JPS6120527B2 - - Google Patents
Info
- Publication number
- JPS6120527B2 JPS6120527B2 JP52043607A JP4360777A JPS6120527B2 JP S6120527 B2 JPS6120527 B2 JP S6120527B2 JP 52043607 A JP52043607 A JP 52043607A JP 4360777 A JP4360777 A JP 4360777A JP S6120527 B2 JPS6120527 B2 JP S6120527B2
- Authority
- JP
- Japan
- Prior art keywords
- xylene
- styrene
- fraction
- temperature
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 89
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 87
- 239000008096 xylene Substances 0.000 claims description 73
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 claims description 44
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000003054 catalyst Substances 0.000 claims description 12
- 150000003738 xylenes Chemical class 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 10
- 239000006227 byproduct Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229940078552 o-xylene Drugs 0.000 claims description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 7
- 239000011707 mineral Substances 0.000 claims description 7
- 239000011973 solid acid Substances 0.000 claims description 7
- 239000007791 liquid phase Substances 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 35
- 238000000034 method Methods 0.000 description 22
- 239000003921 oil Substances 0.000 description 17
- 238000004821 distillation Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 238000000197 pyrolysis Methods 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000004927 clay Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000013064 chemical raw material Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000000895 extractive distillation Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- GNPWYHFXSMINJQ-UHFFFAOYSA-N 1,2-dimethyl-3-(1-phenylethyl)benzene Chemical compound C=1C=CC(C)=C(C)C=1C(C)C1=CC=CC=C1 GNPWYHFXSMINJQ-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000010692 aromatic oil Substances 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000011234 economic evaluation Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- -1 naphtha Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は混合キシレンの製造方法に関するもの
であり、特に化学原料としてすぐれた組成を有す
る混合キシレンを得るための方法に関するもので
ある。
混合キシレンは従来から工業的にはナフサの接
触改質油、ナフサの熱分解副生油等の芳香族含有
留分から溶剤抽出法あるいは抽出蒸留法等により
キシレン留分として分離、精製されてきた。
混合キシレンは、o―キシレン、m―キシレ
ン、p―キシレンおよびエチルベンゼンを主成分
とするものであつて、その工業的用途は溶剤と化
学原料に大別される。溶剤としての用途では混合
キシレン中の異性体の組成による使用上の制約は
少ない。しかし化学原料として使用される場合
は、異性体中特にp―キシレンおよびo―キシレ
ンの価値が重視される。すなわち、p―キシレン
は合成繊維原料として多大な需要を有するテレフ
タル酸製造用原料であり、o―キシレンは可塑剤
原料であるフタル酸の原料である。これに対し、
m―キシレンおよびエチルベンゼンはそれ自身の
価値は乏しく、m―キシレンは異性化によりp―
キシレンに転化され、エチルベンゼンは異性化し
てキシレン類に転化するか、脱水素によりスチレ
ンに転化されて価値が高められている。しかし、
m―キシレンの異性化では異性化工程の負担が大
きく、また混合キシレンから分離したエチルベン
ゼンはスチレンの工業的規模の原料としては経済
的に不適当である。
混合キシレンの各成分は表1に示すように近接
した沸点を有しているので、各成分を単離するの
は困難である。
The present invention relates to a method for producing mixed xylenes, and particularly to a method for obtaining mixed xylenes having an excellent composition as a chemical raw material. Mixed xylenes have traditionally been industrially separated and purified as a xylene fraction from aromatic fractions such as naphtha catalytic reformed oil and naphtha thermal decomposition byproduct oil by solvent extraction or extractive distillation. Mixed xylene is mainly composed of o-xylene, m-xylene, p-xylene and ethylbenzene, and its industrial uses are broadly divided into solvents and chemical raw materials. When used as a solvent, there are few restrictions on use due to the composition of isomers in mixed xylenes. However, when used as a chemical raw material, the value of p-xylene and o-xylene is particularly important among the isomers. That is, p-xylene is a raw material for producing terephthalic acid, which is in great demand as a raw material for synthetic fibers, and o-xylene is a raw material for phthalic acid, which is a raw material for plasticizers. On the other hand,
m-xylene and ethylbenzene have little value on their own, and m-xylene is converted to p-xylene by isomerization.
Ethylbenzene is converted to xylenes, and ethylbenzene is isomerized to xylenes or dehydrogenated to styrene to increase its value. but,
In the isomerization of m-xylene, the burden of the isomerization step is large, and the ethylbenzene separated from mixed xylene is economically unsuitable as an industrial-scale raw material for styrene. Since each component of mixed xylene has close boiling points as shown in Table 1, it is difficult to isolate each component.
【表】
一般に混合キシレンから各成分を単離する工業
的方法は、精密蒸留と深冷分離との組合せで行な
われるのが普通であつて、沸点差のあるエチルベ
ンゼンとo―キシレンがまず精密蒸留で分離され
る。しかし沸点差の小さいm―キシレンとp―キ
シレンを蒸留で分離することは不可能で、融点差
を利用する深冷分離によつてp―キシレンを結晶
化して分離する。いずれの分離工程も多大のエネ
ルギーを消費するので、p―キシレン含量が多
く、m―キシレン、エチルベンゼン含量の少ない
混合キシレンが望まれている。
混合キシレンの原料として、エチレンを主とし
て得るために、ナフサ等の石油系炭化水素の熱分
解を行なう際に副生する芳香族炭化水素留分を使
用する場合には上記諸事項が特に問題となる。
主としてエチレンを製造する目的でナフサの熱
分解を行つた場合、副生とする熱分解油は芳香族
含有量が高くベンゼン、トルエン、キシレンを抽
出精製する重要な原料である。芳香族を主成分と
する熱分解油であるが少量成分としてパラフイン
類、オレフイン類を含み微量のジエン類、アセチ
レン類を含んでいる。従つて通常のキシレン製造
では、含有される不飽和成分に由来する各種トラ
ブル、たとえば重合による製造装置の閉塞やキシ
レン留分中へ不飽和成分が混入するための品質低
下をさけるために水添処理が行われている。この
水添処理の欠点は多量の水素を消費すると共に、
熱分解油の不飽和化合物の主体であるスチレンが
エチルベンゼンに転化し従つて熱分解系キシレン
留分はエチルベンゼン含有量が40〜50%と高い。
従来からこの課題を解決する方法として種々の
方法が提案されている。水添処理の前段階でエチ
ルベンゼンの前駆体であるスチレンを除去する方
法、例えばスチレンの精密蒸留による分離、溶剤
抽出蒸留、吸着剤による選択吸着などがある。し
かしこの方法で分離されたスチレンの経済的評価
は低く最善の方法とは言いがたい。
本発明は、キシレンの他にスチレンを含むキシ
レン留分における上述のごとき諸問題を解決する
ものである。
すなわち、本発明は、p―キシレン、o―キシ
レン、m―キシレンおよびスチレンを含むキシレ
ン留分を、鉱酸または固体酸触媒と、液相で、反
応系中のスチレン濃度5重量%以下で、且つ触媒
として鉱酸を用いる場合は5℃〜100℃でまた固
体酸触媒を用いる場合は100℃〜200℃で、接触さ
せ、該キシレン留分中のキシレンとスチレンのア
ラルキル化反応により、該キシレン留分中のm―
キシレンおよびスチレンの減少を達成することを
特徴とする混合キシレンの製造方法に関するもの
である。
本発明の目的および効果は(1)キシレン留分中の
エチルベンゼン前駆体のスチレンを除去するこ
と、(2)キシレン留分中のm―キシレンを減少し、
化学原料として有用なo,pキシレンを効率よく
濃縮する事、(3)有用な合成油であるキシレン―ス
チレン反応物を収率よく回収する事である。この
目的の1つである合成油は280〜310℃の沸点範囲
を有する1―キシリル―1―フエニルエタンを主
成分とする留分と370〜420℃の沸点を示す非縮合
型3環芳香族であるジスチレン化キシレンを主成
分とする留分である。これらは、相容性、潤滑
性、耐熱性、電気的性質に優れた性能を示し、可
塑性、高沸点溶媒、熱媒体、電気絶縁油、作動油
など広い用途に適した合成油である。
本発明者等は熱分解油キシレン留分中に含まれ
るスチレンを特にm―キシレンにより多くアルキ
ル化付加せしめ、エチルベンゼン前駆体であるス
チレンを除去すると同時にm―キシレンの減少を
達成し、さらにスチレンとキシレンの反応生成物
として有用な合成油である非縮合多環芳香族を回
収する方法を完成したものである。さらに本発明
の方法で改質されたキシレンは他の方法でエチル
ベンゼン又はその前駆体であるスチレンを分離除
去したキシレンと比較してその組成が工業原料と
して好ましいものである事が明らかとなつた。す
なわち各キシレン異性体のスチレンに対する反応
活性に顕著な差があり、この事が改質されたキシ
レンの組成に好ましい結果をもたらす事を見出し
本発明を完成したものである。
次に本発明の方法で改質されたキシレンの組成
が他の方法でエチルベンゼン等を除去した場合よ
り好ましい結果をもたらす事について説明をす
る。
エチルベンゼン、o,m,p―キシレンの混合
物を本発明の方法でスチレンとアラルキル化した
場合の反応性は、エチルベンゼンを1とした場合
下表に示した数値を示す。[Table] In general, the industrial method for isolating each component from mixed xylenes is usually carried out by a combination of precision distillation and cryogenic separation. separated by However, it is impossible to separate m-xylene and p-xylene by distillation, which have a small difference in boiling point, and p-xylene is crystallized and separated by cryogenic separation that takes advantage of the difference in melting point. Since both separation steps consume a large amount of energy, a mixed xylene containing a large amount of p-xylene and a small amount of m-xylene and ethylbenzene is desired. The above matters are particularly problematic when aromatic hydrocarbon fractions, which are produced as by-products during thermal decomposition of petroleum hydrocarbons such as naphtha, are used as raw materials for mixed xylene in order to primarily obtain ethylene. . When naphtha is pyrolyzed primarily for the purpose of producing ethylene, the pyrolysis oil produced as a by-product has a high aromatic content and is an important raw material for extracting and refining benzene, toluene, and xylene. Although it is a pyrolysis oil whose main components are aromatics, it also contains small amounts of paraffins and olefins, as well as trace amounts of dienes and acetylenes. Therefore, in normal xylene production, hydrogenation treatment is necessary to avoid various problems caused by the unsaturated components contained, such as blockage of production equipment due to polymerization and quality deterioration due to unsaturated components mixed into the xylene fraction. is being carried out. The disadvantage of this hydrogenation process is that it consumes a large amount of hydrogen, and
Styrene, which is the main unsaturated compound in pyrolysis oil, is converted to ethylbenzene, and therefore the pyrolysis xylene fraction has a high ethylbenzene content of 40 to 50%. Various methods have been proposed to solve this problem. There are methods for removing styrene, which is a precursor of ethylbenzene, at a stage prior to hydrogenation treatment, such as separation by precision distillation of styrene, solvent extractive distillation, and selective adsorption using an adsorbent. However, the economic evaluation of styrene separated by this method is low, and it cannot be said that it is the best method. The present invention solves the above-mentioned problems in xylene fractions containing styrene in addition to xylene. That is, the present invention involves treating a xylene fraction containing p-xylene, o-xylene, m-xylene, and styrene with a mineral acid or solid acid catalyst in a liquid phase at a styrene concentration of 5% by weight or less in the reaction system. In addition, when a mineral acid is used as a catalyst, the xylene is brought into contact at 5°C to 100°C, or at 100°C to 200°C when a solid acid catalyst is used, and an aralkylation reaction between xylene and styrene in the xylene fraction is performed. m in the fraction
The present invention relates to a method for producing mixed xylene characterized by achieving a reduction in xylene and styrene. The objects and effects of the present invention are (1) to remove styrene as an ethylbenzene precursor in the xylene fraction, (2) to reduce m-xylene in the xylene fraction,
(3) To efficiently concentrate o, p-xylene, which is useful as a chemical raw material, and (3) to recover in good yield the xylene-styrene reaction product, which is a useful synthetic oil. Synthetic oil, which is one of the purposes for this purpose, consists of a fraction mainly composed of 1-xylyl-1-phenylethane, which has a boiling point range of 280 to 310℃, and a non-condensed three-ring aromatic oil, which has a boiling point of 370 to 420℃. It is a fraction whose main component is a certain distyrenated xylene. These synthetic oils exhibit excellent performance in compatibility, lubricity, heat resistance, and electrical properties, and are suitable for a wide range of uses, including plasticity, high-boiling point solvents, heat transfer fluids, electrical insulation oils, and hydraulic oils. The present inventors alkylated more of the styrene contained in the pyrolysis oil xylene fraction to m-xylene, and simultaneously removed styrene, which is an ethylbenzene precursor, and simultaneously achieved a reduction in m-xylene. This work has completed a method for recovering unfused polycyclic aromatics, which are synthetic oils useful as xylene reaction products. Furthermore, it has become clear that the composition of xylene modified by the method of the present invention is preferable as an industrial raw material compared to xylene in which ethylbenzene or its precursor styrene is separated and removed by other methods. That is, the present invention was completed by discovering that there is a significant difference in the reaction activity of each xylene isomer toward styrene, and that this brings about favorable results in the composition of modified xylene. Next, it will be explained that the composition of xylene modified by the method of the present invention provides more favorable results than when ethylbenzene and the like are removed by other methods. When a mixture of ethylbenzene and o, m, p-xylene is aralkylated with styrene by the method of the present invention, the reactivity shows the values shown in the table below, where ethylbenzene is taken as 1.
【表】
上記の表2からも明らかなごとく、m―キシレ
ンの反応性が圧倒的に大きい。従つて本発明の方
法で処理した場合、除去されるべきスチレンは選
択的にm―キシレンとアラルキル化付加する事に
なる。この事によつて改質されたキシレン留分は
工業的に利用される事のないm―キシレンの含有
量をも低減する事になる。従つてテレフタル酸、
フタル酸の原料として重要なp―キシレン、o―
キシレンの量が多く、この事は、化学原料として
混合キシレンとして非常に好ましいことである。
本発明方法による化学工業原料として有用なo
―キシレン、p―キシレンの合計が60.0%と高度
に濃縮が可能である。さらに注目すべき本発明の
利点は、ポリエステル繊維工業用粗原料であるp
―キシレン製造に非常に好ましい組成である混合
キシレンが回収できる事にある。
一般に混合キシレンから、各成分を単独に分離
する方法は、精密蒸留と深冷分離との組合せで行
われるのが普通であつて、沸点差のあるエチルベ
ンゼンと、o―キシレンがまず精密蒸留で分離さ
れる。しかし沸点差の少いm,p,キシレンは蒸
留で分離することは不可能で、融点差を利用する
深冷分離によつてp―キシレンを結晶化して分離
する。従つてp―キシレンのm―キシレンに対す
る比率が、大きい程有利で好ましい。しかるに本
発明方法はm―キシレンはスチレンとの選択的ア
ラルキル化により重質油へと転化するためp/m
比の改善の効果も達成できるものである。
ここで、表3に熱分解油キシレン留分(沸点範
囲135℃〜150℃)について、未処理(1)、水添処理
(2)、スチレンのみを分離除去したもの(3)、本発明
方法により処理したもの(4)の各組成を示す。表―
3から、本発明の効果は明らかである。[Table] As is clear from Table 2 above, the reactivity of m-xylene is overwhelmingly high. Therefore, when treated with the method of the present invention, the styrene to be removed is selectively added to m-xylene by aralkylation. As a result, the modified xylene fraction also has a reduced content of m-xylene, which is not used industrially. Therefore, terephthalic acid,
p-xylene and o- are important raw materials for phthalic acid.
The amount of xylene is large, which is very preferable as a mixed xylene as a chemical raw material. O useful as a chemical industrial raw material by the method of the present invention
- Highly concentrated with a total of xylene and p-xylene of 60.0%. A further noteworthy advantage of the present invention is that p, which is a crude raw material for the polyester fiber industry,
- It is possible to recover mixed xylene, which has a very favorable composition for xylene production. Generally, the method of separating each component individually from a mixed xylene is usually carried out by a combination of precision distillation and cryogenic separation. Ethylbenzene and o-xylene, which have different boiling points, are first separated by precision distillation. be done. However, m, p, and xylene, which have a small difference in boiling point, cannot be separated by distillation, and p-xylene is crystallized and separated by cryogenic separation that takes advantage of the difference in melting point. Therefore, the larger the ratio of p-xylene to m-xylene is, the more advantageous and preferable it is. However, in the method of the present invention, m-xylene is converted into heavy oil by selective aralkylation with styrene, so the p/m
The effect of improving the ratio can also be achieved. Here, Table 3 shows the untreated (1), hydrogenated
The compositions of (2), one in which only styrene was separated and removed (3), and one treated by the method of the present invention (4) are shown below. table-
3, the effects of the present invention are clear.
【表】
表―3中(1)の数値は、熱分解油から留出温度
135℃〜150℃の範囲で得られた留分の成分のう
ち、キシレン(C8芳香族)の合計を100とした組
成を示してある。
上表3中の処理方法に於て3の組成は除去され
るべきスチレンを理想的に除去する事が可能であ
ると仮定した場合の数値を示したため実際のo,
pキシレン含有量はさらに低いと考えられる。
次に本発明の実施形態を具体的に説明する。本
発明のキシレン留分としては、各成分を適宜混合
したものを使用することができる。好ましいキシ
レン留分は熱分解油を予備蒸留してキシレン留分
を主体とする留分である常圧沸点130〜160℃の留
分、さらに好ましくは135〜150℃の留分を分取し
たものである。この留分の主成分はキシレン類、
スチレンでありその他少量のトルエン、C9芳香
族、パラフイン類とごく微量の同沸点範囲である
オレフイン類が含まれている。この留分中のスチ
レン量が少くてキシレンの改質が期待できない場
合で外部からスチレンを追加する事によりo,p
―キシレンの濃縮を行なう場合も当然本発明の実
施と理解すべきである。
本発明の方法では液相である必要がある。従つ
て処理する圧力は反応温度範囲で当該キシレン留
分が液相を保つに必要な加圧を要する。必要な圧
力は処理温度によつて当然変動するものであるが
通常40Kg/cm2以下の圧力範囲である。
本発明で用いられる触媒は固体酸触媒および鉱
酸である。これらはいずれも基礎反応であるアラ
ルキル化反応触媒として知られたものである。塩
化アルミニウム、沸化ホウ素などいわゆるフリー
デルクラフト触媒と称されるハロゲン化金属もア
ラルキル化反応触媒能を有することが知られてい
るが同時にスチレンの重合を促進しその結果スチ
レンとm―キシレンの反応によるm―キシレンの
減少が達成し難いので好ましくない。固体酸とし
ては酸性白土、活性白土などの粘土鉱物、鉱酸と
しては硫酸が特に好ましい。
本発明の方法での処理温度は0℃〜200℃の範
囲内で使用する触媒によつて異なる。後記する下
限温度ではキシレン留分中のスチレンの重合反応
速度が相対的に大きくなりスチレンの重合による
高分子タール状物質が生成して好ましくない。温
度が後記する上限を越える場合は熱分解によつて
副生重質油の性状を悪化させる原因となり好まし
くない。固体酸の場合は100℃〜200℃、鉱酸の場
合は5℃〜100℃の温度範囲が特に好ましい。
キシレン留分中のm―キシレンに対してスチレ
ンを選択的に反応せしめるため反応系中の遊離ス
チレン濃度は5重量%以下にする事が必要であ
る。反応系中のスチレン濃度が高い場合にはスチ
レン分子間での反応によりスチレン重合物の生成
量が増加すると共にキシレン類との反応に対する
選択性が悪くなりキシレン留分の改質の目的を達
する事ができない。反応系中のスチレン濃度の調
整は反応生成物を再び循環するか、あるいは改質
された回収キシレンを再使用しキシレン留分と混
合する事によつて行うことができる。
本発明で得られる重質副生油は主としてキシレ
ンとスチレンとによるアラルキル化物であつて、
減圧下(3mmHg)で留出温度135〜150℃、180〜
230℃範囲で得られる二種類がある。留出温度135
〜150℃の第一留分は1―メタキシル―1―フエ
ニルエタンを主成分とするスチレン化キシレンで
ある。留出温度180〜230℃の第二留分はジスチレ
ン化キシレンを主成分とする留分である事を、赤
外吸収分析、NMR、質量分析で確認した。
実施例 1
ナフサ原料熱分解工程で副生する芳香族に富む
分解副生油からキシレン留分である留出温度135
℃〜148℃の留分を蒸留により分離した。このキ
シレン留分の組成を下に示す。
非芳香族類 3.7wt%
トルエン 0.1
エチルベンゼン 8.8 13.2
o―キシレン 18.6 28.0
m―キシレン 26.9 40.5
p―キシレン 12.2 18.3
スチレン 29.5 100.0
キユメン 0.2
100.0
反応初期の稀釈剤として、エチルベンゼン
13.2wt%、o―キシレン28.0wt%、m―キシレン
40.5wt%、p―キシレン18.3wt%に調合した、調
合キシレンを用いた。(本実施例で調合キシレン
を使用する目的は反応初期のスチレンを稀釈する
事にある。従つて本発明を繰り返す場合は、改質
された回収キシレンを使用する事でこの目的は達
せられる。)
撹拌器、温度計付きの容量10の反応器に調合
キシレン400gと90%硫酸200gを仕込み温度5℃
に冷却する。撹拌しながら前記キシレン留分を
100〜200ml/minの速度で滴加する、滴加終了後
10〜15分撹拌して反応熱による温度上昇が停止
し、再び温度5〜7℃まで冷却された時点でさら
に前記キシレン留分を添加する。系内中のスチレ
ン濃度が5%を越えない様にするため添加は次の
様に行なう、65gづつ5回、120gづつ5回、220
gづつ5回、410gづつ5回、760gづつ5回で合
計7875gを反応させる。この場合スチレン濃度は
2.7〜4.1%の範囲を変動する。
反応終了後硫酸を沈降分離し反応物を5%苛性
ソーダ水溶液で中和する。洗浄液が中性(PH6.8
〜7.2Q)になるまで水洗する。
未反応の改質キシレンを常圧留出温度150℃ま
で分離し、副生重質油は減圧で回収する。
回収改質キシレンはガスクロマトグラフ分析、
副生重質油は質量分析、IR分析で構造確認を行
つた。結果は表4に示す。
実施例 2
実施例1で使用した分解キシレン留分を使用し
た。反応初期の稀釈剤として実施例1で得られた
回収改質キシレンを用いた。
撹拌器、温度計つきの容量10の反応器に、前
記回収改質キシレン1000gと酸性白土250gを仕
込み還流温度まで加熱する。
分解キシレン留分の添加は100〜200ml/minで
行い実施例1と同様に170g×5回、300g×5
回、500g×5回、900g×2回に分けて添加す
る。反応終了後、酸性白土を別し、蒸留によつ
て分離する。結果は表4に示す。
比較例 1
実施例1と同様にして行なつた。但し、反応系
中のスチレン濃度が5%を越える様300g×2
回、600g×2回、1000g×2回、1500g×2回
で合計6800gを反応させる。この場合スチレン濃
度は6.1〜12.6%の範囲を変動する。結果は表4
に示す。[Table] The values in (1) in Table 3 are the distillation temperatures from pyrolysis oil.
Among the components of the fraction obtained in the range of 135°C to 150°C, the composition is shown with the sum of xylene ( C8 aromatic) as 100. In the treatment method in Table 3 above, the composition number 3 shows the value assuming that the styrene to be removed can be ideally removed, so the actual o,
The p-xylene content is believed to be even lower. Next, embodiments of the present invention will be specifically described. As the xylene fraction of the present invention, a mixture of each component as appropriate can be used. A preferable xylene fraction is one obtained by pre-distilling pyrolysis oil and separating a fraction mainly consisting of xylene fraction with an ordinary pressure boiling point of 130 to 160°C, more preferably a fraction of 135 to 150°C. It is. The main components of this fraction are xylenes,
It is styrene and also contains small amounts of toluene, C9 aromatics, and very small amounts of olefins that have the same boiling point as paraffins. If the amount of styrene in this fraction is small and xylene modification cannot be expected, adding styrene from the outside can
-Concentration of xylene should also be understood as an implementation of the present invention. The method of the present invention requires a liquid phase. Therefore, the processing pressure must be high enough to maintain the xylene fraction in a liquid phase within the reaction temperature range. Although the necessary pressure naturally varies depending on the processing temperature, it is usually within a pressure range of 40 kg/cm 2 or less. The catalysts used in the present invention are solid acid catalysts and mineral acids. All of these are known as catalysts for the aralkylation reaction, which is the basic reaction. Metal halides known as Friedel-Crafts catalysts such as aluminum chloride and boron fluoride are also known to have the ability to catalyze aralkylation reactions, but they also promote the polymerization of styrene, resulting in the reaction between styrene and m-xylene. This is not preferable because it is difficult to achieve a reduction in m-xylene. Clay minerals such as acid clay and activated clay are particularly preferred as solid acids, and sulfuric acid is particularly preferred as mineral acids. The treatment temperature in the method of the present invention ranges from 0°C to 200°C and varies depending on the catalyst used. At the lower limit temperature described below, the polymerization reaction rate of styrene in the xylene fraction becomes relatively high, and a polymeric tar-like substance is produced due to the polymerization of styrene, which is not preferable. If the temperature exceeds the upper limit described below, it is not preferable because it causes deterioration of the properties of the by-product heavy oil due to thermal decomposition. Particularly preferred is a temperature range of 100°C to 200°C for solid acids and 5°C to 100°C for mineral acids. In order to selectively react styrene with m-xylene in the xylene fraction, it is necessary to keep the concentration of free styrene in the reaction system at 5% by weight or less. When the styrene concentration in the reaction system is high, the amount of styrene polymer produced increases due to the reaction between styrene molecules, and the selectivity for the reaction with xylenes deteriorates, making it difficult to achieve the purpose of modifying the xylene fraction. I can't. The styrene concentration in the reaction system can be adjusted by recycling the reaction product or by reusing the recovered modified xylene and mixing it with the xylene fraction. The heavy by-product oil obtained in the present invention is mainly an aralkylated product of xylene and styrene, and
Distillation temperature 135~150℃, 180~ under reduced pressure (3mmHg)
There are two types available in the 230℃ range. Distillation temperature 135
The first fraction at ~150°C is styrenated xylene mainly composed of 1-methaxyl-1-phenylethane. It was confirmed by infrared absorption analysis, NMR, and mass spectrometry that the second fraction with a distillation temperature of 180 to 230°C was mainly composed of distyrenated xylene. Example 1 Distillation temperature of 135 xylene fraction from the aromatic-rich cracked by-product oil produced in the naphtha raw material pyrolysis process
The fraction between 148°C and 148°C was separated by distillation. The composition of this xylene fraction is shown below. Non-aromatics 3.7wt% Toluene 0.1 Ethylbenzene 8.8 13.2 o-xylene 18.6 28.0 m-xylene 26.9 40.5 p-xylene 12.2 18.3 Styrene 29.5 100.0 Kyumene 0.2 100.0 Ethylbenzene as a diluent at the initial stage of the reaction
13.2wt%, o-xylene 28.0wt%, m-xylene
A formulated xylene containing 40.5 wt% and 18.3 wt% of p-xylene was used. (The purpose of using prepared xylene in this example is to dilute the styrene at the initial stage of the reaction. Therefore, when repeating the present invention, this purpose can be achieved by using modified recovered xylene.) 400 g of mixed xylene and 200 g of 90% sulfuric acid were placed in a 10-capacity reactor equipped with a stirrer and a thermometer, and the temperature was 5°C.
Cool to Add the xylene fraction while stirring.
Add dropwise at a rate of 100 to 200ml/min, after completion of addition
After stirring for 10 to 15 minutes, the temperature rise due to the reaction heat has stopped, and when the temperature has cooled again to 5 to 7°C, the xylene fraction is further added. In order to prevent the styrene concentration in the system from exceeding 5%, the addition was done as follows: 65g each 5 times, 120g 5 times each, 220g
A total of 7875 g was reacted with 5 times of 410 g, 5 times of 760 g each, and 5 times of 760 g each. In this case, the styrene concentration is
It fluctuates in the range of 2.7-4.1%. After the reaction is completed, the sulfuric acid is separated by precipitation, and the reaction product is neutralized with a 5% aqueous solution of caustic soda. Cleaning liquid is neutral (PH6.8
~7.2Q). Unreacted modified xylene is separated at atmospheric distillation temperature of 150°C, and by-product heavy oil is recovered under reduced pressure. Recovered modified xylene is analyzed by gas chromatography,
The structure of the by-product heavy oil was confirmed by mass spectrometry and IR analysis. The results are shown in Table 4. Example 2 The cracked xylene fraction used in Example 1 was used. The recovered modified xylene obtained in Example 1 was used as a diluent at the initial stage of the reaction. In a reactor with a capacity of 10 equipped with a stirrer and a thermometer, 1000 g of the recovered and modified xylene and 250 g of acid clay are charged and heated to reflux temperature. The cracked xylene fraction was added at a rate of 100 to 200 ml/min, and as in Example 1, 170 g x 5 times and 300 g x 5 were added.
Add in 500g x 5 times and 900g x 2 times. After the reaction is complete, the acid clay is separated and separated by distillation. The results are shown in Table 4. Comparative Example 1 This was carried out in the same manner as in Example 1. However, 300g x 2 so that the styrene concentration in the reaction system exceeds 5%
600g x 2 times, 1000g x 2 times, 1500g x 2 times for a total of 6800g. In this case the styrene concentration varies between 6.1 and 12.6%. The results are in Table 4
Shown below.
【表】
実施例3 熱分解油キシレン留分の改質
改質初期の稀釈剤として実施例2によつて回収
された改質キシレン100gと90%硫酸100gを反応
器に仕込み実施例2と同様に冷却する。温度5〜
10℃で実施例1で得られたキシレン留分2000gを
滴加する。他の方法は実施例1と同様に行う。結
果は表5に示す。
実施例4 熱分解油キシレン留分の改質
改質触媒として活性白土(水沢化学工業(株)ガレ
オナイト―236)100gを用いた。還流冷却器、撹
拌器付きの容量3の反応器に活性白土100gと
実施例2によつて改質されたキシレン100gを仕
込み、還流温度まで加熱する。還流を保つ程度の
加熱のもとで実施例1で得られたキシレン留分
2000gを滴加する。滴加終了後冷却し活性白土を
過し実施例2と同様に蒸留する。結果は表5に
示す。[Table] Example 3 Modification of pyrolysis oil xylene fraction 100 g of the modified xylene recovered in Example 2 and 100 g of 90% sulfuric acid were charged into a reactor as a diluent in the initial stage of modification, and the same procedure as in Example 2 was carried out. Cool to Temperature 5~
At 10° C., 2000 g of the xylene fraction obtained in Example 1 are added dropwise. The other methods are the same as in Example 1. The results are shown in Table 5. Example 4 Modification of pyrolysis oil xylene fraction 100 g of activated clay (Mizusawa Chemical Industry Co., Ltd. Galeonite-236) was used as a reforming catalyst. 100 g of activated clay and 100 g of xylene modified according to Example 2 are charged into a 3-capacity reactor equipped with a reflux condenser and a stirrer and heated to reflux temperature. Xylene fraction obtained in Example 1 under heating to maintain reflux
Add 2000g dropwise. After the addition is complete, the mixture is cooled, filtered through activated clay, and distilled in the same manner as in Example 2. The results are shown in Table 5.
Claims (1)
およびスチレンを含むキシレン留分を、鉱酸また
は固体酸触媒と、液相で、反応系中のスチレン濃
度5重量%以下で、且つ触媒として鉱酸を用いる
場合は5℃〜100℃でまた固体酸触媒を用いる場
合は100℃〜200℃で、接触させ、該キシレン留分
中のキシレンとスチレンのアラルキル化反応によ
り、該キシレン留分中のm―キシレンおよびスチ
レンの減少を達成することを特徴とする混合キシ
レンの製造方法。 2 前記キシレン留分が、エチレンを主として得
るために石油系炭化水素を700℃以上にて熱分解
する際に副生する分解油であつて、沸点範囲130
℃〜150℃に含まれる留分である特許請求の範囲
第1項記載の混合キシレンの製造方法。[Claims] 1. A xylene fraction containing p-xylene, o-xylene, m-xylene and styrene is mixed with a mineral acid or a solid acid catalyst in a liquid phase at a styrene concentration of 5% by weight or less in the reaction system. , and in the case of using a mineral acid as a catalyst, at a temperature of 5°C to 100°C, or in the case of using a solid acid catalyst, at a temperature of 100°C to 200°C. A method for producing mixed xylenes, characterized by achieving a reduction in m-xylene and styrene in a xylene fraction. 2. The xylene fraction is a cracked oil that is produced as a by-product when petroleum hydrocarbons are thermally decomposed at 700°C or higher to mainly obtain ethylene, and has a boiling point range of 130°C.
The method for producing mixed xylene according to claim 1, which is a fraction contained in a temperature range of 150°C to 150°C.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4360777A JPS53130624A (en) | 1977-04-18 | 1977-04-18 | Process for preparing mixed xylenes |
FR7809111A FR2385789A1 (en) | 1977-03-29 | 1978-03-29 | PROCESS FOR TREATING THE OIL OBTAINED AS A BY-PRODUCT FROM THERMAL CRACKING OF PETROLEUM PRODUCTS, WITH A VIEW TO IMPROVING THE QUALITY OF ITS DISTILLATION PRODUCTS |
GB12255/78A GB1592730A (en) | 1977-03-29 | 1978-03-29 | Method of processing thermal cracked by-product oil |
IT21736/78A IT1096164B (en) | 1977-03-29 | 1978-03-29 | PROCESSING PROCESS OF A PETROLEUM BY-PRODUCT SUBJECT TO A PIROSCISSIONE |
NLAANVRAGE7803350,A NL176690C (en) | 1977-03-29 | 1978-03-29 | PROCESS FOR TREATING A DISTILLATE OF AN OIL OBTAINED AS BY-PRODUCT IN THE THERMAL CRACKING OF PETROLEUM HYDROCARBONS. |
DE2813502A DE2813502C2 (en) | 1977-03-29 | 1978-03-29 | A method for selectively reducing the m-xylene content and the content of aromatic olefins in a by-product oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4360777A JPS53130624A (en) | 1977-04-18 | 1977-04-18 | Process for preparing mixed xylenes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53130624A JPS53130624A (en) | 1978-11-14 |
JPS6120527B2 true JPS6120527B2 (en) | 1986-05-22 |
Family
ID=12668509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4360777A Granted JPS53130624A (en) | 1977-03-29 | 1977-04-18 | Process for preparing mixed xylenes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS53130624A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201407082YA (en) * | 2012-05-31 | 2014-11-27 | Exxonmobil Chem Patents Inc | Styrene removal in paraxylene recovery process |
-
1977
- 1977-04-18 JP JP4360777A patent/JPS53130624A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS53130624A (en) | 1978-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0446247B2 (en) | ||
US3341615A (en) | Process for the dehydrohalogenation of halogenated hydrocarbons | |
CA1110666A (en) | Process for producing high purity benzene | |
JPS6136498B2 (en) | ||
JPS5950197B2 (en) | Processing method for pyrolysis byproduct oil | |
JPS6120527B2 (en) | ||
US2636909A (en) | Production of akomatic | |
EP0360704A1 (en) | Process for removing impurities from an aromatic stream | |
US4735703A (en) | Method of increasing the concentration of straight chain paraffin material | |
US3499945A (en) | Producing high purity toluene from petroleum naphtha | |
CA1232562A (en) | Method of processing thermal-cracked oil distillates | |
US3651165A (en) | Method for recovery and purification of isobutylene | |
EP0093475A1 (en) | Conversion of certain hydrocarbons using silicate catalyst | |
US3400168A (en) | Production of high-purity benzene from cracked petroleum residues | |
JPH0552353B2 (en) | ||
EP0158503B1 (en) | High selectivity process for dehydrogenation of paraffinic hydrocarbons | |
CA2003994C (en) | Selective production of aromatic hydrocarbons from c- to c- olefinic hydrocarbons | |
JP2952789B2 (en) | Method for producing oxidation resistant solvent | |
US5059742A (en) | Process for separating 2,6-dimethylnaphthalene | |
JPS622566B2 (en) | ||
US5004851A (en) | Process to produce aromatics of low acid-wash color | |
CA1199647A (en) | Conversion of certain hydrocarbons using calcined teasilicate catalyst | |
US2631996A (en) | Bf3-iodine polymerization of unsaturated hydrocarbon mixtures | |
US2415438A (en) | Polymerization of isobutylene | |
JPH0552352B2 (en) |