JPS6120341B2 - - Google Patents
Info
- Publication number
- JPS6120341B2 JPS6120341B2 JP52107867A JP10786777A JPS6120341B2 JP S6120341 B2 JPS6120341 B2 JP S6120341B2 JP 52107867 A JP52107867 A JP 52107867A JP 10786777 A JP10786777 A JP 10786777A JP S6120341 B2 JPS6120341 B2 JP S6120341B2
- Authority
- JP
- Japan
- Prior art keywords
- oxo
- gas
- carbon
- hydrogen
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 53
- 239000010948 rhodium Substances 0.000 claims description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 28
- 239000003054 catalyst Substances 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 229910052703 rhodium Inorganic materials 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 12
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 239000012442 inert solvent Substances 0.000 claims description 3
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 35
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 23
- 229910052739 hydrogen Inorganic materials 0.000 description 22
- 239000001257 hydrogen Substances 0.000 description 21
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 16
- 229910002091 carbon monoxide Inorganic materials 0.000 description 16
- 150000001299 aldehydes Chemical class 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 10
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 10
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 9
- 239000005977 Ethylene Substances 0.000 description 8
- 239000001307 helium Substances 0.000 description 8
- 229910052734 helium Inorganic materials 0.000 description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000004817 gas chromatography Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 238000005292 vacuum distillation Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 150000001336 alkenes Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- -1 cobalt carbonyl compounds Chemical class 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000012263 liquid product Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000007514 bases Chemical class 0.000 description 2
- 150000001728 carbonyl compounds Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 229920001002 functional polymer Polymers 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229920002535 Polyethylene Glycol 1500 Polymers 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- SUCYXRASDBOYGB-UHFFFAOYSA-N cobalt rhodium Chemical compound [Co].[Rh] SUCYXRASDBOYGB-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明ロジウムクラスター又はコバルト及びロ
ジウムの混合クラスターと炭素とから成るオキソ
反応用触媒及びその製造方法に関するものであ
る。
従来のオキソ(ヒドロホルミル化)反応用触媒
として工業的に実施されているものは、鉄あるい
はコバルトカルボニル化合物及び塩基性化合物
(たとえばアルキルあるいはアリールホスフイン
及び窒素化合物)によりそのカルボニル基の一部
あるいは全部が置換された、いわゆる鉄族金族有
機金属化合物を用いて(加圧下125〜200気圧)
150〜250℃で行う均一オキソ合成法、及びロジウ
ムカルボニル錯体(一般構造式Rh(CO)4-x
(PR3)xx=1〜4、R:アルキル及びアリール
置換基)を用いて加圧下50〜150気圧、50゜〜200
℃で行う均一オキソ合成法が知られており、オレ
フイン、一酸化炭素及び水素からアルデヒド及び
アルコール類を合成するプロセスとしてすでに開
発されている。又最近、ロジウム有機金属錯体
を、塩基性基を有する不溶性高分子体に置換固定
せしめ用いる不均一オキソ法も公表されている
〔W.O.Haag.D.D.Whitehurst.ベルギー特許721686
号参照及びフランス特許760556号参照〕。均一オ
キソ法においては、有効金属触媒の分離回収の工
程が複雑で、しかも経費がかさむ欠点を有してお
り、高圧.高温下での操作が必要で、反応ガスの
圧縮、循環のための動力費及び反応器の材質が高
価であるといつたプロセス上の改良が残されてい
る。又オキソ反応の選択性を高めるために相当量
の塩基性化合物の添加が必要である。
最近開発されている官能性高分子体へのロジウ
ムカルボニル錯体の固定化触媒によれば、有効な
金属触媒の流出を防ぎ、また触媒を生成物の分離
も容易ならしめるが不溶化技術は必ずしも充分で
なく、気相オキソ条件下でのオキソ活性は極めて
小さく、液相オキソ条件下においても均一オキソ
触媒に比べ活性及び選択性が低いといつた問題点
がある。
官能性高分子体は、担体として高価であり、又
化学的にも熱的にも安定性が低い。
本発明者は、オキソ反応をより温和な条件下で
行うための高活性かつ高選択性の触媒の開発を鋭
意検討した結果、本発明を完成するに至つたもの
である。
本発明の触媒の製造は、不活性溶媒中ロジウム
カルボニルクラスター又はコバルト及びロジウム
の混合カルボニルクラスターを炭素と共に含浸処
理し、溶媒除去後不活性雰囲気下又は水素ガス雰
囲気下熱処理するものである。
本発明の方法で使用する金属カルボニルクラス
ターとしては、一般構造式Rh4(CO)12,Rh6
(CO)16,などで表されるロジウムカルボニルク
ラスター化合物及びRh6(CO)152M+、Rh6
(CO)144M+、Rh7(CO)163M+、Rh12
(CO)302M+、Rh13(CO)23H3-x2M+〔式中、Mは
アルカリ金属又は第4級アルキルアンモニウム、
xは1〜2〕などで表されるロジウムカルボニル
クラスター塩であり、又コバルト、ロジウム混合
クラスター化合物としては、RhCO3(CO)12,
Rh2CO2(CO)12及びRh4CO2(CO)16などを例示
できる。
又、本発明で用いる炭素としては、一般名とし
ての活性炭、炭素繊維、黒鉛、炭素ビーズ、カー
ボンブラツク等の多孔質炭素を例示でき、これら
の炭素は粉末状、ペレツト状、ビーズ状、ブロツ
ク状等その形状を問わず使用できるが、有効表面
積が大きく、又10Å〜150Åといつた比較的大き
な細孔径分布を均一に有するものが好ましい。
触媒の製造にあたつては不活性溶媒の使用を必
須要件とするものであり、例えばヘキサン、ヘプ
タンなどの炭化水素、エーテル類、アルコール
類、アセトン、水である。溶媒除去後の処理とし
て不活性雰囲気下での熱処理も本発明の要件であ
るが、不活性雰囲気の確立は真空排気10-5〜10-1
mmHg程度の減圧又は窒素、ヘリウム、アルゴン
などの不活性ガスを存在させることにより確立で
きる。熱処理は一般に50〜250℃である。又水素
ガス雰囲気の確立は、水素ガスはもちろんのこ
と、水素含有ガス例えばオキソガスの雰囲気下で
達成でき、この場合の加熱温度としては50〜250
℃が好ましい。金属カルボニルクラスターと炭素
との使用重量比には特に制限はないが、一般に金
属カルボニルクラスターに対し炭素は0.1〜
100000、好ましくは1〜10000の範囲である。炭
素に対する金属カルボニルクラスターの担持量比
は原理的にはあらゆる範囲の担持量に適用が可能
であるが、炭素質担体の表面積(数m2/gr〜数
1000m2/gr)を考慮して50〜0.0001重量%が好ま
しい担持範囲である。
このようにして形成される本発明のクラスター
固定物質は、(イ)水、テトラヒドロフラン、アセト
ン等の極性溶媒及びヘキサン、ペンタン、ベンゼ
ン等の無極性溶媒中では、担持固定されたクラス
ターが溶解剥離せず、又不活性雰囲気下で300℃
までの加熱による昇華遊離も認められない。(ロ)調
製時に金属のカルボニルクラスターのカルボニル
は化学量論的に脱離し、部分的又は完全に裸の金
属クラスターとして炭素に担持固定されている。
このことは又カルボニル結合状態を示す赤外吸
収ピークが調製条件下で減少あるいは消失してい
る事実からも明白である。又金属クラスターカル
ボニル化合物を単に炭素担体に吸着分散させたも
のでは金属クラスターカルボニル化合物の分解温
度以下では極めて低いオキソ活性しか示さない。
本発明の触媒を用いてのアルデヒド類の製造操
作は、閉鎖循環式反応器、流通循環式反応器、常
圧及び加圧流通固定床式反応器中に触媒を充填
し、オレフイン、一酸化炭素及び水素の混合ガス
を常圧ないし加圧下で導入し、実質的には室温〜
250℃で反応させ、オキソ生成物を捕集するもの
である。触媒の形状に応じて、流動床流通反応器
に充填する場合や極性ないし無極性溶媒中に触媒
を分散して行うバツチ式反応器にも適用が可能で
ある。
本発明のアルデヒド(及びアルコール)類の製
造原料であるオレフインはエチレン、プロピレ
ン、ブテン、ヘキセンの如きモノオレフイン、ブ
タジエンの如きジオレフイン、シクロヘキセンな
どの如き環状オレフインを用いることができる。
オレフイン:一酸化炭素:水素の混合比に関して
は特に制限しない範囲において行われるが、通常
オレフイン:一酸化炭素=1:10〜10:1及び一
酸化炭素:水素=1:10〜10:1のモル比におい
てが好ましい。
さらに本発明の触媒は、直鎖状アルデヒドを高
い選択率で合成できるだかりでなく、副生するパ
ラフインの生産量が少ない特徴を有するものであ
る。またオキソ反応活性は長時間持続し、ロジウ
ム及びコバルトの流出や揮散は認められなかつ
た。
又、本発明の触媒は前記した通り、調製時に金
属のカルボニルクラスターのカルボニルが化学量
論的に脱離し部分的又は完全に裸の金属クラスタ
ーとして炭素に担持固定されているものである
が、カルボニルの存在は本反応の触媒活性に実質
的な影響を与えるものではない。
次にロジウムクラスター及びコバルトロジウム
クラスターと炭素担体から成る触媒によるオキソ
合成に対する触媒能について、実施例をもつて更
に説明する。
実施例 1
Rh4(CO)120.11grをn−ヘキサン150mlに溶解
し、得られた赤橙色溶液にあらかじめ熱排気処理
を行つた活性炭(ペレツト状4〜6メツシユ キ
シダ化学)7grを減圧下で加え、撹拌しながら溶
媒を減圧蒸留により除去した。これを窒素ガス下
でガラス製流通循環反応器(全容積280ml)に移
し、160〜170℃、10-3torrの減圧下で30分間加熱
排気処理を行つた後、190℃水素ガス下で1時間
還元処理を行つた。エチレン:一酸化炭素:水素
(1:1:1、全圧0.6〜0.8気圧)及びプロピレ
ン:一酸化炭素:水素(1:1:1、全圧0.8気
圧)の混合ガスを毎分100mlの循環速度で反応さ
せたところ、50〜170℃でプロピオンアルデヒド
及びブチルアルデヒドが生成した。生成物の分析
はポラパツクQ4mカラム(200℃ヘリウムキヤリ
アー)及びPEG15002mカラム(80℃ヘリウムキ
ヤリアー)を用い、気相分析はDMF−アルミナ
4m(0℃ヘリウムキヤリアー)を用いたガスク
ロ法により行つた。反応条件を変えた場合のオキ
ソ触媒活性に関する結果を表1及び表2に示し
た。
実施例 2
Rh6(CO)150.10grを150mlのテトラヒドロフラ
ンに溶解し、得られた濃茶色溶液にあらかじめ熱
排気処理を行つた活性炭(粒状ペレツト4〜6メ
ツシユ)7grを添加し撹拌しながら溶媒を真空蒸
留により除去した。
空気中、これを流通循環式反応器(全容積280
ml)に移し、室温で10分間排気後、10-3torr減圧
下、180〜190℃20分間熱排気処理を行い、その後
プロピレン:CO:H2=1:1:1の混合ガスを
導入し100〜180℃の温度域でオキソ合成活性を調
べた。
混合ガスの循環速度は平均約100ml/分であつ
た。反応条件を変えた場合の生成ブチルアルデヒ
ドの生成量及びnormal及びiso異性体比を表3に
示した。
尚Rh6(CO)160.10grを活性炭7grに単に吸着担
持させたものを同様な流通閉鎖循環式反応器に充
填した後60℃でプロピレン:CO:H2=1:1:
1、全圧60cmHgの混合ガスを循環し反応させた
所15時間後においても分析しうる程のブチルアル
デヒド及びプロパンの生成は認められなかつた。
実施例 3
既知の方法〔S.Martinengo,P.Chini,V.G.
Albano,F.Cariati,J.Organometallic chem.,
59,379(1973)〕で合成したRhCO3
(CO)120.10grを150mlのn−ヘキサンに溶解し、
これに前もつて熱排気処理した活性炭7grを添加
した後、撹拌しながら溶媒を蒸留除去した。これ
を窒素雰囲気下で、流通循環反応器(全容積280
ml)に充填し、残留溶媒を室温で排気した後、
160〜170℃45分間10-3torrの減圧下で排気処理
し、その後190℃、1時間水素還元を行つた。エ
チレン:一酸化炭素:水素=1:1:1及びプロ
ピレン:一酸化炭素:水素=1:1:1の混合ガ
スを導入し、毎分100mlの循環速度で反応させた
とこの50〜150℃の温度域でアルデヒド類が得ら
れた。プロピレンオキソ反応における生成ブチル
アルデヒドのnormal体対iso体の比は80%であり
直鎖状生成物の選択性が高い特徴があつた。また
副生パラフインはオキソ生成量に対してモル比に
して0.1〜0.2と著しく低かつた。オキソ活性の結
果を表4及び表5に示した。
実施例 4
実施例3において調製したRhCO3担持触媒上
に一酸化炭素:水素=1:2の混合ガスを導入し
全圧約0.8気圧、毎分100mlの循環速度で反応させ
たところ、200℃〜270℃の温度域で一酸化炭素の
消費に伴い、循環系途中にそなえた、ドライアイ
スアセトン冷却部に液状生成物が捕集された。こ
れをポラパツクQカラム(4m、200℃ヘリウムキ
ヤリアー)及びPEG1500カラム(2m、80℃ヘリ
ウムキヤリアー)を用いたガスクロマト分析を行
つたところメタノール、エタノール、アセトアル
デヒドからなる含酸素化合物が得られていたこと
がわかつた。
その生成量を表6に示した。
又、気相にはメタン及びC2〜C4の炭化水素が
生成していた。
実施例 5
既知の方法で合成したRh2CO2(CO)120.11gr
をn−ヘキサン100mlに溶解し、減圧下であらか
じめ熱排気処理を行つた活性炭(4〜6メツシユ
ペレツト)を添加し、吸着担持させた後溶媒を減
圧蒸留により除去した。
Rh2CO2(CO)12を吸着担持した活性炭を窒素
雰囲気下で流通循環式反応器(全容積280ml)に
充填した。160〜170℃30分間10-3torrの減圧下熱
排気処理後50cm50Hgの水素存在下で190℃40分間
還元処理を行つた。プロピレン(あるいはエチレ
ン):一酸化炭素:水素=1:1:1の混合ガス
を導入し、毎分約100mlの循環速度で反応させ
た。生成物を循環系中に備えたドライアイスアセ
トン冷却部に捕集した。反応条件を変えた場合の
アルデヒド生成量及びアルデヒドの選択性につい
て表7及び表8に示した。
実施例 6
RhCO2(CO)120.32grをn−ヘキサン150mlに
溶解し、この溶液に、あらかじめ脱気加熱処理を
行つた活性炭ペレツト(4〜6メツシユ、和光純
薬)14grを加え、吸着担持した後、溶媒は減圧蒸
留により除去した。
RhCO2(CO)12を担持した活性炭を窒素雰囲気
下で常圧流通反応装置のガラス製反応管(φ20mm
×500mm)に充填し150℃20分間加熱排気
(10-3torr減圧下)処理し、その後プロピレン:
一酸化炭素:水素の混合ガスを流通反応させた。
出口ガスは、40ml水トラツプ中をバブルさせ一定
時間後、吸収された生成ブチルアルデヒド及びブ
チルアルコールを、FIDガスクロマト分析〔日立
F6D、ポラパツクQカラム4m200℃、窒素キヤリ
アー〕法で定量分析した。気相の分析はDMF−
Al2O3 4m0℃ヘリウムキヤリアーのガスクロマ
ト法で分析した。
その結果を出口オキソ単流収率及びブチルアル
デヒドのnormal体%及びパラフイン化率に関し
反応条件の異る場合につき表9に示した。
実施例 7
既知の方法で合成したRh2CO2(CO)120.11gr
をn−ヘキサン100mlに溶解し減圧下で、あらか
じめ加熱排気処理を行つた活性炭ペレツト7grを
添加し、撹拌しながら、真空蒸留により溶媒を除
去した。Rh2CO2(CO)12を吸着担持した活性炭
ペレツトを窒素雰囲気下で流通循環式反応器(全
容積280ml)に充填した。160〜170℃30分間加熱
排気処理を行つた後、50cmHg水素存在下で190℃
40分間還元処理を行つた。
プロピレン(あるいはエチレン):一酸化炭
素:水素=1:1:1の混合ガスを導入し、毎分
約100mlの循環速度で反応させた。
生成物を循環系途中に備えたドライアイスアセ
トン冷却器に捕集した。反応条件をかえた場合の
アルデヒド生成量及びアルデヒドの選択性につい
て表11及び表12に示した。
実施例 8
RhCO3(CO)120.32grをn−ヘキサン150mlに
溶解し、この溶液に、あらかじめ脱気加熱処理を
行つた活性炭ペレツト(4〜6メツシユ和光純薬
製)14grを加え、吸着担持した後溶媒を減圧蒸留
により除去した。RhCO3(CO)12を担持した活性
炭を窒素雰囲気下で常圧流通装置のガラス製反応
管(直径20mm×長さ500mm)に固定床充填し、150
℃20分間熱排気(10-3torr)処理後、水素を流し
ながらプロピレン:一酸化炭素:水素=15ml/
min:16ml/min:16ml/minの混合ガスに切り
かえ反応を開始した。出口生成物の定量分析は水
トラツプに吸収後FID日立ガスクロマト分析器
(ポラパツクQカラム4m200℃窒素キヤリアー)
で行つた。気相分析はDMF−Al2O34m0℃のカラ
ムにより行つた。
RhCO3(CO)12−活性炭クラスター担持触媒に
よる気相常圧プロピレンオキソ活性の単流収率及
び生成アルデヒドの直鎖率及びパラフイン化率を
表13に示した。
実施例 9
Rh2CO2(CO)120.36grをn−ヘキサン溶液よ
りあらかじめ脱気加熱処理を行つた活性炭(4〜
6メツシユ 和光純薬)15grに吸着担持し、溶媒
は減圧蒸留により除去した。
Rh2CO2(CO)12を担持した活性炭ペレツトを
窒素雰囲気下常圧流通反応器に充填し、150℃20
分間加熱排気(10-3torr減圧下)その後水素還元
(180℃ 30分間)した後、オキソガスを流通した
ところ、ブチルアルデヒドが生成した。
反応条件の異なる場合の単流収率及びアルデヒ
ドの直鎖率及びプロパン生成率を表14に示した。
実施例 10
実施例10において用いた触媒を用いて反応ガス
としてエチレン:一酸化炭素:水素=20:40:47
ml/minのオキソガスを流した場合のプロピオン
アルデヒド生成単流収率及びアルデヒド選択性、
エタン生成率を調べた結果を表15に示した。
The present invention relates to an oxo reaction catalyst comprising a rhodium cluster or a mixed cluster of cobalt and rhodium and carbon, and a method for producing the same. Conventional catalysts for oxo (hydroformylation) that are commercially practiced include iron or cobalt carbonyl compounds and basic compounds (e.g. alkyl or arylphosphines and nitrogen compounds) to remove some or all of the carbonyl groups. (under pressure of 125 to 200 atmospheres) using a so-called iron group metal group organometallic compound in which
Homogeneous oxo synthesis method carried out at 150-250℃, and rhodium carbonyl complex (general structural formula Rh(CO) 4-x
(PR 3 ) xx=1 to 4, R: alkyl and aryl substituent) under pressure of 50 to 150 atm, 50° to 200
A homogeneous oxo synthesis method carried out at °C is known and has already been developed as a process for synthesizing aldehydes and alcohols from olefins, carbon monoxide, and hydrogen. Recently, a heterogeneous oxo method has also been published in which a rhodium organometallic complex is substituted and immobilized on an insoluble polymer having a basic group [WOHaag.DDWhitehurst.Belgium Patent No. 721686]
cf. French Patent No. 760,556]. The homogeneous oxo method has the disadvantage that the separation and recovery process of the effective metal catalyst is complicated and expensive, and it requires high pressure. Process improvements remain, such as the need to operate at high temperatures, the power costs for compression and circulation of the reactant gas, and the expensive reactor materials. Further, in order to increase the selectivity of the oxo reaction, it is necessary to add a considerable amount of a basic compound. Recently developed catalysts with immobilized rhodium carbonyl complexes on functional polymers prevent the effective metal catalyst from leaking out and also make it easy to separate the products from the catalyst, but insolubilization technology is not always sufficient. However, the oxo activity under gas phase oxo conditions is extremely small, and even under liquid phase oxo conditions, the activity and selectivity are lower than that of homogeneous oxo catalysts. Functional polymers are expensive as carriers and have low chemical and thermal stability. The present inventor has completed the present invention as a result of intensive studies on the development of highly active and highly selective catalysts for carrying out oxo reactions under milder conditions. The catalyst of the present invention is produced by impregnating rhodium carbonyl clusters or mixed carbonyl clusters of cobalt and rhodium with carbon in an inert solvent, and after removing the solvent, heat-treating the clusters under an inert atmosphere or a hydrogen gas atmosphere. The metal carbonyl clusters used in the method of the present invention have general structural formulas Rh 4 (CO) 12 , Rh 6
Rhodium carbonyl cluster compounds represented by (CO) 16 , etc. and Rh 6 (CO) 15 2M + , Rh 6
(CO) 14 4M + , Rh 7 (CO) 16 3M + , Rh 12
(CO) 30 2M + , Rh 13 (CO) 23 H 3-x 2M + [wherein M is an alkali metal or quaternary alkylammonium,
x is a rhodium carbonyl cluster salt represented by 1 to 2], and cobalt and rhodium mixed cluster compounds include RhCO 3 (CO) 12 ,
Examples include Rh 2 CO 2 (CO) 12 and Rh 4 CO 2 (CO) 16 . Examples of the carbon used in the present invention include porous carbon such as activated carbon, carbon fiber, graphite, carbon beads, and carbon black, which are common names. Although any shape can be used, it is preferable to have a large effective surface area and a relatively large uniform pore size distribution of 10 Å to 150 Å. The production of catalysts requires the use of inert solvents, such as hydrocarbons such as hexane and heptane, ethers, alcohols, acetone, and water. Heat treatment under an inert atmosphere is also a requirement of the present invention as a treatment after removing the solvent, but the establishment of an inert atmosphere is achieved by vacuum evacuation of 10 -5 to 10 -1
This can be established by reducing the pressure to about mmHg or by using an inert gas such as nitrogen, helium, or argon. Heat treatment is generally 50-250°C. Furthermore, establishment of a hydrogen gas atmosphere can be achieved not only with hydrogen gas but also with a hydrogen-containing gas such as oxo gas, and in this case, the heating temperature is 50 to 250℃.
°C is preferred. There are no particular restrictions on the weight ratio of metal carbonyl clusters to carbon, but generally the weight ratio of carbon to metal carbonyl clusters is 0.1 to 1.
100,000, preferably in the range of 1 to 10,000. In principle , the supported amount ratio of metal carbonyl clusters to carbon can be applied to any range of supported amounts;
1000 m 2 /gr), the preferred loading range is 50 to 0.0001% by weight. In the cluster-immobilized substance of the present invention formed in this way, (a) the supported and immobilized clusters cannot be dissolved and peeled off in polar solvents such as water, tetrahydrofuran, and acetone, and non-polar solvents such as hexane, pentane, and benzene; 300℃ under inert atmosphere
No sublimation release due to heating was observed. (b) During preparation, the carbonyl of the metal carbonyl cluster is stoichiometrically eliminated and is supported and fixed on carbon as a partially or completely naked metal cluster. This is also evident from the fact that the infrared absorption peak indicating the carbonyl bond state decreases or disappears under the preparation conditions. Furthermore, a metal cluster carbonyl compound simply adsorbed and dispersed on a carbon carrier exhibits extremely low oxo activity below the decomposition temperature of the metal cluster carbonyl compound. In the production of aldehydes using the catalyst of the present invention, the catalyst is packed in a closed circulation reactor, a flow circulation reactor, a normal pressure and pressurized flow fixed bed reactor, and olefin, carbon monoxide, etc. A mixed gas of hydrogen and hydrogen is introduced under normal pressure or pressure, and the temperature is substantially room temperature to
The reaction is carried out at 250°C and the oxo product is collected. Depending on the shape of the catalyst, it can be applied to a fluidized bed flow reactor or a batch reactor in which the catalyst is dispersed in a polar or nonpolar solvent. As the olefin which is a raw material for producing aldehydes (and alcohols) of the present invention, monoolefins such as ethylene, propylene, butene, and hexene, diolefins such as butadiene, and cyclic olefins such as cyclohexene can be used.
The mixing ratio of olefin: carbon monoxide: hydrogen is not particularly limited, but it is usually olefin: carbon monoxide = 1:10 to 10:1 and carbon monoxide: hydrogen = 1:10 to 10:1. The molar ratio is preferred. Furthermore, the catalyst of the present invention is characterized by not only being able to synthesize linear aldehydes with high selectivity, but also producing a small amount of by-product paraffin. Further, the oxo reaction activity continued for a long time, and no outflow or volatilization of rhodium and cobalt was observed. In addition, as mentioned above, the catalyst of the present invention is one in which the carbonyl of the metal carbonyl cluster is stoichiometrically eliminated during preparation and is supported and fixed on carbon as a partially or completely naked metal cluster. The presence of does not substantially affect the catalytic activity of this reaction. Next, the catalytic ability for oxo synthesis using a catalyst comprising a rhodium cluster or a cobalt rhodium cluster and a carbon support will be further explained using examples. Example 1 0.11 gr of Rh 4 (CO) 12 was dissolved in 150 ml of n-hexane, and 7 gr of activated carbon (pellet-shaped 4-6 mesh Yukishida Chemical), which had been subjected to heat exhaust treatment, was added to the resulting red-orange solution under reduced pressure. The solvent was removed by distillation under reduced pressure while stirring. This was transferred to a glass flow circulation reactor (total volume 280 ml) under nitrogen gas, heated and exhausted at 160-170°C under a reduced pressure of 10 -3 torr for 30 minutes, and then heated at 190°C under hydrogen gas for 1 hour. I did a time reduction process. A mixed gas of ethylene: carbon monoxide: hydrogen (1:1:1, total pressure 0.6 to 0.8 atm) and propylene: carbon monoxide: hydrogen (1:1:1, total pressure 0.8 atm) is circulated at a rate of 100 ml per minute. When reacted at a high rate, propionaldehyde and butyraldehyde were produced at 50-170°C. Product analysis was performed using a Polapack Q4 m column (200°C helium carrier) and PEG15002 m column (80°C helium carrier), and gas phase analysis was performed using a gas chromatogram using DMF-alumina 4 m (0°C helium carrier). It was done according to the law. Tables 1 and 2 show the results regarding the oxo catalyst activity when the reaction conditions were changed. Example 2 0.10gr of Rh 6 (CO) 15 was dissolved in 150ml of tetrahydrofuran, and 7gr of activated carbon (4 to 6 meshes of granular pellets) that had been subjected to heat exhaust treatment was added to the resulting dark brown solution, and the solvent was dissolved with stirring. was removed by vacuum distillation. In the air, this is transferred to a flow circulation reactor (total volume 280
After evacuation at room temperature for 10 minutes, heat evacuation treatment was performed at 180 to 190°C for 20 minutes under reduced pressure of 10 -3 torr, and then a mixed gas of propylene:CO:H 2 =1:1:1 was introduced. Oxo synthesis activity was investigated in the temperature range of 100-180℃. The circulation rate of the gas mixture averaged about 100 ml/min. Table 3 shows the amount of butyraldehyde produced and the normal and iso isomer ratios when the reaction conditions were changed. In addition, 0.10gr of Rh 6 (CO) 16 was simply adsorbed and supported on 7gr of activated carbon, which was then charged into a similar flow-through closed circulation reactor, and then heated at 60°C in the form of propylene:CO: H2 = 1:1:
1. After 15 hours of circulating a mixed gas at a total pressure of 60 cmHg, no production of butyraldehyde or propane was observed to the extent that it could be analyzed. Example 3 Known method [S. Martinengo, P. Chini, VG
Albano, F. Cariati, J. Organometallic chem.,
59 , 379 (1973) ]
(CO) 12 0.10gr was dissolved in 150ml of n-hexane,
After adding 7 grams of activated carbon that had been previously subjected to heat evacuation treatment, the solvent was distilled off while stirring. This was heated under a nitrogen atmosphere in a flow circulation reactor (total volume 280
ml) and evacuated the residual solvent at room temperature.
Evacuation treatment was carried out under a reduced pressure of 10 -3 torr for 45 minutes at 160 to 170°C, and then hydrogen reduction was performed at 190°C for 1 hour. A mixed gas of ethylene: carbon monoxide: hydrogen = 1:1:1 and propylene: carbon monoxide: hydrogen = 1:1:1 was introduced and the reaction was carried out at a circulation rate of 100 ml per minute. Aldehydes were obtained in the temperature range. The ratio of normal to iso forms of butyraldehyde produced in the propylene oxo reaction was 80%, which was characterized by high selectivity for linear products. Furthermore, the molar ratio of by-product paraffin to the amount of oxo produced was extremely low at 0.1 to 0.2. The results of oxo activity are shown in Tables 4 and 5. Example 4 A mixed gas of carbon monoxide:hydrogen = 1:2 was introduced onto the RhCO 3 supported catalyst prepared in Example 3 and reacted at a total pressure of about 0.8 atm and a circulation rate of 100 ml per minute. As carbon monoxide was consumed in the 270°C temperature range, liquid products were collected in the dry ice acetone cooling section provided in the circulation system. When this was analyzed by gas chromatography using a Polapack Q column (4 m , 200°C helium carrier) and a PEG1500 column (2 m , 80°C helium carrier), oxygenated compounds consisting of methanol, ethanol, and acetaldehyde were obtained. I realized that I had been told. The amount produced is shown in Table 6. In addition, methane and C 2 to C 4 hydrocarbons were generated in the gas phase. Example 5 Rh 2 CO 2 (CO) 12 0.11gr synthesized by known method
was dissolved in 100 ml of n-hexane, and activated carbon (4 to 6 mesh pellets) which had been subjected to heat evacuation treatment under reduced pressure was added thereto to adsorb and support the solution, and then the solvent was removed by distillation under reduced pressure. Activated carbon adsorbing and supporting Rh 2 CO 2 (CO) 12 was packed into a flow circulation reactor (total volume: 280 ml) under a nitrogen atmosphere. After heat evacuation treatment under reduced pressure of 10 -3 torr for 30 minutes at 160 to 170°C, reduction treatment was performed at 190°C for 40 minutes in the presence of hydrogen at 50 cm and 50 Hg. A mixed gas of propylene (or ethylene): carbon monoxide: hydrogen = 1:1:1 was introduced and reacted at a circulation rate of about 100 ml per minute. The product was collected in a dry ice acetone cooling section in the circulation system. Tables 7 and 8 show the amount of aldehyde produced and the selectivity of aldehyde when the reaction conditions were changed. Example 6 0.32gr of RhCO 2 (CO) 12 was dissolved in 150ml of n-hexane, and 14gr of activated carbon pellets (4-6 meshes, Wako Pure Chemical Industries, Ltd.), which had been previously degassed and heated, were added to the solution for adsorption and loading. After that, the solvent was removed by vacuum distillation. Activated carbon supporting RhCO 2 (CO) 12 was placed in a glass reaction tube (φ20 mm) of a normal pressure flow reactor under a nitrogen atmosphere.
x 500 mm) and heated at 150°C for 20 minutes and treated with exhaust (under reduced pressure of 10 -3 torr), then propylene:
A mixed gas of carbon monoxide and hydrogen was subjected to a flow reaction.
The outlet gas is bubbled through a 40ml water trap, and after a certain period of time, the absorbed produced butyraldehyde and butyl alcohol are analyzed using FID gas chromatography [Hitachi
Quantitative analysis was performed using F6D, Polapack Q column 4 m , 200°C, nitrogen carrier method. For gas phase analysis, use DMF−
Al 2 O 3 4 m Analyzed by gas chromatography using a helium carrier at 0°C. The results are shown in Table 9 with respect to the outlet oxo single flow yield, the normal percent of butyraldehyde, and the paraffinization rate under different reaction conditions. Example 7 Rh 2 CO 2 (CO) 12 0.11gr synthesized by known method
was dissolved in 100 ml of n-hexane, 7 grams of activated carbon pellets that had been heated and exhausted were added under reduced pressure, and the solvent was removed by vacuum distillation while stirring. Activated carbon pellets adsorbing and supporting Rh 2 CO 2 (CO) 12 were packed into a flow circulation reactor (total volume: 280 ml) under a nitrogen atmosphere. After heat exhaust treatment at 160-170℃ for 30 minutes, heat to 190℃ in the presence of 50cmHg hydrogen.
Reduction treatment was performed for 40 minutes. A mixed gas of propylene (or ethylene): carbon monoxide: hydrogen = 1:1:1 was introduced and reacted at a circulation rate of about 100 ml per minute. The product was collected in a dry ice acetone cooler located in the circulation system. Tables 11 and 12 show the amount of aldehyde produced and the selectivity of aldehyde when the reaction conditions were changed. Example 8 0.32gr of RhCO 3 (CO) 12 was dissolved in 150ml of n-hexane, and 14gr of activated carbon pellets (4-6 mesh manufactured by Wako Pure Chemical Industries, Ltd.) that had been previously degassed and heated were added to the solution for adsorption and loading. After that, the solvent was removed by vacuum distillation. Activated carbon supporting RhCO 3 (CO) 12 was packed in a fixed bed in a glass reaction tube (diameter 20 mm x length 500 mm) of a normal pressure flow device under a nitrogen atmosphere, and 150
After heat evacuation (10 -3 torr) for 20 minutes at °C, propylene: carbon monoxide: hydrogen = 15 ml/while flowing hydrogen.
Min: 16 ml/min: The reaction was started by switching to a mixed gas of 16 ml/min. Quantitative analysis of the output product was performed using an FID Hitachi gas chromatograph analyzer (Polapack Q column 4 m , 200℃ nitrogen carrier) after absorption into a water trap.
I went there. Gas phase analysis was performed using a DMF-Al 2 O 3 4 m 0°C column. Table 13 shows the single-stream yield of gas-phase normal pressure propylene oxo activity, linear chain ratio and paraffinization ratio of the aldehyde produced using the RhCO 3 (CO) 12 -activated carbon cluster-supported catalyst. Example 9 Rh 2 CO 2 (CO) 12 Activated carbon (4~
6 mesh (Wako Pure Chemical) 15gr was adsorbed and supported, and the solvent was removed by vacuum distillation. Activated carbon pellets supporting Rh 2 CO 2 (CO) 12 were packed into a normal pressure flow reactor under nitrogen atmosphere and heated at 150℃20.
After heating for a minute and evacuation (under reduced pressure of 10 -3 torr), hydrogen reduction was performed (180°C for 30 minutes), and oxo gas was passed through, and butyraldehyde was generated. Table 14 shows the single flow yield, aldehyde linear chain rate, and propane production rate under different reaction conditions. Example 10 Using the catalyst used in Example 10, ethylene: carbon monoxide: hydrogen = 20:40:47 as a reaction gas
Propionaldehyde production single flow yield and aldehyde selectivity when oxo gas flows at ml/min,
Table 15 shows the results of examining the ethane production rate.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 11
Rh2CO2(CO)120.17grをn−ヘキサン溶液よ
り活性炭(10〜20メツシユ 和光純薬、あらかじ
め320℃ 15hr熱排気処理したもの)7gに吸着担
持させた、溶媒を減圧蒸留した後He下室温で、
その内6grをステンレス製反応器(φ15mm×220
mm、SUS32)に充填した。触媒層の高さは約8cm
であり、触媒層上下はφ2mmガラスビースをつめ
た。水素ガスを1気圧約9/hrの流量で流通し
ながら、初め約50分間80℃、次の約40分間150
℃、さらに170℃15分間熱処理を行つた後C3H6:
CO:H2≒1:1:1の混合ガスを流通し、反応
を開始した。10時間後定常活性が得られたところ
で、5Kg/cm2、10Kg/cm2、20Kg/cm2の加圧プロピ
レンオキソ混合ガスを反応させ出口オキソ転化
率、パラフイン化率及び生成ブチルアルデヒドの
直鎖率を調べた。気相分析はアルミナ−DMF4m
カラムHeキヤリアー室温下TCDガスクロマト分
析法により行い、液生成物は200ml蒸留水からな
る吸収ビン2本に吸収させた後、ポラパツクQ4m
カラムN2キヤリアーのFIDガスクロマト分析法に
より定量分析した。生成物はブチルアルデヒドと
微量のブチルアルデヒド以外に副生成物は検出さ
れなかつた。0k,5k,10k,20kの加圧下でのオ
キソ反応活性試験の結果を表16に示した。
加圧プロピレンオキソガスの組成はほぼ
C3H6:CO:H2=1:1:1であつた。5k,
10k,20kの加圧オキソガスはオートクレープ中
100℃でプロピレン及びCOとH2(1:1)を混
合し調製した後、加温ステンレス製パイプを経由
して反応器に導入したものである。[Table] Example 11 0.17gr of Rh 2 CO 2 (CO) 12 was adsorbed and supported on 7g of activated carbon (10 to 20 mesh Wako Pure Chemical, preheated at 320°C for 15 hours) from an n-hexane solution. After vacuum distillation of He at room temperature,
Of that, 6gr was transferred to a stainless steel reactor (φ15mm x 220
mm, SUS32). The height of the catalyst layer is approximately 8cm
The top and bottom of the catalyst layer were filled with φ2mm glass beads. While flowing hydrogen gas at a flow rate of 1 atm and approximately 9/hr, the temperature was 80°C for the first 50 minutes and 150°C for the next 40 minutes.
℃, and after further heat treatment at 170℃ for 15 minutes C 3 H 6 :
A mixed gas of CO:H 2 ≒1:1:1 was passed through to start the reaction. After 10 hours, when steady activity was obtained, a pressurized propylene oxo mixed gas of 5Kg/cm 2 , 10Kg/cm 2 , and 20Kg/cm 2 was reacted to determine the oxo conversion rate at the outlet, the paraffinization rate, and the linear chain of the butyraldehyde produced. I checked the rate. Gas phase analysis is alumina-DMF4 m
The analysis was carried out using TCD gas chromatography using a column He carrier at room temperature.The liquid product was absorbed into two absorption bottles each containing 200 ml of distilled water, and then the liquid product was absorbed into two absorption bottles containing 200ml of distilled water .
Quantitative analysis was performed using FID gas chromatography using column N2 carrier. No by-products were detected other than butyraldehyde and a trace amount of butyraldehyde. Table 16 shows the results of the oxo reaction activity test under pressures of 0 k , 5 k , 10 k , and 20 k . The composition of pressurized propylene oxo gas is approximately
The ratio of C 3 H 6 :CO:H 2 was 1:1:1. 5k ,
Pressurized oxo gas at 10 k and 20 k is autoclaved
It was prepared by mixing propylene, CO and H 2 (1:1) at 100°C and then introduced into the reactor via a heated stainless steel pipe.
【表】【table】
【表】
なお、加圧反応後触媒層から金属の流出はロダ
ン酸アンモニウム呈色反応などの試験結果により
認められなかつた。
実施例 12
Rh2Co2(CO)120.70grをヘキサン溶液より活性
炭(10〜20メツシユ和光純薬、あらかじめ320
℃、15hr熱排気処理したもの)27grに吸着担持さ
せた。溶媒を減圧蒸留した後、窒素下室温で、ス
テンレス製反応器(φ20mm×500mmSUS32)に充
填した。触媒層高さは約15cmであり、触媒層の上
下にはφ2mmガラスビーズをつめた。水素ガスを
1気圧約60/hrの流量で流通しながら、初めの
約50分間は80℃、次の40分間は150℃で加温処理
を行なつた後、エチレン:CO:H2=1:1:1
の混合ガスを流通し、1気圧で反応を開始した。
10時間後、定常活性が得られたところで、5Kg/
cm2、10Kg/cm2、20Kg/cm2、33Kg/cm2、35Kg/cm2の
加圧エチレンオキソ混合ガスを反応させ、出口オ
キソ転化率、アルデヒド生成量、エタン化率及び
アルデヒド選択率を調べた。気相分析は、ポラパ
ツクQ2mカラム45℃、ヘリウムキヤリアーを用
いたTCDガスクロマト法により行ない、液生成
物は200ml蒸留水からなる吸収ビン2本に出口ガ
スを通過させ、完全に吸収させた後、ポラパツク
Q4mカラム、窒素キヤリアーのFIDガスクロマト
分析法により定量分析した。0Kg/cm2、5Kg/
cm2、10Kg/cm2、20Kg/cm2、33Kg/cm2、35Kg/cm2の
加圧プロピオンアルデヒド合成活性試験の結果を
表17に示した。加圧エチレンオキソガスの組成
は、C2H4:CO:H2=1:1:1であり、加圧ガ
スの調整は耐圧ボンベ内にガス圧縮機より各成分
を蓄圧することにより行なつた。一定時間経過
後、加温ステンレス製パイプを経由し、1次及び
2次調圧弁で圧調整した後、反応器に導入した。
混合ガスの流速及び流量については、湿式積算流
量計により算定した。
尚、本触媒を用いた加圧プロピオンアルデヒド
合成活性に関した146−195℃、10−35気圧の条件
下での100時間の連続実験を実施したところ、100
時間の連続試験前後でのアルデヒド空時収率及び
オキソ選択率はいずれも一定成績を保持し、触媒
活性が持続されたことを確認した。
尚、Rh2Co2(CO)12に0.40gr及び活性炭15grを
用い、上述実施例12と同様な操作で加圧プロピオ
ンアルデヒド合成活性試験を行ない、その結果を
表18に付記した。[Table] Note that no outflow of metal from the catalyst layer after the pressurized reaction was observed based on test results such as ammonium rhodanate color reaction. Example 12 Rh 2 Co 2 (CO) 12 0.70gr was added to activated carbon from a hexane solution (10-20 meshes Wako Pure Chemical, 320g in advance).
℃, heat exhaust treatment for 15 hours) was adsorbed and supported on 27gr. After the solvent was distilled under reduced pressure, it was packed into a stainless steel reactor (φ20 mm×500 mm SUS32) at room temperature under nitrogen. The height of the catalyst layer was approximately 15 cm, and 2 mm diameter glass beads were packed above and below the catalyst layer. While flowing hydrogen gas at a flow rate of 1 atm approximately 60/hr, heat treatment was performed at 80°C for the first 50 minutes and at 150°C for the next 40 minutes, and then ethylene:CO:H 2 =1 :1:1
The reaction was started at 1 atm.
After 10 hours, when steady activity was obtained, 5Kg/
cm 2 , 10Kg/cm 2 , 20Kg/cm 2 , 33Kg/cm 2 , and 35Kg/cm 2 of pressurized ethylene oxo mixed gas were reacted, and the outlet oxo conversion rate, aldehyde production amount, ethanization rate, and aldehyde selectivity were measured. Examined. Gas phase analysis was performed by TCD gas chromatography using a Polapack Q2m column at 45℃ and a helium carrier.The liquid product was passed through two absorption bottles containing 200 ml of distilled water, and after being completely absorbed. , Polapatsk
Quantitative analysis was performed using FID gas chromatography using a Q4m column and nitrogen carrier. 0Kg/ cm2 , 5Kg/
Table 17 shows the results of the pressurized propionaldehyde synthesis activity test at cm2 , 10Kg/ cm2 , 20Kg/ cm2 , 33Kg/ cm2 , and 35Kg/ cm2 . The composition of the pressurized ethylene oxo gas is C 2 H 4 :CO:H 2 = 1:1:1, and the pressurized gas is adjusted by accumulating pressure of each component in a pressure cylinder using a gas compressor. Ta. After a certain period of time had elapsed, the mixture was introduced into the reactor via a heated stainless steel pipe and after adjusting the pressure with the primary and secondary pressure regulating valves.
The flow rate and flow rate of the mixed gas were calculated using a wet integrated flowmeter. In addition, when we conducted a continuous experiment for 100 hours under the conditions of 146-195℃ and 10-35 atm regarding the pressurized propionaldehyde synthesis activity using this catalyst, we found that 100
Both the aldehyde space-time yield and oxo selectivity before and after the continuous time test maintained constant results, confirming that the catalyst activity was sustained. A pressurized propionaldehyde synthesis activity test was conducted in the same manner as in Example 12 using 0.40 gr of Rh 2 Co 2 (CO) 12 and 15 gr of activated carbon, and the results are listed in Table 18.
【表】【table】
【表】【table】
【表】【table】
【表】
で導き出した値である。
These are the values derived from [Table].
Claims (1)
ムの混合クラスターと炭素とから成るオキソ反応
用触媒。 2 不活性溶媒中、ロジウムカルボニルクラスタ
ー又はコバルト及びロジウムの混合カルボニルク
ラスターを炭素と共に含浸処理し、溶媒を除去後
不活性雰囲気下又は水素ガス雰囲気下熱処理する
ことを特徴とするオキソ反応用触媒の製造方法。[Claims] 1. An oxo reaction catalyst comprising a rhodium cluster or a mixed cluster of cobalt and rhodium and carbon. 2. Production of a catalyst for oxo reaction, characterized by impregnating rhodium carbonyl clusters or mixed carbonyl clusters of cobalt and rhodium with carbon in an inert solvent, removing the solvent, and heat-treating in an inert atmosphere or hydrogen gas atmosphere. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10786777A JPS5441293A (en) | 1977-09-09 | 1977-09-09 | Oxo reaction catalyst and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10786777A JPS5441293A (en) | 1977-09-09 | 1977-09-09 | Oxo reaction catalyst and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5441293A JPS5441293A (en) | 1979-04-02 |
JPS6120341B2 true JPS6120341B2 (en) | 1986-05-21 |
Family
ID=14470079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10786777A Granted JPS5441293A (en) | 1977-09-09 | 1977-09-09 | Oxo reaction catalyst and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5441293A (en) |
-
1977
- 1977-09-09 JP JP10786777A patent/JPS5441293A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5441293A (en) | 1979-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104707660B (en) | A kind of solid heterogeneous catalyst for hydroformylation of olefin and its preparation method and application | |
Arai et al. | Hydroformylation and hydrogenation of olefins over rhodium zeolite catalyst | |
JPS6136731B2 (en) | ||
EP0031244B1 (en) | Process for producing methanol from synthesis gas with palladium-calcium catalysts | |
EP0031243B1 (en) | Preparation of methanol from synthesis gas with promoted palladium catalysts | |
CN113402551A (en) | Vinyl functionalized phosphine ligand, preparation and application thereof | |
WO2023222895A1 (en) | Purification of an ethylenically unsaturated alcohol stream, preparation of an ethylenically unsaturated aldehyde, in particular prenal, and com- pounds derived therefrom | |
Wang et al. | Influence of phosphite ligands concentration on 1-butene hydroformylation over Rh-supported porous organic polymer catalysts | |
US4471075A (en) | Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane | |
JP7291141B2 (en) | Method for producing 1,3-bisacyloxy-2-methylenepropane | |
US4446251A (en) | Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane | |
JPS6049617B2 (en) | Method for producing oxygenated compounds such as ethanol | |
JPS6120341B2 (en) | ||
US5041685A (en) | Procedure for producing alcohols and aldehydes from alkenes and synthesis gases | |
JPS6113689B2 (en) | ||
Bañares et al. | Novel cluster-derived catalysts for the selective hydrogenation of crotonaldehyde | |
Heinrich et al. | Gas phase hydroformylation of propene catalyzed by a polymer bound rhodium (I) complex | |
EP0021443B1 (en) | Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane | |
RU2616623C1 (en) | Two-stage process of obtaining propionic acid | |
JPH0798765B2 (en) | Method for producing aldehyde | |
Arai et al. | CATALYTIC VAPOR PHASE HYDROFORELATION OF OLEFINS OVER POLYMER-IMMOBILIZED RHODIUM COMPLEXES | |
Claeys et al. | Does mono-atomic Ru catalyse the Fischer-Tropsch synthesis? | |
JPS62740B2 (en) | ||
CA1310021C (en) | Procedure for producing alcohols and aldehydes from alkenes and synthesis gases | |
SU932692A1 (en) | Method for preparing catalyst for selective hydrogenation of acetylene compounds |