JPS61205619A - Transparent electrically-conductive film of heat-resistant zinc oxide - Google Patents
Transparent electrically-conductive film of heat-resistant zinc oxideInfo
- Publication number
- JPS61205619A JPS61205619A JP60046782A JP4678285A JPS61205619A JP S61205619 A JPS61205619 A JP S61205619A JP 60046782 A JP60046782 A JP 60046782A JP 4678285 A JP4678285 A JP 4678285A JP S61205619 A JPS61205619 A JP S61205619A
- Authority
- JP
- Japan
- Prior art keywords
- zinc oxide
- conductive film
- transparent conductive
- oxide transparent
- group iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 26
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 20
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 229910052716 thallium Inorganic materials 0.000 claims abstract description 3
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 60
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 229910052738 indium Inorganic materials 0.000 claims description 8
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 9
- 230000003287 optical effect Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 150000004820 halides Chemical class 0.000 abstract description 2
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 239000000306 component Substances 0.000 abstract 1
- 150000002902 organometallic compounds Chemical class 0.000 abstract 1
- 229910052711 selenium Inorganic materials 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002772 conduction electron Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002471 indium Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Non-Insulated Conductors (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は耐熱性酸化亜鉛透明導電膜、具体的には、広い
温度範囲にわたって抵抗率の変化の小さい耐熱性酸化亜
鉛透明導電膜に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat-resistant zinc oxide transparent conductive film, and specifically to a heat-resistant zinc oxide transparent conductive film whose resistivity changes little over a wide temperature range.
(従来の技術)
従来、透明導電膜としては、ITO膜として知られてい
る酸化インジウム−酸化スズ系透明導電膜が広く実用に
供されている。このITO膜は、光学的特性、電気的特
性および耐熱性に優れているが、原材料のインジウムが
希少金属であるため資源的に問題があり、また高価であ
るという問題があった。最近、安価な酸化亜鉛が透明導
電膜用材料として注目されている。(Prior Art) Conventionally, as a transparent conductive film, an indium oxide-tin oxide based transparent conductive film known as an ITO film has been widely put into practical use. This ITO film has excellent optical properties, electrical properties, and heat resistance, but since the raw material indium is a rare metal, it has problems in terms of resources and is expensive. Recently, inexpensive zinc oxide has attracted attention as a material for transparent conductive films.
(発明が解決しようとする問題点)
この酸化亜鉛透明導電膜は、ITO膜に比ベコストが1
/10〜1150と安価であり、常温で使用する限りに
おいてはIT○膜と同程度の電気特性および光学特性を
実現できるが、高温域、例えば、200〜500℃の温
度で使用すると、使用後の抵抗率が102〜IQIO倍
以上に増加するという問題がある。(Problem to be solved by the invention) This zinc oxide transparent conductive film has a cost of 1% compared to an ITO film.
/10~1150, and can achieve electrical and optical properties comparable to those of IT○ films as long as it is used at room temperature, but when used at high temperatures, for example, 200~500℃, There is a problem that the resistivity increases by 102 to IQIO times or more.
即ち、従来の酸化亜鉛透明導電膜は常温で10−4Ωc
IIIオーダの抵抗率を示し、十分実用可能であるが、
各種雰囲気中で高温にさらされると、第1図および第2
図に比較例として示すように、抵抗が真空や不活性〃ス
雰囲気中においてさえも、102〜106倍に増大する
。従って、酸化亜鉛透明導電膜を、例えば、エレクトロ
ルミネッセンス素子用透明導電膜として適用する場合、
その製造過程で透明導電膜は約400℃の真空あるいは
不活性〃ス雰囲気中に約1時間放置されることになるた
め、実用に供することができない。That is, the conventional zinc oxide transparent conductive film has a resistance of 10-4Ωc at room temperature.
It exhibits a resistivity of the order of III and is sufficiently practical, but
When exposed to high temperatures in various atmospheres, the
As shown in the figure as a comparative example, the resistance increases by a factor of 102 to 106 even in a vacuum or inert gas atmosphere. Therefore, when applying the zinc oxide transparent conductive film as a transparent conductive film for electroluminescent devices, for example,
During the manufacturing process, the transparent conductive film is left in a vacuum or inert gas atmosphere at about 400° C. for about one hour, so it cannot be put to practical use.
このような酸化亜鉛透明導電膜の抵抗率が増大する原因
は、膜中に捕らえられていた酸素が温度上昇に伴い膜中
で化学吸着することによると考えられる。即ち、酸化亜
鉛透明導電膜の低抵抗率が真性格子欠陥である酸素空孔
もしくは格子間亜鉛の作る浅いドナー準位の存在により
実現されているため、酸素の吸着により伝導電子密度が
減少し、結果として抵抗が増大する。従って、酸化亜鉛
透明導電膜の低抵抗率化が材料固有の真性格子欠陥に依
存する限り、抵抗率増大は材料物性上の本質的な欠点と
も言える。The reason why the resistivity of such a zinc oxide transparent conductive film increases is considered to be that oxygen trapped in the film is chemically adsorbed in the film as the temperature rises. In other words, the low resistivity of the zinc oxide transparent conductive film is achieved by the presence of oxygen vacancies, which are intrinsic lattice defects, or shallow donor levels created by interstitial zinc; therefore, the conduction electron density decreases due to oxygen adsorption. Resistance increases as a result. Therefore, as long as the reduction in resistivity of the zinc oxide transparent conductive film depends on the intrinsic lattice defects inherent in the material, the increase in resistivity can be said to be an essential drawback in terms of the physical properties of the material.
従って、本発明は安価に、かつ容易に製造でき、室温以
上の高温度で、各種雰囲気中での使用に対し抵抗率変化
の極めて小さい酸化亜鉛透明導電膜を得ることを目的と
する。Therefore, it is an object of the present invention to obtain a zinc oxide transparent conductive film that can be manufactured inexpensively and easily and exhibits extremely small change in resistivity when used at high temperatures above room temperature and in various atmospheres.
(問題点を解決するための手段)
本発明は酸化亜鉛を主成分とする酸化亜鉛透明導電膜中
に、亜鉛原子に対し少なくとも一種の■族金属元素を含
有させることによって、前記問題を解決したものである
。(Means for Solving the Problems) The present invention solves the above problems by incorporating at least one group (III) metal element into zinc atoms in a zinc oxide transparent conductive film containing zinc oxide as a main component. It is something.
酸化亜鉛透明導電膜中に含有させる■族金属の含有量は
、亜鉛原子に対し1〜20原子%、好ましくは、2〜8
原子%とするのが適当である。これは、含有量が1原子
%未満ではその添加効果が得られず、20原子%を越え
ると、結晶性が悪化し抵抗率が増加するからである。な
お、■族金属の含有量は、■族金属含有透明導電膜の全
構成元素に対し、0.5〜10原子%となる。The content of group (III) metal contained in the zinc oxide transparent conductive film is 1 to 20 atomic %, preferably 2 to 8 atomic %, based on zinc atoms.
It is appropriate to express it in atomic percent. This is because if the content is less than 1 atomic %, the effect of addition cannot be obtained, and if it exceeds 20 atomic %, crystallinity deteriorates and resistivity increases. Note that the content of the group (1) metal is 0.5 to 10 at % based on all the constituent elements of the group (1) metal-containing transparent conductive film.
■族金属としては、ホウ素、アルミニウム、スカンジウ
ム、ガリウム、イツトリウム、タリウム及びインジウム
などが挙げられ、これらは単独であるいは2種以上を含
有させることができるが、コスト上からはアルミニウム
を使用するのが好適である。Examples of group metals include boron, aluminum, scandium, gallium, yttrium, thallium, and indium.These metals can be used alone or in combination of two or more, but from a cost standpoint, it is preferable to use aluminum. suitable.
本発明に係る酸化亜鉛透明導電膜は、スパッタ法、真空
蒸着法、化学気相成長法、陽極酸化法などの公知の任意
の膜形成方法により形成することができる。また、酸化
亜鉛透明導電膜中に■族金属を含有させる方法としては
、前記膜作成過程で原材料に金属元素、金属酸化物、有
機金属およびハロゲン化物等の形態で導入することが好
適であるが、酸化亜鉛透明導電膜形成後に■族金属元素
を熱拡散やイオン注入することも可能である。The zinc oxide transparent conductive film according to the present invention can be formed by any known film forming method such as sputtering, vacuum evaporation, chemical vapor deposition, and anodic oxidation. In addition, as a method for incorporating group (III) metals into the zinc oxide transparent conductive film, it is preferable to introduce them into the raw materials in the form of metal elements, metal oxides, organic metals, halides, etc. during the film preparation process. It is also possible to thermally diffuse or ion-implant a group (1) metal element after forming a zinc oxide transparent conductive film.
(作用)
酸化亜鉛は四肢金属を添加しなくても、i「述の真性格
子欠陥によるドナー準位により縮退したN形半導体が比
較的容易に得られ、はぼ1020cm=オーダの伝導電
子密度を実現で外る。これに■族金属、例えば、アルミ
ニウム、を導入すると、アルミニウム原子がドナーとし
て有効に働き102102l’オーグの伝導電子密度を
実現で終る。アルミニウム原子のような外因性ドナーは
、酸化亜鉛の真性格子欠陥による内因性ドナーと比較し
て、高温の酸化性雰囲気中でも膜中で安定に存在する。(Function) Zinc oxide can relatively easily obtain a degenerate N-type semiconductor due to the donor level due to the intrinsic lattice defects described above, and has a conduction electron density on the order of approximately 1020 cm. When a group III metal such as aluminum is introduced into this, the aluminum atom acts effectively as a donor and achieves a conduction electron density of 102102l'og.Extrinsic donors such as aluminum atoms are oxidized Compared to endogenous donors due to the intrinsic lattice defects of zinc, it exists stably in the film even in high-temperature oxidizing atmospheres.
このように、面族金属を含有する酸化亜鉛透明導電膜は
無添加酸化亜鉛透明導電膜に比べて、伝導電子密度が約
1桁大きいこと、及びドナーが不純物による外因性であ
ること等の特性改善によって耐熱性を実現するものであ
る。In this way, the zinc oxide transparent conductive film containing surface group metals has characteristics such as that the conduction electron density is about one order of magnitude higher than that of the zinc oxide transparent conductive film without additives, and that the donor is extrinsic due to impurities. Heat resistance is achieved through improvement.
次に、本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.
〈実施例1〉
酸化アルミニウム(1!20.)と酸化亜鉛(ZnO)
を原料として用い、亜鉛原子に対し4原子%のアルミニ
ウムを含有する酸化亜鉛からなる焼結体を製造し、これ
をターゲットとして用いて高周波マグネトロンスパッタ
装置により、室温に保持したガラス基板上にアルミニウ
ム含有酸化亜鉛透明導電膜を形成した。<Example 1> Aluminum oxide (1!20.) and zinc oxide (ZnO)
A sintered body made of zinc oxide containing 4 at % of aluminum based on zinc atoms is produced using as a raw material, and using this as a target, a high frequency magnetron sputtering device is used to sputter the aluminum-containing body onto a glass substrate kept at room temperature. A zinc oxide transparent conductive film was formed.
この酸化亜鉛透明導電膜は、常温での抵抗率が2゜2X
10−’ΩcI11で、可視光透過率が85%以上であ
った。また、酸化亜鉛透明導電膜を真空中(真空度 1
0”Pa)に配置し、温度を室温から400℃まで上昇
させ、400°Cで1時間保持したのち徐冷し、その過
程での抵抗の変化を測定し、酸化亜鉛透明導電膜の抵抗
温度特性を求めた。その結果を第1図に示す。This zinc oxide transparent conductive film has a resistivity of 2°2X at room temperature.
The visible light transmittance was 85% or more at 10-'ΩcI11. In addition, the zinc oxide transparent conductive film was deposited in vacuum (vacuum degree 1).
0"Pa), the temperature was raised from room temperature to 400°C, held at 400°C for 1 hour, and then slowly cooled. The change in resistance during this process was measured, and the resistance temperature of the zinc oxide transparent conductive film was determined. The characteristics were determined and the results are shown in Figure 1.
上記の高温域での熱処理によって、酸化亜鉛透明導電膜
の可視光透過率の顕著な変化を認めなかった。また、本
発明に係るアルミニウム含有酸化亜鉛透明導電膜を2重
絶縁構造ZnS:Mnエレクトロルミネッセンス素子の
透明電極として適用した場合、従来のITO透明電極を
利用した素子に比べて遜色のない素子が実現できること
を確認できた。No significant change in visible light transmittance of the zinc oxide transparent conductive film was observed by the heat treatment in the above-mentioned high temperature range. Furthermore, when the aluminum-containing zinc oxide transparent conductive film according to the present invention is applied as a transparent electrode of a double insulation structure ZnS:Mn electroluminescent device, a device comparable to that of a device using a conventional ITO transparent electrode can be realized. I was able to confirm that it is possible.
さらに、膜厚を50〜11000nの範囲で変化させた
酸化亜鉛透明導電膜を製造し、それらの特性を同様に測
定したところ、抵抗の温度依存性に関する限り膜厚によ
る大きな相異は認められなかった。Furthermore, when zinc oxide transparent conductive films with film thicknesses varied in the range of 50 to 11,000 nm were manufactured and their properties were similarly measured, no major differences were observed depending on the film thickness as far as the temperature dependence of resistance was concerned. Ta.
また、これらの膜は、500℃まで昇温しで1時間保持
した後の抵抗値も、はぼ第1図と同様の値と傾向を示し
、アルミニウム含有酸化亜鉛透明導電膜は真空雰囲気中
で使用する場合、500℃までの耐熱性が得られること
が明らかとなった。Furthermore, the resistance values of these films after being heated to 500°C and held for 1 hour showed similar values and trends to those shown in Figure 1. It has become clear that when used, heat resistance up to 500°C can be obtained.
なお、ここに使用した透明導電膜の処理前の抵抗率は全
て10−4Ωcmオーグのものである。The resistivities of the transparent conductive films used here before treatment are all 10-4 Ωcm.
〈実施例2〉
実施例1と同様にして、亜鉛原子に対し10原子%のア
ルミニウムを含有する酸化亜鉛からなる焼結体を得、こ
れをターゲットとして用いて、高周波マグネトロンスパ
ッタ装置により、室温に保持したガラス基板上にアルミ
ニウム含有酸化亜鉛透明導電膜を形成した。<Example 2> In the same manner as in Example 1, a sintered body made of zinc oxide containing 10 at% of aluminum based on zinc atoms was obtained, and using this as a target, it was heated to room temperature using a high frequency magnetron sputtering device. An aluminum-containing zinc oxide transparent conductive film was formed on the held glass substrate.
この酸化亜鉛透明導電膜は、常温での抵抗率が9.5X
10−’ΩCl11で、その可視光透過率は85%であ
った。また、実施例1と同様にして、酸化亜鉛透明導電
膜の抵抗温度特性を求めたところ、第1図に示す結果が
得られた。This zinc oxide transparent conductive film has a resistivity of 9.5X at room temperature.
At 10-'ΩCl11, its visible light transmittance was 85%. Further, when the resistance temperature characteristics of the zinc oxide transparent conductive film were determined in the same manner as in Example 1, the results shown in FIG. 1 were obtained.
く比較例1〉
高純度酸化亜鉛(ZnO)からなる焼結体をターゲット
として用い、高周波マグネトロンスパッタ装置により、
室温に保持したガラス基板上に酸化亜鉛透明導電膜を形
成した。Comparative Example 1 Using a sintered body made of high-purity zinc oxide (ZnO) as a target, a high-frequency magnetron sputtering device was used to
A zinc oxide transparent conductive film was formed on a glass substrate kept at room temperature.
この酸化亜鉛透明導電膜は、常温での抵抗率が5.6X
10−’Ωcn+で、可視光透過率が85%であった。This zinc oxide transparent conductive film has a resistivity of 5.6X at room temperature.
At 10-'Ωcn+, the visible light transmittance was 85%.
また、実施例1と同様にして、酸化亜鉛透明導電膜の抵
抗温度特性を求めたところ、第1図に示す結果が得られ
た。Further, when the resistance temperature characteristics of the zinc oxide transparent conductive film were determined in the same manner as in Example 1, the results shown in FIG. 1 were obtained.
第1図の結果から、亜鉛原子に対してアルミニウムを1
〜10原子%導入された本発明に係る酸化亜鉛透明導電
膜は、400°Cで1時間放置した後でも室温での抵抗
の変化がほとんどなく、抵抗の温度依存性が小さく、耐
熱性が著しく改善されていることがわかる。また、約1
0原子%以上のアルミニウム原子を導入した膜では40
0°Cで放置した後の室温での抵抗が処理前の値より低
くなることがわかる。From the results in Figure 1, it is clear that 1 aluminum per zinc atom
The zinc oxide transparent conductive film according to the present invention containing ~10 at. You can see that it has been improved. Also, about 1
40 for films with 0 at% or more of aluminum atoms introduced.
It can be seen that the resistance at room temperature after being left at 0°C is lower than the value before treatment.
〈実施例3〉
亜鉛原子に対し4原子%のアルミニウムを含有する酸化
亜鉛からなるターゲットを用い、実施例1と同様にして
250nmの厚さのアルミニウム含有酸化亜鉛透明導電
膜を形成した。<Example 3> An aluminum-containing zinc oxide transparent conductive film having a thickness of 250 nm was formed in the same manner as in Example 1 using a target made of zinc oxide containing 4 at % of aluminum relative to zinc atoms.
このアルミニウム含有酸化亜鉛透明導電膜は、抵抗率が
5xio−’Ωamで、実施例1と同様にして大気圧の
アルゴンガス雰囲気中でのアルミニウム含有酸化亜鉛透
明導電膜の抵抗温度特性を測定したところ、第2図に示
す結果が得られた。This aluminum-containing zinc oxide transparent conductive film had a resistivity of 5 xio-'Ωam, and the resistance temperature characteristics of the aluminum-containing zinc oxide transparent conductive film were measured in an argon gas atmosphere at atmospheric pressure in the same manner as in Example 1. , the results shown in FIG. 2 were obtained.
〈比較例2〉
比較例1で形成した高純度酸化亜鉛(ZnO)からなる
酸化亜鉛透明導電膜を実施例3と同条件下で熱処理し、
その抵抗温度特性を測定した。その結果を第2図に示す
。<Comparative Example 2> A zinc oxide transparent conductive film made of high-purity zinc oxide (ZnO) formed in Comparative Example 1 was heat-treated under the same conditions as in Example 3,
Its resistance temperature characteristics were measured. The results are shown in FIG.
第2図の結果から、実施例3のアルミニウム含有酸化亜
鉛透明導電膜は、不活性がス中において高温度にされさ
れても、優れた耐熱性を示すことがわかる。From the results shown in FIG. 2, it can be seen that the aluminum-containing zinc oxide transparent conductive film of Example 3 exhibits excellent heat resistance even when the temperature is raised to high in an inert bath.
また、実施例3のアルミニウム含有酸化亜鉛透明導電膜
は500℃の不活性ガス中で1時間の熱処理に対しても
、電気特性および光学特性の顕著な変化は認められず、
耐熱性の得られることが確認された。Further, the aluminum-containing zinc oxide transparent conductive film of Example 3 showed no significant change in electrical properties and optical properties even after being heat-treated for 1 hour in an inert gas at 500°C.
It was confirmed that heat resistance was obtained.
〈実施例4〉
酸化亜鉛と酸化インジウム(In20−)とを原料とし
て、亜鉛原子に対し2原子%のインジウムを含有する酸
化亜鉛からなる焼結体を形成し、これをターゲットとし
て用いて高周波マグネトロンスパッタ装置により、イン
ジウム含有酸化亜鉛透明導電膜を室温に保持したガラス
基板上に形成した。<Example 4> Using zinc oxide and indium oxide (In20-) as raw materials, a sintered body of zinc oxide containing 2 at% of indium to zinc atoms was formed, and this was used as a target to generate a high-frequency magnetron. An indium-containing zinc oxide transparent conductive film was formed on a glass substrate kept at room temperature using a sputtering device.
このインジウム含有酸化亜鉛透明導電膜は、抵抗率が6
゜3X10−4Ωca+で、実施例1及び実施例3と同
様にして真空中および不活性ガス中において熱処理した
ところ、実施例1及び実施例3のアルミニウム含有酸化
亜鉛導電透明膜とほぼ同様の抵抗温度特性が得られ、5
00℃までの耐熱性の得られることがわかった。This indium-containing zinc oxide transparent conductive film has a resistivity of 6
When heat-treated in vacuum and inert gas in the same manner as in Example 1 and Example 3 at ゜3×10-4Ωca+, the resistance temperature was almost the same as that of the aluminum-containing zinc oxide conductive transparent film of Example 1 and Example 3. properties are obtained, 5
It was found that heat resistance up to 00°C can be obtained.
〈実施例5〉
酸化亜鉛と酸化ガリウム(Ga2a、)とを原料として
用い、亜鉛原子に対して3原子%のガリウムを含有する
酸化亜鉛からなる焼結体を製造し、これをターデッドと
して高周波マグネトロンスパッタ装置により室温に保持
したガラス基板上にガリウム含有酸化亜鉛透明導電膜を
形成した。<Example 5> Using zinc oxide and gallium oxide (Ga2a, ) as raw materials, a sintered body of zinc oxide containing 3 at% gallium relative to zinc atoms was produced, and this was used as a tarded body to generate a high-frequency magnetron. A gallium-containing zinc oxide transparent conductive film was formed on a glass substrate kept at room temperature using a sputtering device.
ガリウム含有酸化亜鉛透明導電膜は、抵抗率が4.2X
10−4Ωcmで、真空中および不活性ガス中において
、第1図および第2図に示す実施例のアルミニウム含有
酸化亜鉛透明導電膜とほぼ同様の抵抗温度特性を示すと
共に、500’(Jでの耐熱性を示すことが判った。Gallium-containing zinc oxide transparent conductive film has a resistivity of 4.2X
10-4 Ωcm in vacuum and in an inert gas, it exhibits almost the same resistance-temperature characteristics as the aluminum-containing zinc oxide transparent conductive film of the example shown in FIGS. It was found that it exhibits heat resistance.
(発明の効果)
以上の説明から明らかなように、本発明に係る酸化亜鉛
透明導電膜は耐熱性に優れ、ITO膜と同等の電気特性
及び光学特性を示し、しかも主原料である亜鉛がITO
膜の主原料であるインジウムに比べ極めて安価で、資源
的にも豊富で、公害を招くこともほとんどなく、製造コ
ストを著しく低減できる。また、透明導電膜中に含有さ
せる■族金属のうちインジウムおよびガリウムは高価で
はあるが、主原料が亜鉛であり、■族金属元素はドーパ
ントであるため、必要とする量はITO膜の1/30以
下であり、安価となる。また、■族金属を含有する酸化
亜鉛透明導電膜の表面は極めて平滑(゛、かつ膜のプラ
ス等の基体に対する付着力が強く、熱的また化学的にも
機械的にも安定であるので、透明電極、熱線遮蔽膜、透
明ヒータ等の多層コーティングを必要とする用途に適用
できるなど優れた効果が得られる。(Effects of the Invention) As is clear from the above explanation, the zinc oxide transparent conductive film according to the present invention has excellent heat resistance, exhibits electrical and optical properties equivalent to those of an ITO film, and moreover, zinc, which is the main raw material, is ITO.
Compared to indium, the main raw material for membranes, it is extremely cheap and abundant as a resource, causes almost no pollution, and can significantly reduce manufacturing costs. In addition, although indium and gallium are expensive among the group III metals to be contained in the transparent conductive film, since the main raw material is zinc and the group III metal elements are dopants, the required amount is 1/1 of that of the ITO film. 30 or less, making it inexpensive. In addition, the surface of the zinc oxide transparent conductive film containing Group Ⅰ metals is extremely smooth, and the film has strong adhesion to substrates such as positive electrodes, and is thermally, chemically, and mechanically stable. It can be applied to applications requiring multilayer coatings such as transparent electrodes, heat ray shielding films, and transparent heaters, providing excellent effects.
第1図は本発明に係る酸化亜鉛透明導電膜および従来の
酸化亜鉛透明導電膜の真空中での抵抗温度特性を示すグ
ラフ、第2図は本発明に係る酸化亜鉛透明導電膜およゾ
従来の酸化亜鉛透明導電膜のアルゴンガス中での抵抗温
度特性を示すグラフである。
第1図
OToo 200 300
400温 屋 〔°C〕
第2図
3K 捜 〔°C〕FIG. 1 is a graph showing the resistance temperature characteristics in vacuum of the zinc oxide transparent conductive film according to the present invention and the conventional zinc oxide transparent conductive film, and FIG. 2 is a graph showing the resistance temperature characteristics of the zinc oxide transparent conductive film according to the present invention and the conventional 3 is a graph showing the resistance temperature characteristics of a zinc oxide transparent conductive film in argon gas. Figure 1 OToo 200 300
400 temperature room [°C] Figure 2 3K search [°C]
Claims (11)
、亜鉛原子に対し少なくとも一種のIII族金属元素を1
〜20原子%含有させてなる耐熱性酸化亜鉛透明導電膜
。(1) In a zinc oxide transparent conductive film containing zinc oxide as a main component, at least one group III metal element is added to each zinc atom.
A heat-resistant transparent conductive film containing up to 20 atom % of zinc oxide.
請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。(2) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein at least one group III metal is boron.
る特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電
膜。(3) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein at least one Group III metal is aluminum.
る特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電
膜。(4) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is scandium.
許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。(5) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is gallium.
る特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電
膜。(6) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is yttrium.
特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜
。(7) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein the at least one Group III metal is indium.
許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。(8) The heat-resistant zinc oxide transparent conductive film according to claim 1, wherein at least one group III metal is thallium.
6原子%である特許請求の範囲第1項〜第7項のいずれ
か一項記載の耐熱性酸化亜鉛透明導電膜。(9) The content of at least one group III metal element is 2 or more
The heat-resistant zinc oxide transparent conductive film according to any one of claims 1 to 7, wherein the zinc oxide content is 6 at %.
に、亜鉛原子に対しホウ素を1〜10原子%および亜鉛
原子に対しアルミニウムを1〜8原子%含有させてなる
特許請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜
。(10) A zinc oxide transparent conductive film containing zinc oxide as a main component contains 1 to 10 at % of boron to the zinc atoms and 1 to 8 at % of aluminum to the zinc atoms. The heat-resistant zinc oxide transparent conductive film according to item 1.
に、亜鉛原子に対しホウ素を1〜10原子%および亜鉛
原子に対しガリウムを1〜8原子%含有させてなる特許
請求の範囲第1項記載の耐熱性酸化亜鉛透明導電膜。(11) A zinc oxide transparent conductive film containing zinc oxide as a main component contains 1 to 10 at % of boron to the zinc atoms and 1 to 8 at % of gallium to the zinc atoms. The heat-resistant zinc oxide transparent conductive film according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046782A JPS61205619A (en) | 1985-03-08 | 1985-03-08 | Transparent electrically-conductive film of heat-resistant zinc oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046782A JPS61205619A (en) | 1985-03-08 | 1985-03-08 | Transparent electrically-conductive film of heat-resistant zinc oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61205619A true JPS61205619A (en) | 1986-09-11 |
JPH0372011B2 JPH0372011B2 (en) | 1991-11-15 |
Family
ID=12756897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60046782A Granted JPS61205619A (en) | 1985-03-08 | 1985-03-08 | Transparent electrically-conductive film of heat-resistant zinc oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61205619A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6433811A (en) * | 1987-04-04 | 1989-02-03 | Gunze Kk | Transparent conductive film and its manufacture |
JPH01201021A (en) * | 1988-02-04 | 1989-08-14 | Bridgestone Corp | Heat-shielding material and heat-shielding glass therefrom |
JPH01242417A (en) * | 1988-03-25 | 1989-09-27 | Mitsubishi Metal Corp | Production of transparent electrically conductive zinc oxide film |
US5776353A (en) * | 1996-02-16 | 1998-07-07 | Advanced Minerals Corporation | Advanced composite filtration media |
US5972527A (en) * | 1992-12-15 | 1999-10-26 | Idemitsu Kosan Co., Ltd. | Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material |
WO2003022954A1 (en) * | 2001-09-10 | 2003-03-20 | Japan Represented By President Of Tokyo Institute Of Technology | Method for producing ultraviolet absorbing material |
WO2007108266A1 (en) | 2006-03-17 | 2007-09-27 | Nippon Mining & Metals Co., Ltd. | Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor |
JP2007280910A (en) * | 2006-04-03 | 2007-10-25 | Ind Technol Res Inst | Aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles and method for producing the same |
WO2008023482A1 (en) | 2006-08-24 | 2008-02-28 | Nippon Mining & Metals Co., Ltd. | Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target |
JPWO2006090806A1 (en) * | 2005-02-24 | 2008-07-24 | 積水化学工業株式会社 | Gallium-containing zinc oxide |
JP2009114538A (en) * | 2007-10-19 | 2009-05-28 | Hakusui Tech Co Ltd | Ion plating target for zinc oxide thin film production |
JP2009132998A (en) * | 2007-10-30 | 2009-06-18 | Mitsubishi Materials Corp | SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR |
JP2009132997A (en) * | 2007-10-30 | 2009-06-18 | Mitsubishi Materials Corp | VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR |
US8197908B2 (en) | 2008-03-14 | 2012-06-12 | Hestia Tec, Llc | Method for preparing electrically conducting materials |
JP2012144409A (en) * | 2011-01-14 | 2012-08-02 | Tosoh Corp | Oxide sintered compact, target formed of the same, and transparent conductive film |
US8895427B2 (en) | 2008-09-04 | 2014-11-25 | Kaneka Corporation | Substrate having a transparent electrode and method for producing the same |
JPWO2016092902A1 (en) * | 2014-12-09 | 2017-09-21 | リンテック株式会社 | Transparent conductive film and method for producing transparent conductive film |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7867636B2 (en) * | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
KR20090045150A (en) * | 2006-07-28 | 2009-05-07 | 가부시키가이샤 알박 | How to Form a Transparent Conductive Film |
EP2088126B1 (en) | 2006-10-06 | 2015-11-18 | Sakai Chemical Industry Co., Ltd. | Ultrafine zinc oxide particle and process for production thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023918A (en) * | 1973-07-02 | 1975-03-14 | ||
JPS515360A (en) * | 1974-07-02 | 1976-01-17 | Yoshiaki Sakai | HORIESUTERUKESHOBANNO SEIZOHO |
-
1985
- 1985-03-08 JP JP60046782A patent/JPS61205619A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023918A (en) * | 1973-07-02 | 1975-03-14 | ||
JPS515360A (en) * | 1974-07-02 | 1976-01-17 | Yoshiaki Sakai | HORIESUTERUKESHOBANNO SEIZOHO |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6433811A (en) * | 1987-04-04 | 1989-02-03 | Gunze Kk | Transparent conductive film and its manufacture |
JPH01201021A (en) * | 1988-02-04 | 1989-08-14 | Bridgestone Corp | Heat-shielding material and heat-shielding glass therefrom |
JPH01242417A (en) * | 1988-03-25 | 1989-09-27 | Mitsubishi Metal Corp | Production of transparent electrically conductive zinc oxide film |
US5972527A (en) * | 1992-12-15 | 1999-10-26 | Idemitsu Kosan Co., Ltd. | Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material |
US5776353A (en) * | 1996-02-16 | 1998-07-07 | Advanced Minerals Corporation | Advanced composite filtration media |
WO2003022954A1 (en) * | 2001-09-10 | 2003-03-20 | Japan Represented By President Of Tokyo Institute Of Technology | Method for producing ultraviolet absorbing material |
JPWO2006090806A1 (en) * | 2005-02-24 | 2008-07-24 | 積水化学工業株式会社 | Gallium-containing zinc oxide |
WO2007108266A1 (en) | 2006-03-17 | 2007-09-27 | Nippon Mining & Metals Co., Ltd. | Zinc oxide-based transparent conductor and sputtering target for forming the transparent conductor |
JP2007280910A (en) * | 2006-04-03 | 2007-10-25 | Ind Technol Res Inst | Aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles and method for producing the same |
WO2008023482A1 (en) | 2006-08-24 | 2008-02-28 | Nippon Mining & Metals Co., Ltd. | Zinc oxide based transparent electric conductor, sputtering target for forming of the conductor and process for producing the target |
JP2009114538A (en) * | 2007-10-19 | 2009-05-28 | Hakusui Tech Co Ltd | Ion plating target for zinc oxide thin film production |
JP2009132998A (en) * | 2007-10-30 | 2009-06-18 | Mitsubishi Materials Corp | SPUTTERING TARGET OF ZnO AND MANUFACTURING METHOD THEREFOR |
JP2009132997A (en) * | 2007-10-30 | 2009-06-18 | Mitsubishi Materials Corp | VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR |
US8197908B2 (en) | 2008-03-14 | 2012-06-12 | Hestia Tec, Llc | Method for preparing electrically conducting materials |
US8895427B2 (en) | 2008-09-04 | 2014-11-25 | Kaneka Corporation | Substrate having a transparent electrode and method for producing the same |
JP2012144409A (en) * | 2011-01-14 | 2012-08-02 | Tosoh Corp | Oxide sintered compact, target formed of the same, and transparent conductive film |
JPWO2016092902A1 (en) * | 2014-12-09 | 2017-09-21 | リンテック株式会社 | Transparent conductive film and method for producing transparent conductive film |
Also Published As
Publication number | Publication date |
---|---|
JPH0372011B2 (en) | 1991-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61205619A (en) | Transparent electrically-conductive film of heat-resistant zinc oxide | |
US3655545A (en) | Post heating of sputtered metal oxide films | |
JPS62122011A (en) | Method for manufacturing transparent conductive film | |
JPH06187833A (en) | Transparent conductive film | |
JP3616128B2 (en) | Method for producing transparent conductive film | |
JPH09259640A (en) | Transparent conductive film | |
JPH056766B2 (en) | ||
CN1598040A (en) | Process for preparing vanadium oxide film capable of regulating phase change temp. | |
JP2917432B2 (en) | Method for producing conductive glass | |
US6094295A (en) | Ultraviolet transmitting oxide with metallic oxide phase and method of fabrication | |
JPH0987833A (en) | Method for producing transparent conductive film | |
CN108588661B (en) | A method for optimizing the properties of vanadium oxide thin films using a low-valent vanadium seed layer | |
JP5647130B2 (en) | Transparent conductive zinc oxide display film and method for producing the same | |
Lee et al. | Heat treatment effects on electrical and optical properties of ternary compound In 2 O 3–ZnO films | |
JPH0784654B2 (en) | Method for manufacturing sputtering target for ITO transparent conductive film | |
JP2017193755A (en) | Method of manufacturing transparent conductive film, and transparent conductive film | |
JPH0641723A (en) | Electric conductive transparent film | |
JPH054768B2 (en) | ||
JPH0668713A (en) | Transparent conductive film | |
Tsunashima et al. | Preparation of tin-doped indium oxide thin films by thermal decomposition of metal octanoates | |
JPH01283369A (en) | Sputtering target for forming ITO transparent conductive film | |
JPH0452566B2 (en) | ||
JPH0765167B2 (en) | Sputtering target for ITO transparent conductive film | |
JPH02163363A (en) | Production of transparent conductive film | |
CN101104548A (en) | A kind of indium-aluminum co-doped low-resistance P-type tin dioxide film material and its manufacturing method |