[go: up one dir, main page]

JPS61205619A - Transparent electrically-conductive film of heat-resistant zinc oxide - Google Patents

Transparent electrically-conductive film of heat-resistant zinc oxide

Info

Publication number
JPS61205619A
JPS61205619A JP60046782A JP4678285A JPS61205619A JP S61205619 A JPS61205619 A JP S61205619A JP 60046782 A JP60046782 A JP 60046782A JP 4678285 A JP4678285 A JP 4678285A JP S61205619 A JPS61205619 A JP S61205619A
Authority
JP
Japan
Prior art keywords
zinc oxide
conductive film
transparent conductive
oxide transparent
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60046782A
Other languages
Japanese (ja)
Other versions
JPH0372011B2 (en
Inventor
Uchitsugu Minami
内嗣 南
Shinzo Takada
新三 高田
Hidehito Nanto
秀仁 南戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA TOKUSHU GOKIN KK
Original Assignee
OSAKA TOKUSHU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA TOKUSHU GOKIN KK filed Critical OSAKA TOKUSHU GOKIN KK
Priority to JP60046782A priority Critical patent/JPS61205619A/en
Publication of JPS61205619A publication Critical patent/JPS61205619A/en
Publication of JPH0372011B2 publication Critical patent/JPH0372011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce change in resistivity of electrically-conductive film when it is used at high temperature in various atmospheres, by adding a metallic element of group III to transparent electrically-conductive film of zinc oxide. CONSTITUTION:One or more metallic elements of group III are added to a transparent electrically-conductive film comprising zinc oxide as a main compo nent. The content of the metal of group III is 1-20atom% based on zinc atom. B, Al, Se, Ga, Y, Tl, or In alone or two or more of them are added as the metal of group III to zinc oxide. Preferably the metal of group III is added to the raw material in the form of a metallic element, metallic oxide, organometallic compound, halide, etc., during film forming process. The transpar ent electrically-conductive film of zinc oxide has improved heat resistance, and the same electrical and optical characteristics as those of ITO film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性酸化亜鉛透明導電膜、具体的には、広い
温度範囲にわたって抵抗率の変化の小さい耐熱性酸化亜
鉛透明導電膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat-resistant zinc oxide transparent conductive film, and specifically to a heat-resistant zinc oxide transparent conductive film whose resistivity changes little over a wide temperature range.

(従来の技術) 従来、透明導電膜としては、ITO膜として知られてい
る酸化インジウム−酸化スズ系透明導電膜が広く実用に
供されている。このITO膜は、光学的特性、電気的特
性および耐熱性に優れているが、原材料のインジウムが
希少金属であるため資源的に問題があり、また高価であ
るという問題があった。最近、安価な酸化亜鉛が透明導
電膜用材料として注目されている。
(Prior Art) Conventionally, as a transparent conductive film, an indium oxide-tin oxide based transparent conductive film known as an ITO film has been widely put into practical use. This ITO film has excellent optical properties, electrical properties, and heat resistance, but since the raw material indium is a rare metal, it has problems in terms of resources and is expensive. Recently, inexpensive zinc oxide has attracted attention as a material for transparent conductive films.

(発明が解決しようとする問題点) この酸化亜鉛透明導電膜は、ITO膜に比ベコストが1
/10〜1150と安価であり、常温で使用する限りに
おいてはIT○膜と同程度の電気特性および光学特性を
実現できるが、高温域、例えば、200〜500℃の温
度で使用すると、使用後の抵抗率が102〜IQIO倍
以上に増加するという問題がある。
(Problem to be solved by the invention) This zinc oxide transparent conductive film has a cost of 1% compared to an ITO film.
/10~1150, and can achieve electrical and optical properties comparable to those of IT○ films as long as it is used at room temperature, but when used at high temperatures, for example, 200~500℃, There is a problem that the resistivity increases by 102 to IQIO times or more.

即ち、従来の酸化亜鉛透明導電膜は常温で10−4Ωc
IIIオーダの抵抗率を示し、十分実用可能であるが、
各種雰囲気中で高温にさらされると、第1図および第2
図に比較例として示すように、抵抗が真空や不活性〃ス
雰囲気中においてさえも、102〜106倍に増大する
。従って、酸化亜鉛透明導電膜を、例えば、エレクトロ
ルミネッセンス素子用透明導電膜として適用する場合、
その製造過程で透明導電膜は約400℃の真空あるいは
不活性〃ス雰囲気中に約1時間放置されることになるた
め、実用に供することができない。
That is, the conventional zinc oxide transparent conductive film has a resistance of 10-4Ωc at room temperature.
It exhibits a resistivity of the order of III and is sufficiently practical, but
When exposed to high temperatures in various atmospheres, the
As shown in the figure as a comparative example, the resistance increases by a factor of 102 to 106 even in a vacuum or inert gas atmosphere. Therefore, when applying the zinc oxide transparent conductive film as a transparent conductive film for electroluminescent devices, for example,
During the manufacturing process, the transparent conductive film is left in a vacuum or inert gas atmosphere at about 400° C. for about one hour, so it cannot be put to practical use.

このような酸化亜鉛透明導電膜の抵抗率が増大する原因
は、膜中に捕らえられていた酸素が温度上昇に伴い膜中
で化学吸着することによると考えられる。即ち、酸化亜
鉛透明導電膜の低抵抗率が真性格子欠陥である酸素空孔
もしくは格子間亜鉛の作る浅いドナー準位の存在により
実現されているため、酸素の吸着により伝導電子密度が
減少し、結果として抵抗が増大する。従って、酸化亜鉛
透明導電膜の低抵抗率化が材料固有の真性格子欠陥に依
存する限り、抵抗率増大は材料物性上の本質的な欠点と
も言える。
The reason why the resistivity of such a zinc oxide transparent conductive film increases is considered to be that oxygen trapped in the film is chemically adsorbed in the film as the temperature rises. In other words, the low resistivity of the zinc oxide transparent conductive film is achieved by the presence of oxygen vacancies, which are intrinsic lattice defects, or shallow donor levels created by interstitial zinc; therefore, the conduction electron density decreases due to oxygen adsorption. Resistance increases as a result. Therefore, as long as the reduction in resistivity of the zinc oxide transparent conductive film depends on the intrinsic lattice defects inherent in the material, the increase in resistivity can be said to be an essential drawback in terms of the physical properties of the material.

従って、本発明は安価に、かつ容易に製造でき、室温以
上の高温度で、各種雰囲気中での使用に対し抵抗率変化
の極めて小さい酸化亜鉛透明導電膜を得ることを目的と
する。
Therefore, it is an object of the present invention to obtain a zinc oxide transparent conductive film that can be manufactured inexpensively and easily and exhibits extremely small change in resistivity when used at high temperatures above room temperature and in various atmospheres.

(問題点を解決するための手段) 本発明は酸化亜鉛を主成分とする酸化亜鉛透明導電膜中
に、亜鉛原子に対し少なくとも一種の■族金属元素を含
有させることによって、前記問題を解決したものである
(Means for Solving the Problems) The present invention solves the above problems by incorporating at least one group (III) metal element into zinc atoms in a zinc oxide transparent conductive film containing zinc oxide as a main component. It is something.

酸化亜鉛透明導電膜中に含有させる■族金属の含有量は
、亜鉛原子に対し1〜20原子%、好ましくは、2〜8
原子%とするのが適当である。これは、含有量が1原子
%未満ではその添加効果が得られず、20原子%を越え
ると、結晶性が悪化し抵抗率が増加するからである。な
お、■族金属の含有量は、■族金属含有透明導電膜の全
構成元素に対し、0.5〜10原子%となる。
The content of group (III) metal contained in the zinc oxide transparent conductive film is 1 to 20 atomic %, preferably 2 to 8 atomic %, based on zinc atoms.
It is appropriate to express it in atomic percent. This is because if the content is less than 1 atomic %, the effect of addition cannot be obtained, and if it exceeds 20 atomic %, crystallinity deteriorates and resistivity increases. Note that the content of the group (1) metal is 0.5 to 10 at % based on all the constituent elements of the group (1) metal-containing transparent conductive film.

■族金属としては、ホウ素、アルミニウム、スカンジウ
ム、ガリウム、イツトリウム、タリウム及びインジウム
などが挙げられ、これらは単独であるいは2種以上を含
有させることができるが、コスト上からはアルミニウム
を使用するのが好適である。
Examples of group metals include boron, aluminum, scandium, gallium, yttrium, thallium, and indium.These metals can be used alone or in combination of two or more, but from a cost standpoint, it is preferable to use aluminum. suitable.

本発明に係る酸化亜鉛透明導電膜は、スパッタ法、真空
蒸着法、化学気相成長法、陽極酸化法などの公知の任意
の膜形成方法により形成することができる。また、酸化
亜鉛透明導電膜中に■族金属を含有させる方法としては
、前記膜作成過程で原材料に金属元素、金属酸化物、有
機金属およびハロゲン化物等の形態で導入することが好
適であるが、酸化亜鉛透明導電膜形成後に■族金属元素
を熱拡散やイオン注入することも可能である。
The zinc oxide transparent conductive film according to the present invention can be formed by any known film forming method such as sputtering, vacuum evaporation, chemical vapor deposition, and anodic oxidation. In addition, as a method for incorporating group (III) metals into the zinc oxide transparent conductive film, it is preferable to introduce them into the raw materials in the form of metal elements, metal oxides, organic metals, halides, etc. during the film preparation process. It is also possible to thermally diffuse or ion-implant a group (1) metal element after forming a zinc oxide transparent conductive film.

(作用) 酸化亜鉛は四肢金属を添加しなくても、i「述の真性格
子欠陥によるドナー準位により縮退したN形半導体が比
較的容易に得られ、はぼ1020cm=オーダの伝導電
子密度を実現で外る。これに■族金属、例えば、アルミ
ニウム、を導入すると、アルミニウム原子がドナーとし
て有効に働き102102l’オーグの伝導電子密度を
実現で終る。アルミニウム原子のような外因性ドナーは
、酸化亜鉛の真性格子欠陥による内因性ドナーと比較し
て、高温の酸化性雰囲気中でも膜中で安定に存在する。
(Function) Zinc oxide can relatively easily obtain a degenerate N-type semiconductor due to the donor level due to the intrinsic lattice defects described above, and has a conduction electron density on the order of approximately 1020 cm. When a group III metal such as aluminum is introduced into this, the aluminum atom acts effectively as a donor and achieves a conduction electron density of 102102l'og.Extrinsic donors such as aluminum atoms are oxidized Compared to endogenous donors due to the intrinsic lattice defects of zinc, it exists stably in the film even in high-temperature oxidizing atmospheres.

このように、面族金属を含有する酸化亜鉛透明導電膜は
無添加酸化亜鉛透明導電膜に比べて、伝導電子密度が約
1桁大きいこと、及びドナーが不純物による外因性であ
ること等の特性改善によって耐熱性を実現するものであ
る。
In this way, the zinc oxide transparent conductive film containing surface group metals has characteristics such as that the conduction electron density is about one order of magnitude higher than that of the zinc oxide transparent conductive film without additives, and that the donor is extrinsic due to impurities. Heat resistance is achieved through improvement.

次に、本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

〈実施例1〉 酸化アルミニウム(1!20.)と酸化亜鉛(ZnO)
を原料として用い、亜鉛原子に対し4原子%のアルミニ
ウムを含有する酸化亜鉛からなる焼結体を製造し、これ
をターゲットとして用いて高周波マグネトロンスパッタ
装置により、室温に保持したガラス基板上にアルミニウ
ム含有酸化亜鉛透明導電膜を形成した。
<Example 1> Aluminum oxide (1!20.) and zinc oxide (ZnO)
A sintered body made of zinc oxide containing 4 at % of aluminum based on zinc atoms is produced using as a raw material, and using this as a target, a high frequency magnetron sputtering device is used to sputter the aluminum-containing body onto a glass substrate kept at room temperature. A zinc oxide transparent conductive film was formed.

この酸化亜鉛透明導電膜は、常温での抵抗率が2゜2X
10−’ΩcI11で、可視光透過率が85%以上であ
った。また、酸化亜鉛透明導電膜を真空中(真空度 1
0”Pa)に配置し、温度を室温から400℃まで上昇
させ、400°Cで1時間保持したのち徐冷し、その過
程での抵抗の変化を測定し、酸化亜鉛透明導電膜の抵抗
温度特性を求めた。その結果を第1図に示す。
This zinc oxide transparent conductive film has a resistivity of 2°2X at room temperature.
The visible light transmittance was 85% or more at 10-'ΩcI11. In addition, the zinc oxide transparent conductive film was deposited in vacuum (vacuum degree 1).
0"Pa), the temperature was raised from room temperature to 400°C, held at 400°C for 1 hour, and then slowly cooled. The change in resistance during this process was measured, and the resistance temperature of the zinc oxide transparent conductive film was determined. The characteristics were determined and the results are shown in Figure 1.

上記の高温域での熱処理によって、酸化亜鉛透明導電膜
の可視光透過率の顕著な変化を認めなかった。また、本
発明に係るアルミニウム含有酸化亜鉛透明導電膜を2重
絶縁構造ZnS:Mnエレクトロルミネッセンス素子の
透明電極として適用した場合、従来のITO透明電極を
利用した素子に比べて遜色のない素子が実現できること
を確認できた。
No significant change in visible light transmittance of the zinc oxide transparent conductive film was observed by the heat treatment in the above-mentioned high temperature range. Furthermore, when the aluminum-containing zinc oxide transparent conductive film according to the present invention is applied as a transparent electrode of a double insulation structure ZnS:Mn electroluminescent device, a device comparable to that of a device using a conventional ITO transparent electrode can be realized. I was able to confirm that it is possible.

さらに、膜厚を50〜11000nの範囲で変化させた
酸化亜鉛透明導電膜を製造し、それらの特性を同様に測
定したところ、抵抗の温度依存性に関する限り膜厚によ
る大きな相異は認められなかった。
Furthermore, when zinc oxide transparent conductive films with film thicknesses varied in the range of 50 to 11,000 nm were manufactured and their properties were similarly measured, no major differences were observed depending on the film thickness as far as the temperature dependence of resistance was concerned. Ta.

また、これらの膜は、500℃まで昇温しで1時間保持
した後の抵抗値も、はぼ第1図と同様の値と傾向を示し
、アルミニウム含有酸化亜鉛透明導電膜は真空雰囲気中
で使用する場合、500℃までの耐熱性が得られること
が明らかとなった。
Furthermore, the resistance values of these films after being heated to 500°C and held for 1 hour showed similar values and trends to those shown in Figure 1. It has become clear that when used, heat resistance up to 500°C can be obtained.

なお、ここに使用した透明導電膜の処理前の抵抗率は全
て10−4Ωcmオーグのものである。
The resistivities of the transparent conductive films used here before treatment are all 10-4 Ωcm.

〈実施例2〉 実施例1と同様にして、亜鉛原子に対し10原子%のア
ルミニウムを含有する酸化亜鉛からなる焼結体を得、こ
れをターゲットとして用いて、高周波マグネトロンスパ
ッタ装置により、室温に保持したガラス基板上にアルミ
ニウム含有酸化亜鉛透明導電膜を形成した。
<Example 2> In the same manner as in Example 1, a sintered body made of zinc oxide containing 10 at% of aluminum based on zinc atoms was obtained, and using this as a target, it was heated to room temperature using a high frequency magnetron sputtering device. An aluminum-containing zinc oxide transparent conductive film was formed on the held glass substrate.

この酸化亜鉛透明導電膜は、常温での抵抗率が9.5X
10−’ΩCl11で、その可視光透過率は85%であ
った。また、実施例1と同様にして、酸化亜鉛透明導電
膜の抵抗温度特性を求めたところ、第1図に示す結果が
得られた。
This zinc oxide transparent conductive film has a resistivity of 9.5X at room temperature.
At 10-'ΩCl11, its visible light transmittance was 85%. Further, when the resistance temperature characteristics of the zinc oxide transparent conductive film were determined in the same manner as in Example 1, the results shown in FIG. 1 were obtained.

く比較例1〉 高純度酸化亜鉛(ZnO)からなる焼結体をターゲット
として用い、高周波マグネトロンスパッタ装置により、
室温に保持したガラス基板上に酸化亜鉛透明導電膜を形
成した。
Comparative Example 1 Using a sintered body made of high-purity zinc oxide (ZnO) as a target, a high-frequency magnetron sputtering device was used to
A zinc oxide transparent conductive film was formed on a glass substrate kept at room temperature.

この酸化亜鉛透明導電膜は、常温での抵抗率が5.6X
10−’Ωcn+で、可視光透過率が85%であった。
This zinc oxide transparent conductive film has a resistivity of 5.6X at room temperature.
At 10-'Ωcn+, the visible light transmittance was 85%.

また、実施例1と同様にして、酸化亜鉛透明導電膜の抵
抗温度特性を求めたところ、第1図に示す結果が得られ
た。
Further, when the resistance temperature characteristics of the zinc oxide transparent conductive film were determined in the same manner as in Example 1, the results shown in FIG. 1 were obtained.

第1図の結果から、亜鉛原子に対してアルミニウムを1
〜10原子%導入された本発明に係る酸化亜鉛透明導電
膜は、400°Cで1時間放置した後でも室温での抵抗
の変化がほとんどなく、抵抗の温度依存性が小さく、耐
熱性が著しく改善されていることがわかる。また、約1
0原子%以上のアルミニウム原子を導入した膜では40
0°Cで放置した後の室温での抵抗が処理前の値より低
くなることがわかる。
From the results in Figure 1, it is clear that 1 aluminum per zinc atom
The zinc oxide transparent conductive film according to the present invention containing ~10 at. You can see that it has been improved. Also, about 1
40 for films with 0 at% or more of aluminum atoms introduced.
It can be seen that the resistance at room temperature after being left at 0°C is lower than the value before treatment.

〈実施例3〉 亜鉛原子に対し4原子%のアルミニウムを含有する酸化
亜鉛からなるターゲットを用い、実施例1と同様にして
250nmの厚さのアルミニウム含有酸化亜鉛透明導電
膜を形成した。
<Example 3> An aluminum-containing zinc oxide transparent conductive film having a thickness of 250 nm was formed in the same manner as in Example 1 using a target made of zinc oxide containing 4 at % of aluminum relative to zinc atoms.

このアルミニウム含有酸化亜鉛透明導電膜は、抵抗率が
5xio−’Ωamで、実施例1と同様にして大気圧の
アルゴンガス雰囲気中でのアルミニウム含有酸化亜鉛透
明導電膜の抵抗温度特性を測定したところ、第2図に示
す結果が得られた。
This aluminum-containing zinc oxide transparent conductive film had a resistivity of 5 xio-'Ωam, and the resistance temperature characteristics of the aluminum-containing zinc oxide transparent conductive film were measured in an argon gas atmosphere at atmospheric pressure in the same manner as in Example 1. , the results shown in FIG. 2 were obtained.

〈比較例2〉 比較例1で形成した高純度酸化亜鉛(ZnO)からなる
酸化亜鉛透明導電膜を実施例3と同条件下で熱処理し、
その抵抗温度特性を測定した。その結果を第2図に示す
<Comparative Example 2> A zinc oxide transparent conductive film made of high-purity zinc oxide (ZnO) formed in Comparative Example 1 was heat-treated under the same conditions as in Example 3,
Its resistance temperature characteristics were measured. The results are shown in FIG.

第2図の結果から、実施例3のアルミニウム含有酸化亜
鉛透明導電膜は、不活性がス中において高温度にされさ
れても、優れた耐熱性を示すことがわかる。
From the results shown in FIG. 2, it can be seen that the aluminum-containing zinc oxide transparent conductive film of Example 3 exhibits excellent heat resistance even when the temperature is raised to high in an inert bath.

また、実施例3のアルミニウム含有酸化亜鉛透明導電膜
は500℃の不活性ガス中で1時間の熱処理に対しても
、電気特性および光学特性の顕著な変化は認められず、
耐熱性の得られることが確認された。
Further, the aluminum-containing zinc oxide transparent conductive film of Example 3 showed no significant change in electrical properties and optical properties even after being heat-treated for 1 hour in an inert gas at 500°C.
It was confirmed that heat resistance was obtained.

〈実施例4〉 酸化亜鉛と酸化インジウム(In20−)とを原料とし
て、亜鉛原子に対し2原子%のインジウムを含有する酸
化亜鉛からなる焼結体を形成し、これをターゲットとし
て用いて高周波マグネトロンスパッタ装置により、イン
ジウム含有酸化亜鉛透明導電膜を室温に保持したガラス
基板上に形成した。
<Example 4> Using zinc oxide and indium oxide (In20-) as raw materials, a sintered body of zinc oxide containing 2 at% of indium to zinc atoms was formed, and this was used as a target to generate a high-frequency magnetron. An indium-containing zinc oxide transparent conductive film was formed on a glass substrate kept at room temperature using a sputtering device.

このインジウム含有酸化亜鉛透明導電膜は、抵抗率が6
゜3X10−4Ωca+で、実施例1及び実施例3と同
様にして真空中および不活性ガス中において熱処理した
ところ、実施例1及び実施例3のアルミニウム含有酸化
亜鉛導電透明膜とほぼ同様の抵抗温度特性が得られ、5
00℃までの耐熱性の得られることがわかった。
This indium-containing zinc oxide transparent conductive film has a resistivity of 6
When heat-treated in vacuum and inert gas in the same manner as in Example 1 and Example 3 at ゜3×10-4Ωca+, the resistance temperature was almost the same as that of the aluminum-containing zinc oxide conductive transparent film of Example 1 and Example 3. properties are obtained, 5
It was found that heat resistance up to 00°C can be obtained.

〈実施例5〉 酸化亜鉛と酸化ガリウム(Ga2a、)とを原料として
用い、亜鉛原子に対して3原子%のガリウムを含有する
酸化亜鉛からなる焼結体を製造し、これをターデッドと
して高周波マグネトロンスパッタ装置により室温に保持
したガラス基板上にガリウム含有酸化亜鉛透明導電膜を
形成した。
<Example 5> Using zinc oxide and gallium oxide (Ga2a, ) as raw materials, a sintered body of zinc oxide containing 3 at% gallium relative to zinc atoms was produced, and this was used as a tarded body to generate a high-frequency magnetron. A gallium-containing zinc oxide transparent conductive film was formed on a glass substrate kept at room temperature using a sputtering device.

ガリウム含有酸化亜鉛透明導電膜は、抵抗率が4.2X
10−4Ωcmで、真空中および不活性ガス中において
、第1図および第2図に示す実施例のアルミニウム含有
酸化亜鉛透明導電膜とほぼ同様の抵抗温度特性を示すと
共に、500’(Jでの耐熱性を示すことが判った。
Gallium-containing zinc oxide transparent conductive film has a resistivity of 4.2X
10-4 Ωcm in vacuum and in an inert gas, it exhibits almost the same resistance-temperature characteristics as the aluminum-containing zinc oxide transparent conductive film of the example shown in FIGS. It was found that it exhibits heat resistance.

(発明の効果) 以上の説明から明らかなように、本発明に係る酸化亜鉛
透明導電膜は耐熱性に優れ、ITO膜と同等の電気特性
及び光学特性を示し、しかも主原料である亜鉛がITO
膜の主原料であるインジウムに比べ極めて安価で、資源
的にも豊富で、公害を招くこともほとんどなく、製造コ
ストを著しく低減できる。また、透明導電膜中に含有さ
せる■族金属のうちインジウムおよびガリウムは高価で
はあるが、主原料が亜鉛であり、■族金属元素はドーパ
ントであるため、必要とする量はITO膜の1/30以
下であり、安価となる。また、■族金属を含有する酸化
亜鉛透明導電膜の表面は極めて平滑(゛、かつ膜のプラ
ス等の基体に対する付着力が強く、熱的また化学的にも
機械的にも安定であるので、透明電極、熱線遮蔽膜、透
明ヒータ等の多層コーティングを必要とする用途に適用
できるなど優れた効果が得られる。
(Effects of the Invention) As is clear from the above explanation, the zinc oxide transparent conductive film according to the present invention has excellent heat resistance, exhibits electrical and optical properties equivalent to those of an ITO film, and moreover, zinc, which is the main raw material, is ITO.
Compared to indium, the main raw material for membranes, it is extremely cheap and abundant as a resource, causes almost no pollution, and can significantly reduce manufacturing costs. In addition, although indium and gallium are expensive among the group III metals to be contained in the transparent conductive film, since the main raw material is zinc and the group III metal elements are dopants, the required amount is 1/1 of that of the ITO film. 30 or less, making it inexpensive. In addition, the surface of the zinc oxide transparent conductive film containing Group Ⅰ metals is extremely smooth, and the film has strong adhesion to substrates such as positive electrodes, and is thermally, chemically, and mechanically stable. It can be applied to applications requiring multilayer coatings such as transparent electrodes, heat ray shielding films, and transparent heaters, providing excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る酸化亜鉛透明導電膜および従来の
酸化亜鉛透明導電膜の真空中での抵抗温度特性を示すグ
ラフ、第2図は本発明に係る酸化亜鉛透明導電膜およゾ
従来の酸化亜鉛透明導電膜のアルゴンガス中での抵抗温
度特性を示すグラフである。 第1図 OToo       200      300  
    400温 屋 〔°C〕 第2図 3K   捜   〔°C〕
FIG. 1 is a graph showing the resistance temperature characteristics in vacuum of the zinc oxide transparent conductive film according to the present invention and the conventional zinc oxide transparent conductive film, and FIG. 2 is a graph showing the resistance temperature characteristics of the zinc oxide transparent conductive film according to the present invention and the conventional 3 is a graph showing the resistance temperature characteristics of a zinc oxide transparent conductive film in argon gas. Figure 1 OToo 200 300
400 temperature room [°C] Figure 2 3K search [°C]

Claims (11)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とする酸化亜鉛透明導電膜中に
、亜鉛原子に対し少なくとも一種のIII族金属元素を1
〜20原子%含有させてなる耐熱性酸化亜鉛透明導電膜
(1) In a zinc oxide transparent conductive film containing zinc oxide as a main component, at least one group III metal element is added to each zinc atom.
A heat-resistant transparent conductive film containing up to 20 atom % of zinc oxide.
(2)少なくとも一種のIII族金属がホウ素である特許
請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。
(2) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein at least one group III metal is boron.
(3)少なくとも一種のIII族金属がアルミニウムであ
る特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電
膜。
(3) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein at least one Group III metal is aluminum.
(4)少なくとも一種のIII族金属がスカンジウムであ
る特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電
膜。
(4) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is scandium.
(5)少なくとも一種のIII族金属がガリウムである特
許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。
(5) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is gallium.
(6)少なくとも一種のIII族金属がイットリウムであ
る特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電
膜。
(6) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is yttrium.
(7)少なくとも一種のIII族金属がインジウムである
特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜
(7) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is indium.
(8)少なくとも一種のIII族金属がタリウムである特
許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。
(8) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein at least one group III metal is thallium.
(9)少なくとも一種のIII族金属元素の含有量が2〜
6原子%である特許請求の範囲第1項〜第7項のいずれ
か一項記載の耐熱性酸化亜鉛透明導電膜。
(9) The content of at least one group III metal element is 2 or more
The heat-resistant zinc oxide transparent conductive film according to any one of claims 1 to 7, wherein the zinc oxide content is 6 at %.
(10)酸化亜鉛を主成分とする酸化亜鉛透明導電膜中
に、亜鉛原子に対しホウ素を1〜10原子%および亜鉛
原子に対しアルミニウムを1〜8原子%含有させてなる
特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜
(10) A zinc oxide transparent conductive film containing zinc oxide as a main component contains 1 to 10 at % of boron to the zinc atoms and 1 to 8 at % of aluminum to the zinc atoms. The heat-resistant zinc oxide transparent conductive film according to item 1.
(11)酸化亜鉛を主成分とする酸化亜鉛透明導電膜中
に、亜鉛原子に対しホウ素を1〜10原子%および亜鉛
原子に対しガリウムを1〜8原子%含有させてなる特許
請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。
(11) A zinc oxide transparent conductive film containing zinc oxide as a main component contains 1 to 10 at % of boron to the zinc atoms and 1 to 8 at % of gallium to the zinc atoms. The heat-resistant zinc oxide transparent conductive film according to item 1.
JP60046782A 1985-03-08 1985-03-08 Transparent electrically-conductive film of heat-resistant zinc oxide Granted JPS61205619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046782A JPS61205619A (en) 1985-03-08 1985-03-08 Transparent electrically-conductive film of heat-resistant zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046782A JPS61205619A (en) 1985-03-08 1985-03-08 Transparent electrically-conductive film of heat-resistant zinc oxide

Publications (2)

Publication Number Publication Date
JPS61205619A true JPS61205619A (en) 1986-09-11
JPH0372011B2 JPH0372011B2 (en) 1991-11-15

Family

ID=12756897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046782A Granted JPS61205619A (en) 1985-03-08 1985-03-08 Transparent electrically-conductive film of heat-resistant zinc oxide

Country Status (1)

Country Link
JP (1) JPS61205619A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433811A (en) * 1987-04-04 1989-02-03 Gunze Kk Transparent conductive film and its manufacture
JPH01201021A (en) * 1988-02-04 1989-08-14 Bridgestone Corp Heat-shielding material and heat-shielding glass therefrom
JPH01242417A (en) * 1988-03-25 1989-09-27 Mitsubishi Metal Corp Production of transparent electrically conductive zinc oxide film
US5776353A (en) * 1996-02-16 1998-07-07 Advanced Minerals Corporation Advanced composite filtration media
US5972527A (en) * 1992-12-15 1999-10-26 Idemitsu Kosan Co., Ltd. Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material
WO2003022954A1 (en) * 2001-09-10 2003-03-20 Japan Represented By President Of Tokyo Institute Of Technology Method for producing ultraviolet absorbing material
WO2007108266A1 (en) 2006-03-17 2007-09-27 Nippon Mining & Metals Co., Ltd. Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor
JP2007280910A (en) * 2006-04-03 2007-10-25 Ind Technol Res Inst Aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles and method for producing the same
WO2008023482A1 (en) 2006-08-24 2008-02-28 Nippon Mining & Metals Co., Ltd. Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target
JPWO2006090806A1 (en) * 2005-02-24 2008-07-24 積水化学工業株式会社 Gallium-containing zinc oxide
JP2009114538A (en) * 2007-10-19 2009-05-28 Hakusui Tech Co Ltd Ion plating target for zinc oxide thin film production
JP2009132998A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2009132997A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
US8197908B2 (en) 2008-03-14 2012-06-12 Hestia Tec, Llc Method for preparing electrically conducting materials
JP2012144409A (en) * 2011-01-14 2012-08-02 Tosoh Corp Oxide sintered compact, target formed of the same, and transparent conductive film
US8895427B2 (en) 2008-09-04 2014-11-25 Kaneka Corporation Substrate having a transparent electrode and method for producing the same
JPWO2016092902A1 (en) * 2014-12-09 2017-09-21 リンテック株式会社 Transparent conductive film and method for producing transparent conductive film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
KR20090045150A (en) * 2006-07-28 2009-05-07 가부시키가이샤 알박 How to Form a Transparent Conductive Film
EP2088126B1 (en) 2006-10-06 2015-11-18 Sakai Chemical Industry Co., Ltd. Ultrafine zinc oxide particle and process for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023918A (en) * 1973-07-02 1975-03-14
JPS515360A (en) * 1974-07-02 1976-01-17 Yoshiaki Sakai HORIESUTERUKESHOBANNO SEIZOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023918A (en) * 1973-07-02 1975-03-14
JPS515360A (en) * 1974-07-02 1976-01-17 Yoshiaki Sakai HORIESUTERUKESHOBANNO SEIZOHO

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433811A (en) * 1987-04-04 1989-02-03 Gunze Kk Transparent conductive film and its manufacture
JPH01201021A (en) * 1988-02-04 1989-08-14 Bridgestone Corp Heat-shielding material and heat-shielding glass therefrom
JPH01242417A (en) * 1988-03-25 1989-09-27 Mitsubishi Metal Corp Production of transparent electrically conductive zinc oxide film
US5972527A (en) * 1992-12-15 1999-10-26 Idemitsu Kosan Co., Ltd. Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material
US5776353A (en) * 1996-02-16 1998-07-07 Advanced Minerals Corporation Advanced composite filtration media
WO2003022954A1 (en) * 2001-09-10 2003-03-20 Japan Represented By President Of Tokyo Institute Of Technology Method for producing ultraviolet absorbing material
JPWO2006090806A1 (en) * 2005-02-24 2008-07-24 積水化学工業株式会社 Gallium-containing zinc oxide
WO2007108266A1 (en) 2006-03-17 2007-09-27 Nippon Mining & Metals Co., Ltd. Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor
JP2007280910A (en) * 2006-04-03 2007-10-25 Ind Technol Res Inst Aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles and method for producing the same
WO2008023482A1 (en) 2006-08-24 2008-02-28 Nippon Mining & Metals Co., Ltd. Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target
JP2009114538A (en) * 2007-10-19 2009-05-28 Hakusui Tech Co Ltd Ion plating target for zinc oxide thin film production
JP2009132998A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2009132997A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
US8197908B2 (en) 2008-03-14 2012-06-12 Hestia Tec, Llc Method for preparing electrically conducting materials
US8895427B2 (en) 2008-09-04 2014-11-25 Kaneka Corporation Substrate having a transparent electrode and method for producing the same
JP2012144409A (en) * 2011-01-14 2012-08-02 Tosoh Corp Oxide sintered compact, target formed of the same, and transparent conductive film
JPWO2016092902A1 (en) * 2014-12-09 2017-09-21 リンテック株式会社 Transparent conductive film and method for producing transparent conductive film

Also Published As

Publication number Publication date
JPH0372011B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
JPS61205619A (en) Transparent electrically-conductive film of heat-resistant zinc oxide
US3655545A (en) Post heating of sputtered metal oxide films
JPS62122011A (en) Method for manufacturing transparent conductive film
JPH06187833A (en) Transparent conductive film
JP3616128B2 (en) Method for producing transparent conductive film
JPH09259640A (en) Transparent conductive film
JPH056766B2 (en)
CN1598040A (en) Process for preparing vanadium oxide film capable of regulating phase change temp.
JP2917432B2 (en) Method for producing conductive glass
US6094295A (en) Ultraviolet transmitting oxide with metallic oxide phase and method of fabrication
JPH0987833A (en) Method for producing transparent conductive film
CN108588661B (en) A method for optimizing the properties of vanadium oxide thin films using a low-valent vanadium seed layer
JP5647130B2 (en) Transparent conductive zinc oxide display film and method for producing the same
Lee et al. Heat treatment effects on electrical and optical properties of ternary compound In 2 O 3–ZnO films
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
JPH0641723A (en) Electric conductive transparent film
JPH054768B2 (en)
JPH0668713A (en) Transparent conductive film
Tsunashima et al. Preparation of tin-doped indium oxide thin films by thermal decomposition of metal octanoates
JPH01283369A (en) Sputtering target for forming ITO transparent conductive film
JPH0452566B2 (en)
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film
JPH02163363A (en) Production of transparent conductive film
CN101104548A (en) A kind of indium-aluminum co-doped low-resistance P-type tin dioxide film material and its manufacturing method