data transmission line 3a, the computer 4
A terminal control device that transmits commands sent from the motor through the command transmission line 3b to the motor q through the command transmission line 3C,
The terminal control device 3 automatically puts in and takes out the mooring line C.
次に、第4図において、5はコンピューター4に係船条
件を入力する入力機装置、6は船底に付設され潮流の大
きさを検知する潮流センサー、7はブリッジ上に突設さ
れ風速・風力を検知する風速・風力センサー、8はブリ
ッジに設けられ船と海底等との相対的位置。Next, in FIG. 4, numeral 5 is an input device for inputting mooring conditions into the computer 4, 6 is a tidal current sensor attached to the bottom of the ship to detect the size of the tidal current, and 7 is a tidal current sensor attached to the bottom of the ship to detect the wind speed and wind force. Wind speed/wind force sensor 8 is installed on the bridge to detect the relative position of the ship and the seabed.
船の前後吃水、船の前後傾き、船の左右傾きを検知する
位置センサー、9はどの船倉にどれだけ貨物が搭載され
ているか、また、バラスト水が各パラストタンクにどれ
だけ搭載されているかを検知すると\もに、パラスト水
搭載を制御する載貨状態センサーである。Position sensors detect the ship's fore-and-aft swamp, the ship's fore-and-aft inclination, and the ship's inclination to the left and right. 9 detects how much cargo is carried in which hold, and how much ballast water is carried in each palast tank. When detected, it is also a loading status sensor that controls parast water loading.
このような装置において、まず、係船索力の検知機構の
測定原理を第1図について述べると、同図に示すように
x、y、z軸を船中方向、船長方向、垂直方向にそれぞ
れ設定し、Tを係船索Cにかかる張力、Fを係船索Cに
よるキャプスタンの反力% fX l fY # f
z’t”それぞれ反力FのXa Y r z軸方向の分
力とすると、これらの間には静力学的平衡条件として下
記(1)〜(3)の関係が成立する。In such a device, first, the measurement principle of the mooring line force detection mechanism will be described with reference to Figure 1. , T is the tension applied to the mooring line C, F is the reaction force of the capstan due to the mooring line C % fX l fY # f
z't'' are component forces of the reaction force F in the Xa, Yr, and z-axis directions, and the following relationships (1) to (3) hold between them as static equilibrium conditions.
fx−1−T cosψsinθ= T cosηCX
軸方向の力のつり合)・・・(1)f +T sin
η=T cosψcosθ(y軸方向の力のつり合)
・・・(2)f2= T sinψ
(2軸方向の力のつり合)・・・(3)ここで、上記(
1) 、 (2) 、 (3)はTが既知とすれば、X
軸と係船索Cのなす角度η、船体と係船索Cのなす垂直
角度ψ、船体と係船索Cのなす水平角度θに関する3元
連立方程式であるから、これを解けばη、ψ、θの値が
求まる。なお、ηはキャプスタンとウィンチの相対的位
置で定まる定数である。fx-1-T cos ψ sin θ= T cos ηCX
Balance of forces in the axial direction)...(1) f +T sin
η=T cosψcosθ (balance of forces in the y-axis direction)
... (2) f2 = T sinψ (balance of forces in two axial directions) ... (3) Here, the above (
1), (2), and (3), if T is known, then
This is a three-dimensional simultaneous equation regarding the angle η between the shaft and the mooring line C, the vertical angle ψ between the ship's body and the mooring line C, and the horizontal angle θ between the ship's body and the mooring line C. Find the value. Note that η is a constant determined by the relative positions of the capstan and the winch.
そこで、第2図に示すように、横方向ひずみゲージ1x
、縦方向ひずみゲー9 ’ Y r高さ方向ひずみゲー
ジ1zを取り付けておけば、θやψを計算から求めるこ
とができ、精度の向上を図るならば、ひずみゲージの個
数を増し、そハらの値を解析し、平均値等を用いればよ
い。Therefore, as shown in Fig. 2, a lateral strain gauge 1x
If you install a vertical strain gauge 9'Yr and a vertical strain gauge 1z, you can calculate θ and ψ.If you want to improve the accuracy, you can increase the number of strain gauges and It is sufficient to analyze the value of and use the average value or the like.
そして、第3図に示すように、キャプスタンにそれぞれ
取フ付けられた横方向ひずみゲ−91x 、縦方向ひず
みゲージIY、高さ方向ひずみゲージ1zにより、係船
索CのX。As shown in FIG. 3, the horizontal strain gauge 91x, longitudinal strain gauge IY, and height strain gauge 1z, which are respectively attached to the capstan, are used to strain the mooring line C at X.
y、z軸方向の分力の大きさfx、 f、 、 f2が
求められ、末端制御装置3にデータが送られ、また、ウ
ィンチHに取付けられた張力センサー2により張力Tが
計測され、末端制御装置3にデータが送られる。The magnitudes of the component forces fx, f, , f2 in the y- and z-axis directions are determined, and the data is sent to the terminal control device 3. Also, the tension T is measured by the tension sensor 2 attached to the winch H, and the Data is sent to the control device 3.
更に、末端制御装置3ではこれらのデータを解析し、θ
やψを割出し、中央のコンピューター4などにその大き
さを転送し、その際第5図に示すフローチャートに従っ
て各種の計算が行われ、各ウィンチHが自動的に制御さ
れると\もに、解析されたデータは種々の自動化に利用
される。Furthermore, the terminal controller 3 analyzes these data and calculates θ
and ψ are determined and the size is transferred to the central computer 4, etc. At that time, various calculations are performed according to the flowchart shown in Fig. 5, and each winch H is automatically controlled. The analyzed data is used for various automation.
すなわち、第4図において、各係船索Cの張力Tや係船
索Cの長さ、方向などの情報は末端制御装置3からコン
ピューター4へ送られ、また、潮流センサー6、風速・
風力セン?−79位置センサー8.載貨状態センサー9
等からの情報も刻々とコンピューター4に集メラれ、コ
ンピューター4は入力装置5から入力指定された係船中
の条件と比較し、その時々の本船の状態や潮流や風力に
よって最適の係船状態を判断してモーターGK指令を送
り、各係船索Cを出し入れしたり、また、場合によって
は載貨状態セン?−9に指令を送りバラスト水を搭載し
て船の状態を変える。That is, in FIG. 4, information such as the tension T of each mooring line C, the length and direction of the mooring line C is sent from the terminal control device 3 to the computer 4, and information such as the tension T of each mooring line C, the length and direction of the mooring line C is sent from the terminal control device 3 to the computer 4, and the information such as the tension T of each mooring line C is sent to the computer 4.
Wind power sensor? -79 position sensor 8. Loading status sensor 9
Information from other sources is also collected moment by moment in the computer 4, and the computer 4 compares it with the mooring conditions input from the input device 5 and determines the optimal mooring condition based on the vessel's current condition, tidal current, and wind force. and sends motor GK commands to move each mooring line C in and out, and in some cases, to monitor the loading status. Send a command to -9 to load ballast water and change the state of the ship.
このような装置によれば、係船中の船舶の係船索の出し
入れなどの作業を自動化することによシ、乗組員の省力
を図ることができる。According to such a device, it is possible to save the crew's labor by automating tasks such as putting in and taking out the mooring lines of a moored ship.
〔発明の効果〕
要するに本発明によれば、複数のキャプスタンを介して
各係船索をそれぞれ巻込み繰り出す複数のウィンチを具
えた船舶において、係船条件入力装置と、潮力センサー
、風速風力センサー1位1センサー、載荷状態センサー
及び後記する末端制御装置の出力をそれぞれ入力するコ
ンピューターと、各キャプスタンにそれぞれ付設され当
該キャプスタンの反力成分をそれぞれ検出する反力成分
センサーと、各ウィンチにそれぞれ付設され対応係船索
の張力をそれぞれ検出する張力センサーと、上記反力成
分センサー及び張力センサーの出力に基づいて各係船索
の船体に対する角度を演算しこれを上記コンピューター
に出力すると\もに上記コンピューターの出力(C基づ
いて上記各ウィンチを制御する指令信号を出力する末端
制御装置とを具えたことによシ、係船中の船舶の係船索
の調節作業全省人化する係船条件入力装置を得るから、
本発明は産業上極めて有益なものである。[Effects of the Invention] In short, according to the present invention, in a ship equipped with a plurality of winches that wind and let out each mooring line through a plurality of capstans, a mooring condition input device, a tidal force sensor, a wind speed and wind sensor 1 are provided. 1 sensor, a loading state sensor, and a computer that inputs the outputs of the terminal control device described later, a reaction force component sensor attached to each capstan that detects the reaction force component of the capstan, and a reaction force component sensor attached to each capstan that detects the reaction force component of the capstan. The angle of each mooring line with respect to the ship's body is calculated based on the outputs of the attached tension sensor that detects the tension of the corresponding mooring line, the reaction force component sensor, and the tension sensor, and outputs this to the computer. By including a terminal control device that outputs a command signal for controlling each of the winches based on the output of from,
The present invention is extremely useful industrially.
第1図は本発明の測定の原理を示す・図、第2図はキャ
プスタンを示す斜視図、第3図は係船力の検知機構を示
す平面図、第4図は本装置を具えた船舶を示す側面図、
第5図は第4図の装置の計算手順を示す流れ図、第6図
は公知の船舶の係船要領を示す斜視図、第7図は第6図
の各係船索と船体との水平角度を示す平面図、第8図は
第6図の各係船索と船体との垂直角度を示す側面図、第
9図は第6図におけるフェアリーダーのキャプスタン及
び係船索を示す斜視図、第10図は第9図のX−Xに沿
った正面図である。
1・・ひずみゲージ、1a・・・データ送信ライン、1
x・・・横方向ひずみゲージ、1y・・・縦方向ひずみ
ゲージ、1z・・・高さ方向ひずみゲージ、2・・・張
力センサー% 2a・・・データ送信ライン、3・・・
末端制御装置、3a・・・データ送信ライン、3b・・
・指令送信ライン、3C・・・指令送信ライン、4・・
・コンピューター、5・・・入力装置、6・・・潮流セ
ンサー、7・・・風速・風力センサー、8・・・位置セ
ンサー、9・・・載貨状態センサー、
C・・・係船索、D・・−垂直キャブスタン、Dl・・
・垂直キャプスタン軸、E・・・水平キャプスタン、E
l・・・水平キャプスタン軸、F・・・キャプスタンか
らの反力、G・・・モーター、H・・・ウィンチ、T、
・・係船索にかかる張力、fX・・・FOX軸方向分力
、f、・・・FOy軸方向分力、f2・・・Fの2軸方
向の分力、θ・・・係船索と船体のなす水平角度、ψ・
・・係船索と船体のなす垂直角度、η・・係船索とX軸
のなす角度。
復代理人 弁理士 塚 本 正 文
第1図
第3図
第2図
■
第4図
第7図
第8図Fig. 1 is a diagram showing the measurement principle of the present invention, Fig. 2 is a perspective view showing the capstan, Fig. 3 is a plan view showing the mooring force detection mechanism, and Fig. 4 is a ship equipped with this device. A side view showing the
Fig. 5 is a flowchart showing the calculation procedure of the device shown in Fig. 4, Fig. 6 is a perspective view showing the mooring procedure for a known ship, and Fig. 7 shows the horizontal angle between each mooring line and the ship's hull in Fig. 6. A plan view, FIG. 8 is a side view showing the vertical angle between each mooring line and the hull in FIG. 6, FIG. 9 is a perspective view showing the fairlead capstan and mooring line in FIG. 6, and FIG. FIG. 9 is a front view taken along the line XX in FIG. 9; 1...Strain gauge, 1a...Data transmission line, 1
x... Lateral strain gauge, 1y... Vertical strain gauge, 1z... Height strain gauge, 2... Tension sensor% 2a... Data transmission line, 3...
Terminal control device, 3a...Data transmission line, 3b...
・Command transmission line, 3C...Command transmission line, 4...
- Computer, 5... Input device, 6... Tidal current sensor, 7... Wind speed/wind force sensor, 8... Position sensor, 9... Loading state sensor, C... Mooring line, D...・-Vertical cab stan, Dl・・
・Vertical capstan shaft, E...Horizontal capstan, E
L...Horizontal capstan shaft, F...Reaction force from the capstan, G...Motor, H...Winch, T,
...Tension on the mooring line, fX... FOX axial component force, f,... FOy axial component force, f2... Component force in the two axial directions of F, θ... Mooring line and ship body horizontal angle, ψ・
...Vertical angle between the mooring line and the ship's hull, η...Angle between the mooring line and the X-axis. Sub-Agent Patent Attorney Masa Tsukamoto Figure 1 Figure 3 Figure 2 ■ Figure 4 Figure 7 Figure 8
Claims (1)
いて、係船条件入力装置と、潮力センサー、風速風力セ
ンサー、位置センサー、載荷状態センサー及び後記する
末端制御装置の出力をそれぞれ入力するコンピューター
と、各キヤプスタンにそれぞれ付設され当該キヤプスタ
ンの反力成分をそれぞれ検出する反力成分センサーと、
各ウインチにそれぞれ付設され対応係船索の張力をそれ
ぞれ検出する張力センサーと、上記反力成分センサー及
び張力センサーの出力に基づいて各係船索の船体に対す
る角度を演算しこれを上記コンピューターに出力すると
ゝもに上記コンピューターの出力に基づいて上記各ウイ
ンチを制御する指令信号を出力する末端制御装置とを具
えたことを特徴とする係船索自動制御装置。[Claims] In a ship equipped with a plurality of winches that reel in and let out each mooring line through a plurality of capstans, a mooring condition input device, a tidal force sensor, a wind speed sensor, a position sensor, a loading state sensor, and a mooring condition input device are provided. A computer that inputs the outputs of the terminal control devices described later, and a reaction force component sensor that is attached to each capstan and detects the reaction force component of the capstan.
A tension sensor attached to each winch detects the tension of the corresponding mooring line, and the angle of each mooring line with respect to the ship's body is calculated based on the outputs of the reaction force component sensor and tension sensor, and this is output to the computer. An automatic mooring line control device comprising: a terminal control device that outputs a command signal for controlling each of the winches based on the output of the computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4753885A JPS61207290A (en) | 1985-03-12 | 1985-03-12 | Automatic controller for mooring rope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4753885A JPS61207290A (en) | 1985-03-12 | 1985-03-12 | Automatic controller for mooring rope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61207290A true JPS61207290A (en) | 1986-09-13 |
Family
ID=12777911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4753885A Pending JPS61207290A (en) | 1985-03-12 | 1985-03-12 | Automatic controller for mooring rope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207290A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725381A (en) * | 1993-07-07 | 1995-01-27 | Kajima Corp | Mooring equipment |
WO2008151395A3 (en) * | 2007-06-13 | 2009-04-02 | Adh Products Pty Ltd | Boat control apparatus |
KR200458268Y1 (en) * | 2008-12-18 | 2012-02-15 | 장태희 | Safety life tube |
-
1985
- 1985-03-12 JP JP4753885A patent/JPS61207290A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725381A (en) * | 1993-07-07 | 1995-01-27 | Kajima Corp | Mooring equipment |
WO2008151395A3 (en) * | 2007-06-13 | 2009-04-02 | Adh Products Pty Ltd | Boat control apparatus |
KR200458268Y1 (en) * | 2008-12-18 | 2012-02-15 | 장태희 | Safety life tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7367464B1 (en) | Pendulation control system with active rider block tagline system for shipboard cranes | |
US7731157B2 (en) | Apparatus and method for heave compensation | |
US8195368B1 (en) | Coordinated control of two shipboard cranes for cargo transfer with ship motion compensation | |
JP5002617B2 (en) | Mooring system with active control | |
US4769773A (en) | Vessel wave heading control apparatus | |
US6505574B1 (en) | Vertical motion compensation for a crane's load | |
CN102107819A (en) | Anti-shaking control method for container shore bridge hanger | |
CN107161882B (en) | A kind of novel Active Compensation loop wheel machine system | |
US20170174305A1 (en) | Watercraft, in particular tugboat | |
US3945508A (en) | Devices for transferring heavy loads at sea | |
CN207466910U (en) | Multipurpose based on the big A framves system of boat-carrying only swings device | |
CN114906279B (en) | Marine engineering ship dynamic detection intelligent distance side leaning system and method | |
JPS61207290A (en) | Automatic controller for mooring rope | |
CN108675165B (en) | Anti-rolling control method for anti-rolling crane for ship | |
US4121293A (en) | Indication means for indicating suitable conditions for the transfer of loads between two stations movable relative to each other in a vertical plane | |
RU2445230C2 (en) | Launching and lifting gear | |
JP2002211478A (en) | Mooring line monitoring device | |
CN109733538B (en) | Autonomous anchor lifting control method for unmanned ship | |
JP2000351572A (en) | Rocking preventing device of hanging hook in floating crane | |
US9346520B2 (en) | System and method for offshore loading of cargo vessels | |
CN113800416A (en) | Scientific investigation ship active compensation winch system and use method thereof | |
JP3450410B2 (en) | Mooring line tension monitoring system | |
NL2033189B1 (en) | Non-contact motion compensation of suspended loads | |
CN107720551B (en) | Lifting point heave compensation system and compensation method | |
CN221123407U (en) | Modularized marine environment integrated measuring device |