JPS61204375A - coated hard alloy - Google Patents
coated hard alloyInfo
- Publication number
- JPS61204375A JPS61204375A JP4389785A JP4389785A JPS61204375A JP S61204375 A JPS61204375 A JP S61204375A JP 4389785 A JP4389785 A JP 4389785A JP 4389785 A JP4389785 A JP 4389785A JP S61204375 A JPS61204375 A JP S61204375A
- Authority
- JP
- Japan
- Prior art keywords
- coated hard
- hard alloy
- base material
- coated
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 25
- 239000000956 alloy Substances 0.000 title claims description 25
- 239000000463 material Substances 0.000 claims description 20
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 239000011195 cermet Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属などを切削する被覆硬質合金に関するも
ので、特に断続切削(フライス削り)に適する耐欠損性
にすぐれた工具用の被覆硬質合金に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a coated hard alloy for cutting metals, etc., and in particular to a coated hard alloy for tools with excellent chipping resistance suitable for interrupted cutting (milling). It concerns alloys.
従来、化学蒸着法(以下、CVD法と略称する)により
超硬合金やサーメットなどの硬質焼結合金の表面に各種
のセラミックスを被覆せしめた被覆硬質合金は主として
旋削用として使用されており、被覆層をもたない硬質焼
結合金に比べて耐摩耗性に富んでいることは周知であ丸
〔発明が解決しようとする問題点〕
しかし、上記した被覆硬質合金は耐欠損性が劣化すると
いう問題点を有している。この原因の一つとして硬質焼
結合金に被覆したのちtこおいて表面層近傍に引張り応
力が作用して耐欠損性が低下するものと考えられ、した
がってCVD法によって得られた被覆硬質合金は断続的
に衝撃を受ける転削用の工具としては適さない場合が多
い。これらの対策として耐欠損性にすぐれた物理蒸着法
(PvD法)によって処理した被覆硬質合金が用いられ
ているが、PVD法はCDv法に比べてコスト高を招来
するなどの不具合を有している。Conventionally, coated hard alloys, in which the surface of hard sintered alloys such as cemented carbide and cermets are coated with various ceramics using chemical vapor deposition (hereinafter abbreviated as CVD method), have been mainly used for turning purposes. It is well known that the coated hard alloy described above has higher wear resistance than hard sintered alloys that do not have a layer [problem to be solved by the invention]. There are problems. One of the reasons for this is thought to be that after the hard sintered alloy is coated, tensile stress acts near the surface layer and the chipping resistance decreases.Therefore, the coated hard alloy obtained by the CVD method It is often unsuitable as a milling tool that is subject to intermittent impact. As a countermeasure to these problems, coated hard alloys treated by physical vapor deposition (PvD method), which have excellent fracture resistance, are used, but PVD method has disadvantages such as higher cost compared to CDv method. There is.
本発明は、コスト的に有利に被覆処理できるCvD法シ
こよりて超硬合金やサーノ・リドなどの硬質焼結合金を
被覆し、転削用に使用しても充分耐え得る耐欠損性が高
い被覆硬質合金の開発を目的とするものである。The present invention coats hard sintered alloys such as cemented carbide and Sarno-Lido using the CvD method, which is cost-effective and has high fracture resistance that can withstand use for milling. The purpose is to develop coated hard alloys.
本発明は、前記した問題点に鑑み、下記する構成によっ
てその問題点を解決したものである。In view of the above-mentioned problems, the present invention solves the problems with the following configuration.
すなわち、母材である超硬合金やサーノ・リドなどがロ
ックウニA/Aスケ−/I/(以下、HRA トいう)
で87〜90の硬度を有し、該母材の表面シこ化学蒸着
法によりTic、 TiN、 T1CN、 Al2O3
の1種または2種は上を0.5〜70μmの層厚を形成
せしめた被覆硬質合金である。In other words, the base materials such as cemented carbide and Sarno Lido are used as Rock Uni A/A Skate/I/ (hereinafter referred to as HRA).
It has a hardness of 87 to 90, and the surface of the base material is coated with Tic, TiN, T1CN, Al2O3 by chemical vapor deposition method.
One or two of these are coated hard alloys on which a layer thickness of 0.5 to 70 μm is formed.
本発明は、被覆硬質合金の母材となる超硬合金やサーメ
ットの硬度は主として結合相量ないし炭化物あるいは炭
窒化物の粒度を変化させることによって制御することが
可能である。したがって、例えば母材の結合相量を増加
させることで該母材の硬度は低下するが靭性が増大して
被覆層に生じる表面キ裂の伸展を防止する効果が増大し
、その結果、切刃のチッピングまたは欠損が生じ難くな
る。たりし、前記母材の硬度を下げすぎるとチッピング
や欠損はほとんど生じな(なるが、該母材自体の塑性変
形量が大ぎくなり、たとえ連続旋削に比べて刃先温度が
低い断続切削においても塑性変形に伴なう摩耗が大きく
なるという知見に基づくものである。In the present invention, the hardness of the cemented carbide or cermet that is the base material of the coated hard alloy can be controlled mainly by changing the amount of binder phase or the particle size of carbide or carbonitride. Therefore, for example, by increasing the amount of binder phase in the base material, the hardness of the base material decreases, but the toughness increases, which increases the effect of preventing the extension of surface cracks that occur in the coating layer, and as a result, the cutting edge chipping or chipping is less likely to occur. However, if the hardness of the base material is reduced too much, chipping or chipping will hardly occur (but the amount of plastic deformation of the base material itself will be large, even in interrupted cutting where the cutting edge temperature is lower than in continuous turning). This is based on the knowledge that wear increases with plastic deformation.
なお、前記した超硬合金やサーメットなど被覆硬質合金
の母材の硬度をHRA 87〜90の範囲一こ限定する
理由は、HRA 87未満の該母材を用いたものにおい
ては刃先の塑性変形が生じ易くなり切削工具として性能
を充分に発揮することができないし、HRA90を越え
た母材を用いて被覆した被覆硬質合金においては切削時
において切刃に欠損やチッピングが生じるおそれが多分
にあるためである。The reason why the hardness of the base material of the coated hard alloy such as cemented carbide or cermet is limited to a range of HRA 87 to 90 is because plastic deformation of the cutting edge occurs when using the base material with HRA less than 87. This is because the cutting tool is not able to fully demonstrate its performance as a cutting tool, and there is a high risk of breakage or chipping of the cutting edge during cutting in coated hard alloys coated using base materials that exceed HRA90. It is.
一方、前記母材に被覆するTic 、 Tj−N、T1
CN、AjHO3の1種ないし2種以上の層厚を0.5
〜7.0μmと限定した理由は、該層厚がα5μm未満
のものにおいては充分なる耐摩耗性が得られず所期の目
的が達成できないし、また前記層厚が7.0μmを越え
ると被覆層が該母材から剥離したりチ・リビングが生じ
易くなり、いずれも切削工具としては寿命低下の起因と
なり好ましい状態ではなくなる。On the other hand, Tic, Tj-N, T1 coated on the base material
The layer thickness of one or more of CN and AjHO3 is 0.5
The reason why the layer thickness is limited to ~7.0 μm is that if the layer thickness is less than α5 μm, sufficient wear resistance cannot be obtained and the intended purpose cannot be achieved, and if the layer thickness exceeds 7.0 μm, the coating will fail. The layer is likely to peel off from the base material and chiliving may occur, which is not a desirable condition for a cutting tool as it will shorten its life.
以下、実施例を述べる。 Examples will be described below.
原料のWC,Tj−C、TaC,Co などの粉末を配
合し、湿式ボールミ〜にて混合して、乾燥→プレス整形
を経て1360−11100℃X60m1nの真空焼結
によって本発明による被覆硬質合金の母材をつくった。Powders such as raw materials WC, Tj-C, TaC, Co, etc. are blended, mixed in a wet ball mill, dried, press shaped, and vacuum sintered at 1360-11100°C x 60ml to form the coated hard alloy according to the present invention. I made the base material.
これを研削加工してSNG 1153インサートとし、
次いでCVD法をこより、その表面をこ被膜を形成した
。This was ground and made into SNG 1153 insert.
Next, a coating was formed on the surface by CVD.
なお、本発明の被覆硬質合金と比較するために母材の硬
度が本発明による該母材の範囲外にある比較例A、Bを
上記同様に焼結して研削加工によってSNG 1135
インサートとし、その表面にCVD法により被膜を形成
した。また、本発明の母材tこ被覆層厚のみが範囲外に
ある比較例Cも合せてつくった。上記した各試料の詳細
を下表に示す。In addition, in order to compare with the coated hard alloy of the present invention, Comparative Examples A and B in which the hardness of the base material is outside the range of the base material according to the present invention were sintered and ground in the same manner as above to obtain SNG 1135.
A film was formed on the surface of the insert by CVD. Comparative Example C was also prepared, in which only the thickness of the coating layer was outside the range of the base material of the present invention. Details of each sample described above are shown in the table below.
表
上表の各インサートをフッイスに固着し、これを工作機
械に取り付けて切削速度150m/min、切込み5.
0 tm 、送り1刃当りα55馴の切削条件で850
0の被剛材を切削テストした。Each of the inserts shown in the table above was fixed to a crosshair, and this was attached to a machine tool at a cutting speed of 150 m/min and a depth of cut of 5.
0 tm, feed rate per tooth 850 under cutting conditions of α55
A cutting test was conducted on a rigid material of 0.
以上の結果、比較例Aは切削長α3mでインサートが欠
損して切削不能になり、同Bは切削長α5mで塑性変形
に伴う異常摩耗によって切削不能になった。また比較例
Cは切削長0.6 mで被覆層が剥離したのに対し、本
発明による被覆硬質合金はいずれも切削長2mの時点に
おいても欠損せず、かつ摩耗状態も正常であった。As a result, Comparative Example A became uncuttable due to the insert being damaged at a cutting length of α3m, and Comparative Example B became uncuttable due to abnormal wear associated with plastic deformation at a cutting length of α5m. Further, in Comparative Example C, the coating layer peeled off at a cutting length of 0.6 m, whereas the coated hard alloys according to the present invention did not chip even at a cutting length of 2 m, and the wear state was normal.
次に前記表のインサートを用いて断続旋削テストをおこ
なった。Next, an interrupted turning test was conducted using the inserts shown in the table above.
その条件は以下の通りである。The conditions are as follows.
被覆材二SCMlILI5(外周の4箇所に溝を設けた
)
切削条件:切削速度= 120 m、/+= 、切込み
=2、5 rrm 、送り=0.15 u/reVから
開始して100回衝撃を加える毎tこ送りを0.15
rtrm、1revずつ増していくやり方で最高1.3
5M/revまでおこなった
以上の結果、比較例Aは衝撃回数330回(送りα60
11aR/revの時点)で欠ml、、比較例Bは57
0回(送り0.60 w11/revの時点)で刃先が
塑性変形して切削不能になった。また比較例Cは311
0回(送りα60朋/reVの時点)でチッピングが生
じて切削不能になりだのに対し、本発明による被覆硬質
合金は、いずれも衝撃回数900回(送り1−55wR
/revの時点)でも欠損を認めず切削可能であった。Covering material 2 SCMlILI5 (grooves were provided at 4 locations on the outer periphery) Cutting conditions: Cutting speed = 120 m, /+ = , depth of cut = 2.5 rrm, feed = 0.15 u/reV 100 impacts starting from Every ton of feed is 0.15
rtrm, maximum 1.3 by increasing by 1 rev
As a result of the above tests performed up to 5M/rev, Comparative Example A has 330 impacts (feed α60
11aR/rev), Comparative Example B was 57ml.
At the 0th turn (at a feed rate of 0.60 w11/rev), the cutting edge plastically deformed and became uncuttable. Comparative example C is 311
On the other hand, the coated hard alloy according to the present invention suffers from chipping at 0 times (at a feed rate of α60 mm/reV) and becomes uncuttable, whereas the coated hard alloys of the present invention all have impact times of 900 times (at a feed rate of 1-55 wR).
/rev), cutting was possible with no defects observed.
本発明による被覆硬質合金は以上述べたように耐欠損性
にすぐれ、工ンドミpやフライスなどの転削用の切削工
具に用いて効果を有することは勿論のこと断続旋削に用
いてもすぐれた性能が発揮でき、しかも耐衝撃性が要求
される耐摩耗工具にも用いられる応用範囲の広い被覆硬
質合金である。As mentioned above, the coated hard alloy of the present invention has excellent fracture resistance, and is not only effective when used in cutting tools for turning such as milling machines and milling cutters, but also excellent when used in interrupted turning. It is a coated hard alloy that has a wide range of applications and is used in wear-resistant tools that require high performance and impact resistance.
Claims (1)
ェルAスケールで87〜90の硬度を有し、該母材の表
面に化学蒸着法によりTiC、TiN、TiCN、Al
_2O_3の1種または2種以上を0.5〜7.0μm
の層厚を形成せしめたことを特徴とする被覆硬質合金。(1) The base material, such as cemented carbide or cermet, has a hardness of 87 to 90 on the Rockwell A scale, and the surface of the base material is coated with TiC, TiN, TiCN, Al, etc. by chemical vapor deposition.
0.5 to 7.0 μm of one or more of _2O_3
A coated hard alloy characterized by forming a layer thickness of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4389785A JPS61204375A (en) | 1985-03-07 | 1985-03-07 | coated hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4389785A JPS61204375A (en) | 1985-03-07 | 1985-03-07 | coated hard alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61204375A true JPS61204375A (en) | 1986-09-10 |
Family
ID=12676497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4389785A Pending JPS61204375A (en) | 1985-03-07 | 1985-03-07 | coated hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61204375A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085599A (en) * | 1990-05-16 | 1992-02-04 | Yazaki Corporation | Connector |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331882A (en) * | 1976-09-03 | 1978-03-25 | Toppan Printing Co Ltd | Printing method |
JPS5935434A (en) * | 1982-08-24 | 1984-02-27 | Nec Corp | Semiconductor device |
JPS6013072A (en) * | 1983-07-04 | 1985-01-23 | Mitsubishi Metal Corp | Surface-coated sintered cermet member for tool |
-
1985
- 1985-03-07 JP JP4389785A patent/JPS61204375A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331882A (en) * | 1976-09-03 | 1978-03-25 | Toppan Printing Co Ltd | Printing method |
JPS5935434A (en) * | 1982-08-24 | 1984-02-27 | Nec Corp | Semiconductor device |
JPS6013072A (en) * | 1983-07-04 | 1985-01-23 | Mitsubishi Metal Corp | Surface-coated sintered cermet member for tool |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085599A (en) * | 1990-05-16 | 1992-02-04 | Yazaki Corporation | Connector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2361633C (en) | Method for producing a cutting tool and a cutting tool | |
EP0127416A2 (en) | Cutting tool and the production thereof and use of the same | |
US5325747A (en) | Method of machining using coated cutting tools | |
JP3309507B2 (en) | Cutting tools made of surface-coated cubic boron nitride-based ceramics with a hard coating layer with excellent adhesion | |
JPS63195268A (en) | Surface-coated hard alloy cutting tools | |
JPS6256564A (en) | Surface-coated hard parts with excellent wear resistance | |
JP3707223B2 (en) | Milling tool with excellent wear resistance | |
JPS62192576A (en) | coated hard alloy | |
JP2918133B2 (en) | Surface coated cutting tool | |
JPS61204375A (en) | coated hard alloy | |
JP3419140B2 (en) | Surface coated cutting tool | |
JP2926883B2 (en) | Surface-coated hard member with excellent wear resistance | |
JP3460571B2 (en) | Milling tool with excellent wear resistance | |
JPS62270764A (en) | Surface-coated hard member | |
JPH0271906A (en) | Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent plastic deformation resistance | |
JPH10193206A (en) | Cutting tool whose cutting edge piece has excellent brazing joining strength | |
JP2540905B2 (en) | Surface coated cutting tool made of hard material | |
JP2556116B2 (en) | Surface-coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance | |
JPH01252305A (en) | Surface coated tungsten carbide based cemented carbide cutting tip | |
JP2841749B2 (en) | Boron carbide coated cutting tools | |
JP2591403B2 (en) | Surface coated cemented carbide cutting tool | |
JPH10310878A (en) | Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance | |
JPS6389202A (en) | Surface-coated hard alloy cutting tools with stable service life | |
JP2668977B2 (en) | Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JP2571772B2 (en) | Surface coated cutting tool with excellent fracture resistance |