JPS61206950A - Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type - Google Patents
Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording typeInfo
- Publication number
- JPS61206950A JPS61206950A JP4783785A JP4783785A JPS61206950A JP S61206950 A JPS61206950 A JP S61206950A JP 4783785 A JP4783785 A JP 4783785A JP 4783785 A JP4783785 A JP 4783785A JP S61206950 A JPS61206950 A JP S61206950A
- Authority
- JP
- Japan
- Prior art keywords
- recording
- light
- beam splitter
- reflected
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005415 magnetization Effects 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 abstract description 4
- 101100191768 Caenorhabditis elegans pbs-4 gene Proteins 0.000 abstract 4
- 239000010408 film Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は同時消録型光磁気記録方法に使用する記録及び
再生兼用装置のピックアップに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a pickup for a recording/reproducing device used in a simultaneous erasure type magneto-optical recording method.
(発明の背景) ができる。この光磁気記録方式とは1例えばGdCo。(Background of the invention) Can be done. This magneto-optical recording method is 1, for example, GdCo.
GdTbFeの如き垂直磁化膜からなる光磁気記録媒体
の磁化の方向を予め強力な外部磁場により膜面に対し上
向きか又は下向きかのいずれか一方に揃えておく(この
作業を初期化という)。その上で5 この媒体に反対向
きの垂直磁化を有するピットを形成することにより、2
値化された情報を記録して行くものである。このピット
を形成するには直径を1〜2ミクロン程度に絞ったレー
ザービームを照射して、その部分の温度を磁化膜のキュ
リ一点付近に上昇させ、それにより、その部分の保磁力
をゼロ又はほとんどゼロにし、同時に反対向きの弱い外
部磁場(バイアス磁場)を印加して磁化の向きを反転さ
せ、その上でレーザービームの照射を止めると、自然に
冷却されて常温に戻り9反転した磁化の向きが固定され
る。こうして磁化の向きが反対のピットが形成される。The direction of magnetization of a magneto-optical recording medium made of a perpendicularly magnetized film such as GdTbFe is aligned in advance either upward or downward relative to the film surface using a strong external magnetic field (this operation is called initialization). Then, by forming pits with opposite perpendicular magnetization in this medium, 2
It records digitized information. To form these pits, a laser beam with a diameter of about 1 to 2 microns is irradiated to raise the temperature of that area to around the Curie point of the magnetized film, thereby reducing the coercive force of that area to zero or When the direction of magnetization is reduced to almost zero, and at the same time a weak external magnetic field (bias magnetic field) in the opposite direction is applied to reverse the direction of magnetization, and then the laser beam irradiation is stopped, it is naturally cooled and returns to room temperature. The orientation is fixed. In this way, pits with opposite magnetization directions are formed.
従って。Therefore.
例えば元の向きをrOJとすれば、「1」のピットが形
成され、2値化された情報は、このピットの有無又はビ
ット長として記録される。For example, if the original orientation is rOJ, a pit of "1" is formed, and the binarized information is recorded as the presence or absence of this pit or the bit length.
こうして記録された2値化情報は、記録媒体に対して直
線偏光(レーザービーム)を照射して。The binarized information recorded in this way is generated by irradiating the recording medium with linearly polarized light (laser beam).
その反射光や透過光の偏光面の回転状況が磁化の向きに
よって相違する現象(磁気カー効果及びファラデー効果
)を利用して読み取られる。つまり。The state of rotation of the polarization plane of the reflected light and transmitted light is read using the phenomenon (magnetic Kerr effect and Faraday effect) that changes depending on the direction of magnetization. In other words.
K度回転したとすると、入射光に対して磁化の向きが下
向きのときは一θに度回転する。従って。Assuming that it is rotated by K degrees, when the direction of magnetization is downward with respect to the incident light, it is rotated by one θ degree. Therefore.
反射光や透過光の先に偏光子(アナライザーとも(こ
呼ばれる)の主軸を−θに皮面分はぼ直交するように置
いておくと、下向き磁化の部分からの光はアナライザー
をほとんど透過せず、上向きの磁化の部分からの光はs
in” 2θにの分だけ透過するので、アナライザーの
先にディテクター(光電変換手段)を設置しておけば、
記録媒体を高速でスキャンニングして行くと、記録され
た磁気的情報に基づいて電流の強弱信号(電気的情報)
が再生される。If you place a polarizer (also called an analyzer) at the end of the reflected or transmitted light so that its main axis is approximately perpendicular to -θ, most of the light from the downwardly magnetized part will not pass through the analyzer. The light from the upwardly magnetized part is s
in" 2θ, so if you install a detector (photoelectric conversion means) at the end of the analyzer,
When scanning a recording medium at high speed, current strength signals (electrical information) are generated based on the recorded magnetic information.
is played.
ところで記録済みの媒体を再使用するには。By the way, how can I reuse recorded media?
(イ)再び初期化装置で初期化するか、 (ロ)別に消
去用のヘッドを併設するか、 (ハ)予め前段処理とし
て記録ヘッドを用いて消去する必要がある。(b) It is necessary to initialize again with an initialization device, (b) to install a separate head for erasing, or (c) to erase in advance using a recording head as a preliminary process.
しかしながら、初期化装置は大型で高価であり。However, the initialization device is large and expensive.
記録装置に付随させることは実用上無理である。It is practically impossible to attach it to a recording device.
別に消去用のヘッドを併設することも、それだけ製造コ
ストが上昇する。Providing a separate erasing head also increases manufacturing costs.
また、予め記録装置を用いて消去することも。It is also possible to erase the data in advance using a recording device.
消去に記録時と同じ時間がかかるので実用的な魅力に乏
しい。Since erasing takes the same amount of time as recording, it has little practical appeal.
従って、簡単に記録済みの情報を消すと同時に新しい情
報を記録できると好都合である。このように同時消録す
るには、記録媒体の磁化の向きが上向き、下向きのいず
れを向いていても、希望する磁化の向きを有するピット
を形成できなければならない。そのためには、バイアス
磁場が一方向だけでなく、希望に応じて上向き、下向き
のいずれにも変えられなければならない。しかも、その
変化の速度(変調周波数)は記録速度を高めるため、メ
ガHz (10’サイクル/秒)程度必要である。も
し、そうでなければ、この光磁気配録再、ジ
生方式は他の記録再生方式に比べて魅力失われることに
なる。Therefore, it would be advantageous if new information could be recorded at the same time as easily erasing recorded information. In order to perform simultaneous erasure in this way, it is necessary to form pits having the desired magnetization direction, regardless of whether the magnetization direction of the recording medium is upward or downward. To do this, the bias magnetic field must be varied not only in one direction, but also upwards or downwards as desired. Moreover, the rate of change (modulation frequency) needs to be about megaHz (10' cycles/second) in order to increase the recording speed. If this were not the case, this magneto-optical recording/playback/digital reproduction method would lose its appeal compared to other recording/playback methods.
他方、バイアス磁場を得るには、永久磁石か電磁石を使
用する訳であるが、磁化の向きをメガH2の頻度で変化
(変調)させるには電磁石しか考えられない。何故なら
ば、永久磁石をメガH2の頻度で機械的に反転させるの
は相当に困難であるからである。しかし、電磁石でも、
記録媒体の垂直磁化膜に対し非接触で十分な磁場を及ぼ
すには相当に大きな電流を電磁石に流す必要があり、こ
の電流の方向をメガH2の頻度で変調させるのは相当に
困難である。On the other hand, to obtain a bias magnetic field, a permanent magnet or an electromagnet is used, but only an electromagnet can be considered to change (modulate) the direction of magnetization at a frequency of mega H2. This is because it is quite difficult to mechanically reverse the permanent magnet at a frequency of mega H2. However, even electromagnets
In order to apply a sufficient magnetic field to the perpendicularly magnetized film of a recording medium in a non-contact manner, a considerably large current must be passed through the electromagnet, and it is extremely difficult to modulate the direction of this current at a frequency of mega H2.
従って、現在のところ、バイアス磁場は定磁場の方式し
か考えられておらず、結局、光磁気記録方式は別に消去
ヘッドを併設しない限り同時消録が不可能と考えられて
いる。Therefore, at present, only a constant magnetic field method is being considered for the bias magnetic field, and it is considered that simultaneous erasing is not possible with the magneto-optical recording method unless a separate erasing head is provided.
ところで光磁気記録媒体は1通常円盤状であるので同心
円又は渦巻き状の記録領域(Aw)を持ち、隣接の記録
領域(A、w)との重複を避けるため、記録領域(Aw
)と記録領域(Aw)との間に非記録領域(A、 m
)を有する(第2A図参照)。By the way, a magneto-optical recording medium is usually disk-shaped, so it has a concentric or spiral recording area (Aw), and in order to avoid overlapping with adjacent recording areas (A, w),
) and the recording area (Aw), there is a non-recording area (A, m
) (see Figure 2A).
また第2A図参鼎のようにトラッキングの溝を形成する
ことで記録領域(A W)と非記録領域(Am)をあら
かじめ区別することをしない媒体でも5トラック間のク
ローストークを防ぐために、記録トラック間に十分な非
記録領域(A m)を設けるのがtiffiである。In addition, as shown in Figure 2A, recording grooves are formed to prevent crosstalk between five tracks even on media that does not distinguish between recording areas (A W) and non-recording areas (Am) in advance. Tiffi provides a sufficient non-recording area (A m) between tracks.
そして、記録領域(A w)に垂直磁化膜を形成する際
に非記録領域(A m )に垂直磁化膜を形成させない
ようにするのは非常に面倒なので、一般には全体に垂直
磁化膜を形成してしまう。そのため非記録領域(Am)
が常に一方に揃った垂直磁化を持つことになり、しかも
、記録領域(Aw)に非記録領域(Am)が隣接するた
め、記録領域(A w)には第2B図に破線で示すよう
に非記録領域(Am)からの浮遊磁場が及ぶことになる
。When forming a perpendicular magnetization film in the recording area (A w), it is very troublesome to prevent the formation of a perpendicular magnetization film in the non-recording area (A m ), so generally, a perpendicular magnetization film is formed over the entire area. Resulting in. Therefore, the non-recording area (Am)
will always have perpendicular magnetization aligned to one side, and since the non-recording area (Am) is adjacent to the recording area (Aw), the recording area (Aw) will have perpendicular magnetization as shown by the broken line in Figure 2B. A stray magnetic field from the non-recording area (Am) will reach this area.
本発明者は、他の十発明者と共に先に垂直磁化膜の温度
をメガH2程度の頻度で変調することがすることにより
同時消録を可能にした光磁気記録方式を発明し、特許出
願した(特願昭59−91360号)。The present inventor, together with ten other inventors, previously invented a magneto-optical recording system that enabled simultaneous erasure by modulating the temperature of a perpendicularly magnetized film at a frequency of about megaH2, and filed a patent application for this method. (Patent Application No. 59-91360).
但し、垂直磁化膜の材料によっては、温度を高温、低温
の2段階に設定したとき、その垂直磁化の向きがいずれ
の温度段階に於いても同じ場合や92つの温度段階の間
に補償温度があり、そのため磁化の向きが異なる場合で
も、上向き又は下向きのいずれか一方の向きの垂直磁化
の大きさが不十分で、そこからの浮遊磁場が記録に十分
な記録用磁場 IH,lより弱い場合には、補助として
バイアス定磁場を印加することにより、変調される浮遊
磁場との和によって、記録が可能になる。一般には、高
温時の浮遊磁場をHI+低温時の浮遊磁場をHo、バイ
アス定磁場をH5とすれば。However, depending on the material of the perpendicularly magnetized film, when the temperature is set at two levels, high and low, the direction of perpendicular magnetization may be the same at either temperature level, or the compensation temperature may be different between the two temperature levels. Therefore, even if the magnetization directions are different, the magnitude of the perpendicular magnetization in either the upward or downward direction is insufficient, and the stray magnetic field from there is weaker than the recording magnetic field IH,l, which is sufficient for recording. By applying a bias constant magnetic field as an aid, recording becomes possible by the sum of the modulated stray magnetic field. Generally, if the floating magnetic field at high temperature is HI, the floating magnetic field at low temperature is Ho, and the bias constant magnetic field is H5.
lH++H1≧l H,1 1HO+Hb l≧IH01 でなければならない。lH++H1≧lH,1 1HO+Hb l≧IH01 Must.
従って、先願発明では垂直磁化膜からなる記録領域(A
w)と一方の向きに揃った垂直磁化を示す非記録領域(
Am)とを有する光磁気記録媒体に対して、第3図に示
すように。Therefore, in the prior invention, the recording area (A
w) and a non-recording area showing perpendicular magnetization aligned in one direction (
As shown in FIG. 3, for a magneto-optical recording medium having a
該媒体(S)をモーター(33)で回転させながら、前
記記録領域(Aw)には、その保磁力がゼロまたは相当
に小さくなる温度に上げるのに十分な光強度を有する主
ビーム(Bw)を記録中常時照射し、同時に必要に応じ
て永久磁石又は電磁石(40)により記録領域(Aw)
にバイアス定磁場を印加し。While the medium (S) is being rotated by a motor (33), a main beam (Bw) having sufficient light intensity to raise the temperature at which the coercive force of the medium (S) becomes zero or considerably small is applied to the recording area (Aw). is constantly irradiated during recording, and at the same time, if necessary, the recording area (Aw) is
Apply a bias constant magnetic field to.
他方9非記録領域(Am)には、別の副ビーム(B m
)の強度を高強度と低強度(ゼロを含む)との間で(3
9)により変調して照射して非記録領域(Am)の温度
を高温と低温との間で変調し。On the other hand, another sub beam (B m
) between high and low intensities (including zero) (3
9) to modulate the temperature of the non-recording area (Am) between high and low temperatures.
それにより非記録領域(Am)の垂直磁化を変調し。This modulates the perpendicular magnetization of the non-recording area (Am).
この変調された垂直磁化からの浮遊磁場と必要に応じて
印加されるバイアス定磁場との和によって互いに向きの
異なる記録用磁場を作り出し、それにより記録領域(A
w)に上向きの磁化を有するビット(Po)と下向き
の磁化を有するビット(P+)とを形成し、それらのビ
ットにより記録を行うのである。The sum of the floating magnetic field from this modulated perpendicular magnetization and the bias constant magnetic field applied as necessary creates recording magnetic fields with mutually different directions, thereby creating a recording area (A
A bit (Po) with upward magnetization and a bit (P+) with downward magnetization are formed in w), and recording is performed using these bits.
(発明の目的)
本発明の目的は、上述の如き同時消録型光磁気記録方式
に適した記録及び再生兼用装置のピックアップを提供す
ることにある。(Object of the Invention) An object of the present invention is to provide a pickup for a recording and reproducing device suitable for the above-mentioned simultaneous erasure type magneto-optical recording system.
(発明の概要)
本発明は、記録時再生時ともに互いに波長の異なるビー
ム(Bw)、 (Bm)を使用するもので1その、特
徴とするところは。(Summary of the Invention) The present invention uses beams (Bw) and (Bm) with mutually different wavelengths during both recording and reproduction.1 The features are as follows.
(1)前記記録領域(Aw)を照射する波長λwの偏光
ビーム(B W)光源。(1) A polarized beam (BW) light source with a wavelength λw that irradiates the recording area (Aw).
(2)前記非記録領域(Am)及び記録領域(Aw)の
双方を同時に照射し、波長λwとは異なる波長λ、の偏
光ビーム(Bm)光源。(2) A polarized beam (Bm) light source that simultaneously irradiates both the non-recording area (Am) and the recording area (Aw) and has a wavelength λ different from the wavelength λw.
(3)第1ビームスプリッタ−3
(4)第1面に1/4波長板及びその外側に反射層が設
けられ、第2面に1/4波長板及びその外側にビーム(
Bm)を透過しビーム(Bw)を反射する。第1干渉フ
ィルターを設けた偏光ビームスプリッタ−9
(5)第2ビームスプリッタ−9
(6)ビーム(Bw)を透過し、ビーム(Bm)を透過
しない第2干渉フィルター。(3) First beam splitter 3 (4) A quarter wavelength plate is provided on the first surface and a reflective layer is provided on the outside thereof, and a quarter wavelength plate is provided on the second surface and a beam (
Bm) and reflects the beam (Bw). Polarizing beam splitter 9 provided with a first interference filter (5) Second beam splitter 9 (6) A second interference filter that transmits the beam (Bw) and does not transmit the beam (Bm).
(7)制御光を受光する第1光電変換手段、及び(8)
情報光を受光する第2光電変換手段からなり、記録時再
生時共に。(7) first photoelectric conversion means for receiving control light; and (8)
It consists of a second photoelectric conversion means that receives information light, both during recording and reproduction.
・ビーム(Bw)は第2ビームスプリッタ−を透過させ
て偏光ビームスプリッタ−の第3面に入射させ、第1面
に設けられた反射層で反射させた後。- The beam (Bw) passes through the second beam splitter, enters the third surface of the polarizing beam splitter, and is reflected by the reflective layer provided on the first surface.
第2面に設けられた第1干渉フィルターで更に反射させ
、その反射光を第4面より出射させて、前記第1ビーム
スプリッタ−を経て記録媒体に垂直入射させ。The beam is further reflected by a first interference filter provided on the second surface, and the reflected light is emitted from the fourth surface and is perpendicularly incident on the recording medium through the first beam splitter.
媒体で反射された反射光(B W)は第1ビームスプリ
ッタ−を経て偏光ビームスプリッタ−に入射させて、そ
こで反射されたビーム(Bw)を第2ビームスプリッタ
−で2反射させて第2干渉フィルターを通して制御光と
して第1光電変換手段にに受光させ。The reflected light (BW) reflected by the medium passes through the first beam splitter and enters the polarizing beam splitter, and the beam (Bw) reflected there is reflected twice by the second beam splitter to form a second interference beam. The first photoelectric conversion means receives the light as control light through a filter.
・ビーム(Bm)は前記第1←h→ビームスプリッタ−
を経て記録媒体に垂直入射させ、該媒体で反射されたビ
ーム(Bm)を前記ビームスプリッタ−を経て前記偏光
ビームスプリッタ−の第4通して第2光電変換手段に受
光させることを特徴とする同時消録型光磁気記録及び再
生兼用装置のピックアップにある。・Beam (Bm) is the first←h→beam splitter
The beam (Bm) is made perpendicularly incident on the recording medium through the beam splitter, and the beam (Bm) reflected by the medium is received by the second photoelectric conversion means through the fourth polarizing beam splitter. It is found in the pickup of an erasable magneto-optical recording and reproducing device.
以下3本発明を実施例により具体的に説明するが5本発
明はこれに限定されるものではない。EXAMPLES The present invention will be specifically explained below using examples, but the present invention is not limited thereto.
(光磁気記録媒体の一例)
厚さ1.2fiの円形ガラス基板に厚さ3000人のG
d 、(FeCo)の垂直磁化膜(第1層)を形成し、
その上に厚さ2000人のT b F eの垂直磁化膜
(第2層)を形成することにより作られたものである。(Example of magneto-optical recording medium) G of 3000 mm thick on a circular glass substrate of 1.2 fi thick.
d, forming a perpendicular magnetization film (first layer) of (FeCo),
It was made by forming a perpendicularly magnetized film (second layer) of T b Fe with a thickness of 2000 nm on top of the film.
ここでは、簡単のために特に基板に溝を設けることはせ
ず、中1ミクロンの記録領域(Aw)と。Here, for simplicity, no grooves are particularly provided on the substrate, and a recording area (Aw) of 1 micron in diameter is used.
その隣に中3ミクロンの非記録領域(Am)とを渦巻き
状に設定しである。Next to this, a non-recording area (Am) of 3 microns in diameter is set in a spiral shape.
この媒体を予め外部磁場を印加して初期化する。This medium is initialized by applying an external magnetic field in advance.
(実施例1)
第1図は本実施例の光磁気記録兼再生装置のピックアッ
プの構成を示す概念図(レンズ系は省略)である。(Example 1) FIG. 1 is a conceptual diagram (the lens system is omitted) showing the configuration of a pickup of a magneto-optical recording and reproducing apparatus of this example.
第1図に於いて、 (1)は波長λ、=780nmの偏
光ビーム(Bw)を発するレーザー光源であ郡
り、 (2)はλ−=830nn+の偏光ビーム(B)
を発するレーザー光源である。(3)はビームスプリッ
ター(BS)であり、 (4)は偏光ビームスプリッタ
−(PBS)である。In Figure 1, (1) is a laser light source that emits a polarized beam (Bw) with wavelength λ = 780 nm, and (2) is a polarized beam (Bw) with wavelength λ = 830 nn+.
It is a laser light source that emits. (3) is a beam splitter (BS), and (4) is a polarizing beam splitter (PBS).
(PBS)とは1例えばウオーラストンプリズム、ロー
ションプリズム、トムソンプリズム、薄膜型偏光ビーム
スプリッタ−であり、これは、入L
そのPBSの方何と入射偏光の基準偏光面との成す角度
(T)によって決まる。(PBS) refers to, for example, a Wallaston prism, Rochon prism, Thomson prism, or thin-film polarizing beam splitter; Determined by
PBS (4)の第1面には1/4波長板(4a)が設
けてあり、1/4波長板(4a)を2度通ると偏光面が
90度回転する。1/4波長板(4a)の外側には更に
反射層(4b)を設けである。さらにPBS (4)の
第2面には同じく1/4波長板(4C)、その外側にビ
ーム(B m)を透過しビーム(Bw)を反射する第1
干渉フィルター(4b)が設けである。A quarter-wave plate (4a) is provided on the first surface of the PBS (4), and when light passes through the quarter-wave plate (4a) twice, the plane of polarization rotates by 90 degrees. A reflective layer (4b) is further provided on the outside of the quarter wavelength plate (4a). Furthermore, on the second surface of the PBS (4), there is also a 1/4 wavelength plate (4C), and on the outside there is a first plate that transmits the beam (B m) and reflects the beam (Bw).
An interference filter (4b) is provided.
(5)は第2BSであり、 (6)はビーム(Bw)を
透過し、ビーム(Bm)を透過しない第2干渉フィルタ
ーであり、 (7)は制御光を受光する第1光電変換手
段、 (8)は情報光を受光する第2光電変換手段であ
る。(S)は前述の記録媒体である。(5) is a second BS; (6) is a second interference filter that transmits the beam (Bw) but does not transmit the beam (Bm); (7) is a first photoelectric conversion means that receives control light; (8) is a second photoelectric conversion means that receives information light. (S) is the aforementioned recording medium.
第LBS(3)とPBSとは、基準偏光面に対して方位
角(γ)を45≧γ〉0に配置してあり。The LBS (3) and the PBS are arranged at an azimuth angle (γ) of 45≧γ>0 with respect to the reference plane of polarization.
(A W)を照らし、照射面が直径例えば1μmの円と
なるように設計され、副ビーム(Bm)は同心の例えば
直径5μlの円となるように設計され(第4図参照)従
って、副ビーム(Bm)は記録領域(Aw)及びその両
側に設けられた非記録領域(Am)の双方を照らす。こ
の場合、副ビーム(B m)に照らされる記録領域(A
、w)は、これから記録される部分、記録中の部分及び
記録済み部分の3個所を照らす(第5図参照)。(A W), the irradiation surface is designed to be a circle with a diameter of, for example, 1 μm, and the sub beam (Bm) is designed to be a concentric circle with a diameter of, for example, 5 μl (see Figure 4). The beam (Bm) illuminates both the recording area (Aw) and the non-recording areas (Am) provided on both sides thereof. In this case, the recording area (A
, w) illuminates three locations: the portion to be recorded, the portion currently being recorded, and the recorded portion (see FIG. 5).
本発明では記録済みの部分からの反射光を記録時のモニ
ター及び再生に利用する。In the present invention, the reflected light from the recorded portion is used for monitoring during recording and for reproduction.
厘F司
記録時には、光源(1)より、第1図紙面に平行な振動
面を有する偏光ビーム(Bw)を発振させ1次いで第2
BS (5)を透過させた後、 PBS(4)の第3
面よりPBS (4)に入射させる。During recording, a light source (1) oscillates a polarized beam (Bw) having a vibration plane parallel to the plane of the paper in Figure 1.
After transmitting BS (5), the third of PBS (4)
The light is made incident on the PBS (4) from the surface.
入射したビーム(Bw)はPBS (4)を100%透
過して1/4波長板(4a)に達し2反射層(4b)で
反射されて再び1/4波長板(4a)を通る。この間に
ビーム(Bw)は1/4波長板(4a)を2度通るので
振動面は90度回転して第1図紙面に垂直な振動面を持
つ。そのためビーム(Bw)は今度はPBS (4)で
反射されてPBS (4)の第2面を通って1/4波長
板(4C)に達し第1干渉フィルター(4d)で反射さ
れて再び1/4波長板(4C)を通る。この間にビーム
(Bw)は1/4波長板(4C)を2度通るので振動面
は90度回転して再び第1図紙面に平行な振動面を持つ
。そのためビーム(B w)は今度はPBS (4)を
100%透過して第4面より出射して、第1ビームスプ
リッタ−(3)にはいり、それを透過して記録媒体(S
)に垂直入射する。The incident beam (Bw) passes 100% through the PBS (4), reaches the quarter-wave plate (4a), is reflected by two reflective layers (4b), and passes through the quarter-wave plate (4a) again. During this time, the beam (Bw) passes through the 1/4 wavelength plate (4a) twice, so the vibration plane rotates 90 degrees and has a vibration plane perpendicular to the plane of FIG. 1. Therefore, the beam (Bw) is now reflected by the PBS (4), passes through the second surface of the PBS (4), reaches the 1/4 wavelength plate (4C), is reflected by the first interference filter (4d), and is again 1 /4 wavelength plate (4C). During this time, the beam (Bw) passes through the 1/4 wavelength plate (4C) twice, so the vibration plane rotates 90 degrees and becomes parallel to the plane of FIG. 1 again. Therefore, the beam (B w) passes through the PBS (4) 100%, exits from the fourth surface, enters the first beam splitter (3), passes through it, and enters the recording medium (S
) at normal incidence.
ビーム(Bw)は記録時常温照射し続け、その強度は垂
直磁化膜の温度が150〜160℃に達する強度とする
。そうすると、記録領域(A w)の保磁力はほとんど
ゼロになる。The beam (Bw) is continuously irradiated at room temperature during recording, and its intensity is such that the temperature of the perpendicularly magnetized film reaches 150 to 160°C. Then, the coercive force of the recording area (Aw) becomes almost zero.
媒体(S)で反射されたビーム(B W)は、制御光と
して利用すべく、第1ビームスプリッタ−(3)を透過
させて、PBS (4)でほぼ100%反射させる。光
源(1)からの偏光ビーム(Bw)が例えば第1図に示
したように紙面に平行な振動面を有するとき、媒体(S
)からの1反射光(Bw)も同じ振動面を有するのでP
BS (4)を、その振動方向の偏光をほぼ100%反
射させる角度に設置する。PBS (4)で反射された
ビーム(Bw)は第2BS (5)で更に反射させた後
、第2干渉フィルター(+1)を通して第1光電変換手
段(7)に受光させ、電気信号に変換する。The beam (BW) reflected by the medium (S) is transmitted through the first beam splitter (3) and approximately 100% reflected by the PBS (4) in order to be used as control light. For example, when the polarized beam (Bw) from the light source (1) has a vibration plane parallel to the plane of the paper as shown in FIG.
) also has the same vibration plane, so P
The BS (4) is placed at an angle that reflects almost 100% of the polarized light in its vibration direction. The beam (Bw) reflected by the PBS (4) is further reflected by the second BS (5), and then passed through the second interference filter (+1) and received by the first photoelectric conversion means (7), where it is converted into an electrical signal. .
この電気信号で、フォーカシング、トラッキング等のド
ライブコントロール(制御)を行なう。Drive control such as focusing and tracking is performed using this electrical signal.
他方、光源(2)より第1図紙面に垂直な振動面を有す
る偏光ビーム(B m )を発振させ、第1ビームスプ
リッタ−(3)で反射させて記録媒体(S)に垂直入射
させる。On the other hand, a light source (2) oscillates a polarized beam (B m ) having a plane of vibration perpendicular to the plane of FIG.
副ビーム(B m )の強度は、変調手段(図示してい
ない)によって光源(2)をコントロールすることによ
り、記録したい2値化情報に従い変調する。変調強度は
、高強度時で非記録領域(Am)の垂直磁化膜の温度が
100〜110℃に達する強度とし、低強度時は再生に
必要な最低強度とする。尚、低強度時にゼロにすると、
モニターができなくなる。The intensity of the sub beam (B m ) is modulated according to the binarized information to be recorded by controlling the light source (2) by a modulation means (not shown). The modulation intensity is such that the temperature of the perpendicularly magnetized film in the non-recording area (Am) reaches 100 to 110° C. when the intensity is high, and the minimum intensity required for reproduction when the intensity is low. In addition, if you set it to zero at low intensity,
Monitoring becomes impossible.
その結果、副ビーム(B m)の強度が高強度の時には
記録領域(A W)に対して周囲の非記録領域(A m
)から下向きの浮遊磁場が及ぼされて、下向きの垂直磁
化を有するピッ) (PI)が形成され、副ビーム(B
m)の強度が低強度の時には同じく上向きの浮遊磁場が
及ぼされて上向き(p。As a result, when the intensity of the sub beam (B m) is high, the surrounding non-recording area (A m
) is applied a downward stray magnetic field to form a PI (PI) with downward perpendicular magnetization, and a sub-beam (B
When the strength of m) is low, an upward floating magnetic field is also applied, and the magnetic field is directed upward (p).
)のピットが形成される。こうして、上向きのピット
(P、)と下向きのピット(Pl)により所望の2値情
報が記録されて行く (第5図参照)。) pits are formed. Thus, the upward pit
Desired binary information is recorded by (P, ) and downward pits (Pl) (see FIG. 5).
尚、この副ビーム(Bm)が媒体(S)で反射されても
1反射光は第2干渉フィルター(6)でカットされて、
第1光電変換す手段(7)に入射することがないので、
ドライブコントロールが誤る恐れはない。Note that even if this sub beam (Bm) is reflected by the medium (S), one reflected light is cut by the second interference filter (6),
Since it does not enter the first photoelectric conversion means (7),
There is no risk of drive control being incorrect.
ところで媒体(S)で反射された副ビーム(Bm)は、
第5図に示されるように、これから記録しようとする領
域のピット(先行ビット)及び今記録し終えた領域のピ
ット(後行ビット)からの反射光を含んでいる。従って
、それらを区別して受光できれば、先行、後行ピットの
モニターができる。先行チェターは1例えばそのセクタ
ーやトラックが記録してもよいものか否かを示す媒体上
の固有信号を検知するものであり、後行モニターは今記
録し終えたピットが所望のピットに形成されたか否かを
検知するものである。By the way, the sub beam (Bm) reflected by the medium (S) is
As shown in FIG. 5, it includes reflected light from pits (preceding bits) in the area to be recorded and pits (trailing bits) in the area that has just been recorded. Therefore, if these can be distinguished and received, it is possible to monitor the leading and trailing pits. The leading monitor detects a unique signal on the medium that indicates, for example, whether or not that sector or track is allowed to be recorded, and the trailing monitor detects whether the pit that has just been recorded is formed into the desired pit. This is to detect whether or not the
いずれにせよ、媒体(S)で反射された副ビーム(Bm
)を第1ビームスプリッタ−(3)を透過させて、PB
S (4)に入射させ、そこで情報光(第1光)と第2
光に分割し、この情報光を1/4波長板(4C)及び第
1干渉フィルター(4d)を経て第2光電変換手段(8
)に受光させる。In any case, the sub-beam (Bm) reflected by the medium (S)
) is transmitted through the first beam splitter (3) and the PB
S (4), where information light (first light) and second light
This information light passes through a quarter wavelength plate (4C) and a first interference filter (4d), and then passes through a second photoelectric conversion means (8).
) to receive the light.
第2光電変換手段(8)では、先行モニター、後行モニ
ターに応じて、先行ピット、後行ピットからだけの反射
光を受光させる必要がある。そのため、まずビーム(B
m)で照射された媒体面の実像を結像ないし投影光学系
(図示せず)で受光面近傍ないしそれと等価な面に結像
させ、先行、後行いずれか一方だけのモニターをする場
合には。The second photoelectric conversion means (8) needs to receive reflected light only from the leading pit and the trailing pit, depending on the leading monitor and trailing monitor. Therefore, first the beam (B
When the real image of the medium surface irradiated in step m) is focused on a surface near the light-receiving surface or an equivalent surface using an imaging or projection optical system (not shown), and only one of the leading and trailing surfaces is to be monitored. teeth.
その必要な部分の光だけを結像面に置いたマスクで透過
させて光電変換手段(8)に受光させるか又は必要な部
分の光だけを受光する形状1寸法の光電変換手段(8)
に受光させる。受光の際に分割手段で2つに分光して、
それぞれ別々の受光素子に受光させて電気信号に変換し
、その上で差動をとって情報信号としてもよい。Only the necessary part of the light is transmitted through a mask placed on the imaging plane and received by the photoelectric conversion means (8), or the photoelectric conversion means (8) with a one-dimensional shape that receives only the necessary part of the light is transmitted.
to receive the light. When receiving light, it is split into two parts by a splitting means,
The light may be received by separate light-receiving elements, converted into an electrical signal, and then differentially determined to generate an information signal.
ただ、こうして再生された先行、後行モニターとしての
情報信号X (t) 、 S (t)は、いずれも記録
中の情報信号r、(t)に応じて強度変調されたビーム
(B m)の照射によって得られたものなので、真の先
行モニターとしての情報信号はX (t)をf、(t)
で割った商X (t)/f、(t)となる。これが先行
モニターで得た固有信号であり、これを常法に従い処理
してその意味を知る。However, the information signals X (t) and S (t) as the leading and trailing monitors reproduced in this way are both beams (B m) whose intensity is modulated according to the information signals r and (t) being recorded. The information signal as a true advance monitor is obtained by irradiating X (t) with f, (t)
The quotient divided by X (t)/f, (t). This is the unique signal obtained from the preliminary monitor, and it is processed according to conventional methods to find out its meaning.
後行モニターについては同様に商s (t)/f、(t
)が真のモニター信号であり、これを遅延回路を通して
得られる後行モニターピットを記録したときの情報信号
f、(t−Δt)と比較し9両者が一致すれば正しく記
録されていることが知れる。Similarly, for the trailing monitor, the quotient s (t)/f, (t
) is the true monitor signal, and this is compared with the information signal f, (t - Δt) obtained when recording the trailing monitor pit obtained through the delay circuit.9 If the two match, it means that the recording is correct. I can know.
匡正司
再生時には主ビーム(B m )は記録時より強度を落
して発振させ5その媒体(S)からの反射光を記録時と
同様に制御光として利用する。During reproduction, the main beam (B m ) is oscillated with a lower intensity than during recording, and the reflected light from the medium (S) is used as control light in the same way as during recording.
副ビーム(Bm)は強度変調せずに一定強度で発振させ
、その媒体(S)からの反射光を記録モニタ一時と同様
に第2光電変換手段(8)で受光させて、電気信号に変
換する。この信号はそのまま記録された情報の再生信号
として利用できる。The sub beam (Bm) is oscillated at a constant intensity without intensity modulation, and the reflected light from the medium (S) is received by the second photoelectric conversion means (8) and converted into an electrical signal in the same way as the recording monitor. do. This signal can be used as it is as a reproduction signal of recorded information.
この場合、副ビーム(Bm)は媒体面上のスポット径が
大きいので複数例えば3個のピットを同時に照射するこ
とができる。従って個媒体からの反射光路中に結像ない
し投影光学系を設け、複数のピットの実像を光電変換手
段(8)の受光面の結像ないし投影させる。このとき手
段(8)を例えば第7図に示す如く、それぞれのピット
の実像に対応した複数の受光素子(8a〜8C)からな
るものを設置しておくと、同一のピットからの反射光を
各受光素子が次々と時間差を以って受光し。In this case, since the sub beam (Bm) has a large spot diameter on the medium surface, it is possible to simultaneously irradiate a plurality of pits, for example, three pits. Therefore, an imaging or projection optical system is provided in the reflected optical path from the individual medium to form or project real images of the plurality of pits on the light receiving surface of the photoelectric conversion means (8). At this time, if the means (8) is provided with a plurality of light-receiving elements (8a to 8C) corresponding to the real images of the respective pits, as shown in FIG. Each light receiving element receives light one after another with a time difference.
電気信号に変換することになる。そこで変換された信号
を遅延回路を用いて、ある時刻に足し合わせれば、1つ
のピットからの再生信号強度が複数n倍となり、S/N
比はE倍に向上する。この方法は本出願人の先H:特願
昭58−152839号の明細書に詳しく開示しである
。It will be converted into an electrical signal. If the converted signals are added at a certain time using a delay circuit, the strength of the reproduced signal from one pit will be multiplied by n times, and the S/N
The ratio is improved by E times. This method is disclosed in detail in the specification of Japanese Patent Application No. 152,839/1983 filed by the present applicant.
尚、再生時に主ビーム(B W)を点灯せずに。In addition, the main beam (BW) is not turned on during playback.
副ビーム(Bm)を再生及び制御光として利用して
台もよい。つまり、第2干渉フィルター(6)を設けず
、媒体(S)で反射されたビーム(Bm)をPBS (
4)で情報光(第1光)と第2光に分割し、第1光はそ
のまま情報光として第2光電変換手段(8)に受光させ
、第2光は制御光(十情報光)として第2BS (5)
で反射させて第1光電変換手段(7)に受光させ、場合
により(7)。It is also possible to use the sub beam (Bm) as reproduction and control light. In other words, without providing the second interference filter (6), the beam (Bm) reflected by the medium (S) is transmitted to the PBS (
4), the first light is divided into information light (first light) and second light, and the first light is directly received by the second photoelectric conversion means (8) as information light, and the second light is used as control light (10 information light). 2nd BS (5)
The reflected light is received by the first photoelectric conversion means (7), and optionally (7).
(8)の差動をとって情報再生信号を得てもよい。The information reproduction signal may be obtained by taking the differential of (8).
(実施例2)
本実施例は実施例1の変形例であり、その構成を第6図
に示す、実施例1と配置が僅かに変わっただけで本質的
な相違はない。(Embodiment 2) This embodiment is a modification of Embodiment 1, and its configuration is shown in FIG. 6, and there is no essential difference from Embodiment 1 except for a slight change in arrangement.
(発明の効果)
以上の通り1本発明によれば1つのビットで同時消録型
の記録と再生ができ、しかも記録時にモニターすること
ができる。(Effects of the Invention) As described above, according to the present invention, simultaneous erasure type recording and reproduction can be performed using one bit, and moreover, it is possible to monitor during recording.
第1図は1本願発明の実施例1にかかるピックアップの
全体構成を示す概念図である。
第2A図は、記録媒体の概略垂直断面図である。
第2B図は、記録媒体の記!!領域(Aw)に対して非
記録領域(Am)から浮遊磁場が印加される様子を示す
概念図である。
第3図は、先願:特願昭59−91360号の発明にか
かる同時消録型光磁気記録装置の全体構成を示す概念図
である。
第4図は、記録媒体にビーム(Bw)、 (Bm)を
照射した様子を示す説明図である。
第5図は、実施例1に従い、記録している様子を説明す
る説明図である。
第6図は、実施例2にかかるピックアップの全体構成を
示す概念図である。
第7図は、ビーム(B m)の受光面でのスポット形状
と受光素子3個の受光面との関係を示す説明図である。
想像線は投影されたピットの実像を示す。
〔主要部分の符号の説明〕
1.37−−−−ビーム(Bw)の光源1.38−−−
−ビーム(B m )の光源3−−−−−−−−−一第
1ビームスプリッタ−4−−−−−−−−−一偏光ビー
ムスブリッター5−−−−−−−−−一第2ビームスプ
リッター6−−−−−−−−−−第2干渉フィルター7
−−−−−−−−−−第1光電変換手段8−−−−−−
−−−一第2光電変換手段8a、8b、8cm−受光素
子FIG. 1 is a conceptual diagram showing the overall configuration of a pickup according to Embodiment 1 of the present invention. FIG. 2A is a schematic vertical cross-sectional view of the recording medium. Figure 2B shows the recording medium! ! FIG. 2 is a conceptual diagram showing how a floating magnetic field is applied from a non-recording area (Am) to an area (Aw). FIG. 3 is a conceptual diagram showing the overall structure of a simultaneous erasing type magneto-optical recording device according to the invention of the earlier application: Japanese Patent Application No. 59-91360. FIG. 4 is an explanatory diagram showing how the recording medium is irradiated with beams (Bw) and (Bm). FIG. 5 is an explanatory diagram illustrating how recording is performed according to the first embodiment. FIG. 6 is a conceptual diagram showing the overall configuration of the pickup according to the second embodiment. FIG. 7 is an explanatory diagram showing the relationship between the spot shape of the beam (B m) on the light-receiving surface and the light-receiving surfaces of three light-receiving elements. The imaginary line shows the actual image of the projected pit. [Explanation of symbols of main parts] 1.37---- Beam (Bw) light source 1.38---
- Beam (B m ) light source 3 - First beam splitter - 4 - Polarizing beam splitter 5 - Second beam splitter 6 ---Second interference filter 7
----------First photoelectric conversion means 8--------
---1 second photoelectric conversion means 8a, 8b, 8cm-light receiving element
Claims (1)
つた垂直磁化を示す非記録領域(Am)とを有する光磁
気記録媒体に対して、 (1)前記記録領域(Aw)を照射する波長λ_wの偏
光ビーム(Bw)光源。 (2)前記非記録領域(Am)及び記録領域(Aw)の
双方を同時に照射し、波長λ_wとは異なる波長λ_m
の偏光ビーム(Bm)光源。 (3)第1ビームスプリッター、 (4)第1面に1/4波長板及びその外側に反射層が設
けられ、第2面に1/4波長板及びその外側にビーム(
Bm)を透過しビーム(Bw)を反射する。 第1干渉フィルターを設けた偏光ビームスプリッター。 (5)第2ビームスプリッター、 (6)ビーム(Bw)を透過し、ビーム(Bm)を透過
しない第2干渉フィルター、 (7)制御光を受光する第1光電変換手段、及び(8)
情報光を受光する第2光電変換手段 からなり、記録時再生時共に、 ・ビーム(Bw)は第2ビームスプリッターを透過させ
て偏光ビームスプリッターの第3面に入射させ、第1面
に設けられた反射層で反射させた後、第2面に設けられ
た第1干渉フィルターで更に反射させ、その反射光を第
4面より出射させて、前記第1ビームスプリッターを経
て記録媒体に垂直入射させ、 媒体で反射された反射光(Bw)は第1ビームスプリッ
ターを経て偏光ビームスプリッターに入射させて、そこ
で反射されたビーム(Bw)を第2ビームスプリッター
で反射させて第2干渉フィルターを通して制御光として
第1光電変換手段に受光させ、 ・ビーム(Bm)は前記第1ビームスプリッターを経て
記録媒体に垂直入射させ、該媒体で反射されたビーム(
Bm)を前記ビームスプリッターを経て前記偏光ビーム
スプリッターの第4面に入射させ、そして情報光と第2
光に分割し、情報光を1/4波長板及び第1干渉フィル
ターを通して第2光電変換手段に受光させることを特徴
とする同時消録型光磁気記録及び再生兼用装置のピック
アップ。[Claims] For a magneto-optical recording medium having a recording area (Aw) made of a perpendicular magnetization film and a non-recording area (Am) showing perpendicular magnetization aligned in one direction, (1) the recording area A polarized beam (Bw) light source of wavelength λ_w that irradiates (Aw). (2) Both the non-recording area (Am) and the recording area (Aw) are irradiated with a wavelength λ_m different from the wavelength λ_w.
polarized beam (Bm) light source. (3) a first beam splitter; (4) a quarter-wave plate on the first surface and a reflective layer on the outside thereof, a quarter-wave plate on the second surface and a beam (
Bm) and reflects the beam (Bw). A polarizing beam splitter with a first interference filter. (5) a second beam splitter; (6) a second interference filter that transmits the beam (Bw) but does not transmit the beam (Bm); (7) a first photoelectric conversion means that receives the control light; and (8)
The beam (Bw) is transmitted through the second beam splitter and is incident on the third surface of the polarizing beam splitter, and is provided on the first surface. After being reflected by the reflective layer, the reflected light is further reflected by a first interference filter provided on the second surface, and the reflected light is emitted from the fourth surface and is perpendicularly incident on the recording medium through the first beam splitter. The reflected light (Bw) reflected by the medium passes through a first beam splitter and enters a polarizing beam splitter, and the beam reflected there (Bw) is reflected by a second beam splitter and passes through a second interference filter into a control light. The beam (Bm) is made perpendicularly incident on the recording medium via the first beam splitter, and the beam (Bm) reflected by the medium is received by the first photoelectric conversion means.
Bm) is incident on the fourth surface of the polarizing beam splitter through the beam splitter, and the information light and the second
A pickup for a simultaneous erasing type magneto-optical recording and reproducing device characterized in that the information light is split into light and received by a second photoelectric conversion means through a 1/4 wavelength plate and a first interference filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4783785A JPS61206950A (en) | 1985-03-11 | 1985-03-11 | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4783785A JPS61206950A (en) | 1985-03-11 | 1985-03-11 | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61206950A true JPS61206950A (en) | 1986-09-13 |
Family
ID=12786476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4783785A Pending JPS61206950A (en) | 1985-03-11 | 1985-03-11 | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61206950A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100234313B1 (en) * | 1997-01-30 | 1999-12-15 | 윤종용 | Optical pickup apparatus |
EP1020854A3 (en) * | 1993-04-02 | 2000-12-20 | Canon Kabushiki Kaisha | Magneto-optical reproducing apparatus |
-
1985
- 1985-03-11 JP JP4783785A patent/JPS61206950A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1020854A3 (en) * | 1993-04-02 | 2000-12-20 | Canon Kabushiki Kaisha | Magneto-optical reproducing apparatus |
KR100234313B1 (en) * | 1997-01-30 | 1999-12-15 | 윤종용 | Optical pickup apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4472748A (en) | Method of processing information signal with respect to opto-magnetic record medium | |
JP3114204B2 (en) | Recording / reproducing method for optical recording medium | |
JPH04258831A (en) | Reproduction method for magneto-optical disk | |
JPH04255947A (en) | Method and device for magneto-optical recording | |
JP2690634B2 (en) | Light head | |
US5007039A (en) | Optical information recording/reproducing apparatus | |
JPS5977648A (en) | Photomagnetic storage element | |
EP0220023B1 (en) | Optical magnetic memory device | |
JPS61206950A (en) | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type | |
JPS61206952A (en) | Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device | |
JPS61206947A (en) | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type | |
JPS61206951A (en) | Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device | |
JPH0445134Y2 (en) | ||
JPS61206949A (en) | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type | |
JPH08203142A (en) | Optical recording medium, optical information recording and reproducing method, and optical information recording and reproducing device | |
JPS60147950A (en) | Information file which permits simultaneous erasing and recording | |
JP2604702B2 (en) | Magneto-optical recording / reproduction / erasing method and apparatus | |
JPS61206948A (en) | Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type | |
JP2995026B2 (en) | Information recording / reproducing device | |
JP2946489B2 (en) | Information recording / reproducing device | |
JPS6035303A (en) | Rewritable optical information recording and reproducing device | |
JP2511232B2 (en) | Magneto-optical storage device | |
JPS6022739A (en) | Multibeam irradiation type reproducer | |
JPH0467241B2 (en) | ||
JPH05266530A (en) | Optical head device |