[go: up one dir, main page]

JPS61203136A - Formation of transparent electroconductive film - Google Patents

Formation of transparent electroconductive film

Info

Publication number
JPS61203136A
JPS61203136A JP4346085A JP4346085A JPS61203136A JP S61203136 A JPS61203136 A JP S61203136A JP 4346085 A JP4346085 A JP 4346085A JP 4346085 A JP4346085 A JP 4346085A JP S61203136 A JPS61203136 A JP S61203136A
Authority
JP
Japan
Prior art keywords
oxygen
plasma
tetramethyltin
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4346085A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kondo
義和 近藤
Akio Nishino
西野 明男
Toshihiro Yamamoto
俊博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP4346085A priority Critical patent/JPS61203136A/en
Publication of JPS61203136A publication Critical patent/JPS61203136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PURPOSE:To obtain the titled film which can find utility in a wide variety of substrates excellent in transparency, electric conductivity, mechanical strength and physical strength, by plasma-polymerizing tetramethyltin and a specified oxygen-containing gas. CONSTITUTION:Tetramethyltin and a gas containing at least 20% oxygen at least ten times the weight of the tetramethyltin are fed through valves 10, 11 and 12 to a plasma reaction vessel 2, wherein they are converted into plasmas by applying 0.05-0.7W/cm<2> high-frequency voltage on the order of kHz to MHz by means of an electric source 1 and an electrode 3 of an output of 1W/cm<2> and polymerized for at least one min at 10<-3>-10<0>Torr to form a plasma polymer film 4 on a base 5, such as a glass plate with a smooth surface, at a temperature of room - 200 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は透明導電性皮膜に関し、更に詳しくはテトラメ
チル錫とその少なくとも10倍量の酸素を含有する気体
をプラズマ化させ、基板上へ透明導電性皮膜を形成させ
る方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a transparent conductive film, and more specifically, a transparent conductive film is formed on a substrate by turning a gas containing tetramethyltin and at least 10 times the amount of oxygen into plasma. The present invention relates to a method of forming a conductive film.

(従来の技術) 酸化錫を主成分とする透明導電性薄膜はガラス、セラミ
ック上に皮膜を形成し、透明電極としてエレクトロニク
スの分野で化学的安定性、物理的安定性2機械的強度等
の有用な特性を有している。
(Prior art) A transparent conductive thin film mainly composed of tin oxide forms a film on glass or ceramic, and is useful as a transparent electrode in the field of electronics due to its chemical stability, physical stability, mechanical strength, etc. It has certain characteristics.

この透明導電性薄膜を形成するには、従来物理的気相蒸
着法(PVD)及び化学的気相蒸着法(CVD)の手法
がある。前者については真空蒸着法、スパッタリング法
(プラズマスパッタリング。
Conventional techniques for forming this transparent conductive thin film include physical vapor deposition (PVD) and chemical vapor deposition (CVD). For the former, vacuum evaporation method and sputtering method (plasma sputtering) are used.

イオンスパッタリング)及びプラズマCVDが主要かつ
重要なものであり、後者は化学的生成法(スプレー法、
浸漬法)及び熱分解法(光CVD、MO−CVD、低圧
C!VD 、常圧CvD等)がある。真空蒸着法、スパ
ッタリング法では、目的物質(例えばIn20B 、 
8n02又は8n)等を加熱又は高速電子、高速イオン
の力で基板に付着させようとするものであり、蒸着速度
が小さい事、不純物の混入がある、生成物が不均一構造
を取りやすい、機械的強度が小さい、基板温度を高温に
する必要があり高分子基板が使えない、不均一構造を取
りやすい等の欠点がある。
The main and important ones are ion sputtering) and plasma CVD, the latter being chemical production methods (spray method,
There are two methods: immersion method) and thermal decomposition method (photoCVD, MO-CVD, low pressure C!VD, normal pressure CvD, etc.). In the vacuum evaporation method and sputtering method, target substances (e.g. In20B,
8n02 or 8n) etc. to the substrate by heating or the force of high-speed electrons or high-speed ions, the evaporation rate is slow, impurities may be mixed in, the product tends to have a non-uniform structure, and mechanical There are disadvantages such as low physical strength, the need to raise the substrate temperature so polymer substrates cannot be used, and the tendency to form non-uniform structures.

又、化学的生成法、熱分解法では、基板への付着の容易
さ等による基板特性、及び加熱酸化工程が必要となる為
に高分子フィルム等、耐熱性の低い基板の使用が出来な
い等の制限がある。
In addition, with chemical production methods and thermal decomposition methods, substrate characteristics such as ease of adhesion to the substrate and the need for a heating oxidation process make it impossible to use substrates with low heat resistance such as polymer films. There are restrictions.

プラズマを用いた酸化錫の製造方法としては、プラズマ
CVD 、スパッタリング等があり、特開昭58−30
005号公報には有機錫化合物を含むガスと酸素を含む
ガスと弗化アンモニウムガスとアンチモン化合物を含む
ガスとにより弗素及びアンチモンを含む酸化錫膜の製造
方法が開示されている。しかしこれらの方法では基板温
度を数百度の高温に保つ必要があり高分子フィルム等耐
熱性の低い基板が使用できない。又、弗化アンモニウム
、アンチモン化合物を混合する必要もある。
Methods for manufacturing tin oxide using plasma include plasma CVD, sputtering, etc.
No. 005 discloses a method for producing a tin oxide film containing fluorine and antimony using a gas containing an organic tin compound, a gas containing oxygen, an ammonium fluoride gas, and a gas containing an antimony compound. However, in these methods, it is necessary to maintain the substrate temperature at a high temperature of several hundred degrees, and substrates with low heat resistance such as polymer films cannot be used. It is also necessary to mix ammonium fluoride and antimony compounds.

(発明が解決しようとする問題点) 本発明者らは鋭意研究の結果本発明を完成するに至った
。本発明の目的は工業的により容易な装置を用い、より
安定した性能を有しかつより広汎な基板に対して透明導
電皮膜を形成する方法を提供するにある。
(Problems to be Solved by the Invention) The present inventors have completed the present invention as a result of intensive research. An object of the present invention is to provide a method for forming a transparent conductive film on a wider variety of substrates, using an industrially easier device, and having more stable performance.

(問題点を解決するための手段) 本発明はテトラメチル錫とその少なくとも10倍量の酸
素を含有する気体とをプラズマ反応器へ導入し高周波電
圧を印加してプラズマ化させ基板上へプラズマ重合膜を
形成させる事を特徴とする。
(Means for Solving the Problems) The present invention introduces tetramethyltin and a gas containing at least 10 times the amount of oxygen into a plasma reactor, applies a high frequency voltage to turn it into plasma, and plasma polymerizes it onto a substrate. It is characterized by forming a film.

本発明方法においてはテトラメチル錫のプラズマ重合に
際して共存させる酸素の量が重要であり酸素の量により
得られる酸化錫系皮膜の導電性が異なる。酸素の量はテ
トラメチル錫に対して重量比で少なくとも10倍量を必
要とし、好ましくは少なくとも30倍量であり、更に好
ましくは50〜200倍量を必要とする。酸素の含有量
がテトラメチル錫に対して10倍量未満であるとテトラ
メチル錫の酸化が不十分で皮膜の導電性は低下する。ま
た酸素の含有量がテトラメチル錫基こ対して200倍量
を越えると透明導電皮膜の生成速度が小さくなるか又は
反応器中のガス量が著大となり真空度が極端)こ悪くな
り安定した高エネルギーのプラズマが得られず重合速度
の低下又は酸化反応が進まないことになり均質な導電性
皮暎が形成されず好ましくない。
In the method of the present invention, the amount of oxygen coexisting during the plasma polymerization of tetramethyltin is important, and the conductivity of the tin oxide film obtained differs depending on the amount of oxygen. The amount of oxygen required is at least 10 times, preferably at least 30 times, and more preferably 50 to 200 times the weight of tetramethyltin. If the oxygen content is less than 10 times the amount of tetramethyltin, the oxidation of tetramethyltin will be insufficient and the conductivity of the film will decrease. In addition, if the oxygen content exceeds 200 times the amount of tetramethyltin group, the formation rate of the transparent conductive film will decrease, or the amount of gas in the reactor will become extremely large, resulting in an extremely poor vacuum and stability. High-energy plasma cannot be obtained, resulting in a decrease in the polymerization rate or inability to proceed with the oxidation reaction, which is undesirable because a homogeneous conductive skin is not formed.

テトラメチル錫のプラズマ重合の際、酸素以外の混合ガ
スを使用してもよく、目的に応じ適宜選択する。しかし
酸素以外の混合ガスが多くなり過ぎると酸素の分圧が低
下し又副反応を生ずる事になるので酸素以外の混合ガス
はN2 、 Ar 、He等の非酸化性ガスが好ましく
、特に活性化しゃすいAr が好ましい。これら混合ガ
スの量は50%未満がよい。
During the plasma polymerization of tetramethyltin, a mixed gas other than oxygen may be used and is appropriately selected depending on the purpose. However, if the mixed gas other than oxygen is too large, the partial pressure of oxygen will decrease and side reactions will occur. Therefore, the mixed gas other than oxygen is preferably a non-oxidizing gas such as N2, Ar, He, etc., especially when activated. Free Ar is preferred. The amount of these mixed gases is preferably less than 50%.

本発明で使用するプラズマは、高周波電圧の印加による
低温ガスプラズマを用いる。高周波電圧の周波数はKI
−bからN14の高周波が好ましい。特に18.56M
Hzの高周波が、プラズマの発生しやすさ、及びグロー
の安定性、均一性という点で好ましい。
The plasma used in the present invention is a low-temperature gas plasma generated by applying a high frequency voltage. The frequency of the high frequency voltage is KI
-b to N14 high frequencies are preferred. Especially 18.56M
A high frequency of Hz is preferable in terms of ease of plasma generation and stability and uniformity of glow.

高周波の出力は電極単位面積当り高々t W/allで
あり、好ましくは0.05〜0.7W/cliであり、
又プラズマ重合時間は皮膜の膜厚を決定する大きな要因
で、皮膜の膜厚が増大する程導電性は高くなる。しかし
ある程度の膜厚になるとほぼ一定となる。プラズマ重合
時間は少なくとも1分で充分であるが、好ましくは少な
くとも8分さらに好ましくは少なくとも5分がよく、導
電性に優れた透明導電性皮膜か得られる。さらに興味の
あることには、膜厚の厚い皮膜に於いて整流性が観察さ
れ、これらの皮膜では走査型電顕写真の観察で表面に1
μ程度の粒状物が存在していた。
The high frequency output is at most t W/all per unit area of the electrode, preferably 0.05 to 0.7 W/cli,
Furthermore, the plasma polymerization time is a major factor in determining the film thickness of the film, and the conductivity increases as the film thickness increases. However, once the film thickness reaches a certain level, it becomes almost constant. A plasma polymerization time of at least 1 minute is sufficient, preferably at least 8 minutes, more preferably at least 5 minutes, and a transparent conductive film with excellent conductivity can be obtained. What is even more interesting is that rectifying properties have been observed in thick films, and scanning electron micrographs of these films show that the surface of these films has a
Particles of about μ size were present.

皮膜を形成させる基板は平滑な表面を有するガラス、金
属、セラミック又は高分子で特に限定されるものではな
い。基板の温度については室温〜高々200℃の温度で
よく高分子を基板に用いる場合その耐熱性によって適宜
選択する。
The substrate on which the film is formed is not particularly limited, and may be glass, metal, ceramic, or polymer having a smooth surface. The temperature of the substrate may range from room temperature to at most 200° C. When a polymer is used for the substrate, it is appropriately selected depending on its heat resistance.

(本発明の効果) 本発明の透明導電性皮膜は、その透明性、導電性、化学
的9機械的強度、物理的強度がすぐれる事により、広汎
な用途に使用する事が出来る。
(Effects of the present invention) The transparent conductive film of the present invention can be used for a wide range of purposes due to its excellent transparency, conductivity, chemical, mechanical strength, and physical strength.

例えば、各種ディスプレイ素子のイメージ管や太陽電池
等の電極材料及びAu又はAA等との金属とはり合せる
事による光電変換素子材料や熱線の選択透過膜等に使用
する等が出来る。
For example, it can be used as an electrode material for image tubes of various display devices, solar cells, etc., a material for photoelectric conversion elements by laminating metals such as Au or AA, and selective transmission films for heat rays.

実施例1 第1図に示す十字を型反応器の下部電極上に基板として
表面抵抗16Ω/a+!をもつITO!!皮膜をもつガ
ラス板をおき電極の温度を50℃にする。テトラメチル
錫をガス状で七ツマー導入口より表−1に示す流量で、
別の導入口より酸素、/富窒素30/20の混合気体を
30mg(8TP)/鱈の流量で導入する。次いで18
.56MHzの高周波を電源、マツチングボックスを通
じて反応器内の直径15cmの平行平板電極に印加する
。高周波出力は20Wで20分間印加しプラズマ重合さ
せた。重合後、ガラス板はメタトルで洗浄・風乾後、ア
ルミ電極を取付けて乾燥空気中にて抵抗測定を行った。
Example 1 The cross shown in Fig. 1 was used as a substrate on the lower electrode of a type reactor, and the surface resistance was 16Ω/a+! ITO with! ! Place a glass plate with a film on it and bring the temperature of the electrode to 50°C. Tetramethyltin was injected in gaseous form from the 7-mer inlet at the flow rate shown in Table 1.
A mixed gas of 30/20 oxygen/nitrogen rich was introduced from another inlet at a flow rate of 30 mg (8 TP)/cod. Then 18
.. A high frequency of 56 MHz is applied to parallel plate electrodes with a diameter of 15 cm in the reactor through a power source and a matching box. A high frequency power of 20 W was applied for 20 minutes to effect plasma polymerization. After polymerization, the glass plate was washed with mettatolu and air-dried, and then an aluminum electrode was attached and resistance was measured in dry air.

膜厚の測定は、繰返し干渉膜厚計にて行つた。The film thickness was measured using a repeating interference film thickness meter.

実施例2 実施例1と同じ装置を用い、テトラメチル錫を2.5 
X 10−81/m 、酸素を40−/―の流量で反応
器内へ導入し高周波を30Wの出力で表−2に示す時間
印加しプラズマ重合を行った。
Example 2 Using the same equipment as in Example 1, 2.5% of tetramethyltin
X 10-81/m, oxygen was introduced into the reactor at a flow rate of 40-/-, and high frequency was applied at an output of 30 W for the time shown in Table 2 to perform plasma polymerization.

尚、Exp−11、−12の()内の膜厚は重量法によ
る膜厚を示す。又()の比抵抗は重量法による膜厚の値
を用いた時の比抵抗値である。
Note that the film thicknesses in parentheses in Exp-11 and -12 indicate the film thicknesses determined by the gravimetric method. Further, the specific resistance in parentheses is the specific resistance value when using the film thickness value determined by the gravimetric method.

整流比はプラズマ重合皮膜をサイクリックポルタンメー
ターにより±2vの電圧を印加した時の電流値の比(I
+/I−)で表わした。
The rectification ratio is the ratio of the current value (I
+/I-).

以下余白Margin below

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高周波放電プラズマ重合装置の概略図である。 〃   カネボウ合繊株式会社 FIG. 1 is a schematic diagram of a high frequency discharge plasma polymerization apparatus. Kanebo Gosen Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] (1)テトラメチル錫とその少なくとも10倍量の酸素
を含有する気体とをプラズマ反応器中へ導入し、高周波
電圧を印加してプラズマ化させて基板上へプラズマ重合
膜を形成せしめることを特徴とする透明導電性皮膜の形
成方法。
(1) Tetramethyltin and a gas containing at least 10 times the amount of oxygen are introduced into a plasma reactor, and a high frequency voltage is applied to turn them into plasma to form a plasma polymerized film on the substrate. A method for forming a transparent conductive film.
(2)酸素がテトラメチル錫の少なくとも30倍量であ
る特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the amount of oxygen is at least 30 times that of tetramethyltin.
(3)酸素がテトラメチル錫の50〜200倍量である
特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the amount of oxygen is 50 to 200 times that of tetramethyltin.
(4)酸素を含有する気体が酸素を少なくとも20%含
有する特許請求の範囲第1項記載の方法。
(4) The method of claim 1, wherein the oxygen-containing gas contains at least 20% oxygen.
(5)酸素を含有する気体が酸素50%以上、アルゴン
50%以下よりなる特許請求の範囲第1項記載の方法。
(5) The method according to claim 1, wherein the oxygen-containing gas consists of 50% or more oxygen and 50% or less argon.
(6)高周波の電極の単位面積当り出力が高々1W/c
m^2である特許請求の範囲第1項記載の方法。
(6) Output per unit area of high-frequency electrode is at most 1 W/c
The method according to claim 1, wherein m^2.
(7)高周波の出力が0.05〜0.7W/cm^2で
ある特許請求の範囲第1項記載の方法。
(7) The method according to claim 1, wherein the high frequency output is 0.05 to 0.7 W/cm^2.
(8)プラズマ重合時間が少なくても1分である特許請
求の範囲第1項記載の方法。
(8) The method according to claim 1, wherein the plasma polymerization time is at least 1 minute.
(9)プラズマ重合時間が少なくても3分である特許請
求の範囲第1項記載の方法。
(9) The method according to claim 1, wherein the plasma polymerization time is at least 3 minutes.
(10)プラズマ重合時間が少なくても5分である特許
請求の範囲第1項記載の方法。
(10) The method according to claim 1, wherein the plasma polymerization time is at least 5 minutes.
(11)基板が平滑な表面を有するガラス、高分子金属
又はセラミックである特許請求の範囲第1項記載の方法
(11) The method according to claim 1, wherein the substrate is glass, polymeric metal, or ceramic having a smooth surface.
(12)基板の温度が室温〜高々200℃である特許請
求の範囲第1項記載の方法。
(12) The method according to claim 1, wherein the temperature of the substrate is from room temperature to at most 200°C.
(13)反応器内の真空度が10^−^3〜10^0T
orrである特許請求の範囲第1項記載の方法。
(13) The degree of vacuum inside the reactor is 10^-^3~10^0T
The method of claim 1, wherein orr.
JP4346085A 1985-03-05 1985-03-05 Formation of transparent electroconductive film Pending JPS61203136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346085A JPS61203136A (en) 1985-03-05 1985-03-05 Formation of transparent electroconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346085A JPS61203136A (en) 1985-03-05 1985-03-05 Formation of transparent electroconductive film

Publications (1)

Publication Number Publication Date
JPS61203136A true JPS61203136A (en) 1986-09-09

Family

ID=12664318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346085A Pending JPS61203136A (en) 1985-03-05 1985-03-05 Formation of transparent electroconductive film

Country Status (1)

Country Link
JP (1) JPS61203136A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362877A (en) * 1986-09-02 1988-03-19 Nok Corp Formation of thin tin film
JPS6372882A (en) * 1986-09-12 1988-04-02 Nok Corp Formation of thin transparent tin film
JPS6445434A (en) * 1987-05-12 1989-02-17 Schering Ag Manufacture of electroconductive polymer-metal compound
JP2005272552A (en) * 2004-03-24 2005-10-06 Tadahiro Omi Method for producing polymer and polymer material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362877A (en) * 1986-09-02 1988-03-19 Nok Corp Formation of thin tin film
JPS6372882A (en) * 1986-09-12 1988-04-02 Nok Corp Formation of thin transparent tin film
JPS6445434A (en) * 1987-05-12 1989-02-17 Schering Ag Manufacture of electroconductive polymer-metal compound
JP2005272552A (en) * 2004-03-24 2005-10-06 Tadahiro Omi Method for producing polymer and polymer material

Similar Documents

Publication Publication Date Title
JPH11268183A (en) Polyimide-metal laminate and its manufacture
JPS63908A (en) Manufacture of transparent conducting film
Tseng et al. Dielectric-barrier-discharge jet treated flexible supercapacitors with carbon cloth current collectors of long-lasting hydrophilicity
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JPH0660412B2 (en) Thin film formation method
JPS61203136A (en) Formation of transparent electroconductive film
JPH1112735A (en) Production of diamond-like thin carbon film
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
JP2653404B2 (en) Preparation of conductive polymer-metal compounds.
Tanaka et al. Investigation of a new reactant for fluorinated polymer surface treatments with atmospheric pressure glow plasma to improve the adhesive strength
JPH08188658A (en) Process for treating surface of substrate
JPH02210715A (en) Transparent conductive base member with two-layer structure
JPS61203137A (en) Conductive film with rectifying properties
JPH08188663A (en) Process for treating surface of substrate
JPH01304130A (en) Surface treatment of molded item of fluorinated olefin polymer
JPS6240375A (en) Hard carbon film
EP0442162B1 (en) Film of titanium hydride
JP2007254810A (en) Boron-carbon-nitrogen-oxygen compound film forming method, and film, substrate, and device obtained by the above method
JPS59139641A (en) Electrostatic sucker
JPH0761434B2 (en) Material permeable membrane
Manting et al. Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+ CH4+ NH3 plasma
Liu et al. Surface modification of poly (vinylidene fluoride) films by graft copolymerization for adhesion improvement with evaporated metals
JPS63238278A (en) Formation method of tin oxide thin film
JP2001104773A (en) Method for forming acetylene-based monomer polymer film
JPH02276240A (en) Formation of amorphous semiconductor thin film