JPS61202141A - Absorptiometer - Google Patents
AbsorptiometerInfo
- Publication number
- JPS61202141A JPS61202141A JP4435285A JP4435285A JPS61202141A JP S61202141 A JPS61202141 A JP S61202141A JP 4435285 A JP4435285 A JP 4435285A JP 4435285 A JP4435285 A JP 4435285A JP S61202141 A JPS61202141 A JP S61202141A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- filter
- absorbance
- particulate material
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/534—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optical Measuring Cells (AREA)
Abstract
Description
【発明の詳細な説明】
□〔産業上の利用分野〕
本発明は液体試料中に含有される粒状物質の吸光光度測
定に用いら吸光光度計に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an absorptiometer used for measuring the absorbance of particulate matter contained in a liquid sample.
各種の技術分野、産業分野において、試料中の超微量成
分分析の高感度化が要求されている。分析の高度化のた
め分析目的成分の濃度が分析装置の感度以下の場合には
当該成分の濃縮が図られている。In various technical and industrial fields, there is a demand for higher sensitivity in the analysis of ultratrace components in samples. To improve the sophistication of analysis, attempts are made to concentrate the target component when the concentration of the target component is below the sensitivity of the analyzer.
その濃縮法の1つとして、イオン交換樹脂などの粒状物
質に分析目的成分を吸着させて濃縮する方法がある。最
近、当該成分を粒状物質に吸着濃縮させたまま発色させ
、粒状物質相の吸光度を直接測定することによシ当該成
分の濃度定量を行う方法が報告されている。この方法は
従来の溶液相の吸光度測定に比べて数十倍高感度である
。液体試料中に含有されている粒状物質の吸光度測定は
、従来、第2図に示すセルユニットを用いて行なわれて
いる。当該セルユニットは通常のセルlの下部両端に小
孔16を開け、下部に戸遇材17を充填したもので、粒
状物質を含有した液体試料をセルl上方よシ注入すると
液体だけが小孔16よシ抜は出て粒状物質が濾過材17
上に捕集できる。従来は、このようにして粒状物質を捕
集、充填したセルユニ、トを通常の吸光光度計にセット
して、直接、分析波長に相当する単色光を入射させて吸
光度を測定していた。As one of the concentration methods, there is a method of adsorbing the component to be analyzed on particulate material such as an ion exchange resin and concentrating it. Recently, a method has been reported in which the concentration of the component is determined by developing a color while adsorbing and concentrating the component on a particulate material and directly measuring the absorbance of the particulate material phase. This method is several tens of times more sensitive than conventional solution-phase absorbance measurements. The absorbance measurement of particulate matter contained in a liquid sample has conventionally been carried out using a cell unit shown in FIG. This cell unit has small holes 16 at both ends of the lower part of a normal cell 1, and the lower part is filled with a lining material 17. When a liquid sample containing particulate matter is injected upward into the cell 1, only the liquid flows through the small holes. 16 After removal, particulate matter is filtered into the filter material 17
It can be collected on top. Conventionally, a cell unit that has collected and filled particulate matter in this manner was set in a normal spectrophotometer, and the absorbance was measured by directly injecting monochromatic light corresponding to the analysis wavelength.
したがって、この装置では試料毎にセルユニットを吸光
光度計から着脱して、試料を入れかえなければならない
ため操作が繁雑で測定の迅速化及び自動化を図ることが
困難であるという欠点を有していた。そこで、吸光光度
分析の迅速化、自動化を図るために、第3図に示す様な
フロータイブの吸光光度計が開発された。この吸光分光
計はセル本体lの下部に備えた電磁弁3を閉じてセル本
体1内に送液ポンプ18にて試料19を送り込み、セル
本体1の一方に設置した光源部11の光を、分光部12
に通して本体lに照射し、その透過光を他方の受光部1
3で受け、増幅・指示部14にて吸光度の測定を行うも
のである。しかし、この装置では溶液にしか適用できな
い。Therefore, this device has the drawback that the cell unit must be attached and detached from the spectrophotometer for each sample and the sample must be replaced, making the operation complicated and making it difficult to speed up and automate measurements. . Therefore, in order to speed up and automate spectrophotometric analysis, a flow-type spectrophotometer as shown in FIG. 3 was developed. This absorption spectrometer closes the electromagnetic valve 3 provided at the bottom of the cell body 1, sends a sample 19 into the cell body 1 using a liquid pump 18, and uses light from a light source 11 installed on one side of the cell body 1 to Spectroscopic section 12
, and transmits the transmitted light to the other light receiving section 1.
3, and the absorbance is measured in the amplification/instruction section 14. However, this device can only be applied to solutions.
本発明の目的は、このような従来技術の欠点を解決し、
液体試料中に含有される粒状物質の吸光度測定が行える
フロータイブの吸光光度計を提供することにある。The purpose of the present invention is to solve the drawbacks of such prior art,
An object of the present invention is to provide a flow-type spectrophotometer that can measure the absorbance of particulate matter contained in a liquid sample.
本発明はフロータイブの吸光光度針において、出口側に
開閉弁を備えたセル本体に、その内部な区画して粒状物
質の充填室を形成するフィルターを開閉可能に設置し、
その下流側に、セル本体内に試料を吸引送入する減圧装
置と接続したことを特徴とする吸光光度計である。The present invention provides a flow type absorptiometry needle, in which a filter is installed in a cell body equipped with an on-off valve on the outlet side to be openable and closable, and a filter is partitioned inside the cell body to form a chamber filled with particulate matter.
This spectrophotometer is characterized in that it is connected to a pressure reducing device downstream thereof for sucking and feeding a sample into the cell main body.
以下に本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図において、セル本体1は、その底部に電磁弁3を
備え、その上流側が試料輸送管6にてサングルタ/り1
5に接続され、その下流側が廃液入れ10に接続されて
いる点並びにセル本体1の一側に光源部11および分光
部12を、他側に受光部13および増幅指示部14をそ
れぞれ備えている点は第3図に示す従来の装置と同じで
ある。本発明はセル本体1内に回転軸4を枢軸としてフ
ィルター2を回動可能に設置し、該フィルター2をセル
本体l内に設けた胴部開口縁に圧接することKよル内部
を区画してその上流側に充填室を形成し、電磁弁3より
下流側の管路を分岐してその一方に電磁弁9を介して減
圧装置8を接続し、他方に廃液入れ10を接続したもの
である。In FIG. 1, a cell body 1 is equipped with a solenoid valve 3 at its bottom, and a sample transport tube 6 is connected to a sample transport tube 1 on the upstream side of the cell body 1.
5, and its downstream side is connected to a waste liquid container 10, and one side of the cell body 1 is provided with a light source section 11 and a spectroscopic section 12, and the other side is provided with a light receiving section 13 and an amplification instruction section 14. This is the same as the conventional device shown in FIG. In the present invention, a filter 2 is rotatably installed in a cell body 1 about a rotating shaft 4, and the filter 2 is press-contacted to the edge of a body opening provided in a cell body 1, thereby partitioning the inside of the cell. A filling chamber is formed on the upstream side of the solenoid valve 3, and the pipe line downstream from the solenoid valve 3 is branched, and a pressure reducing device 8 is connected to one side through the solenoid valve 9, and a waste liquid container 10 is connected to the other side. be.
第1図において、減圧装ft8を作動させ2つの電磁弁
3,9を開にすると、試料吸入ロアよ多試料19がタン
ク15よ)吸入され、試料輸送管6を通ってセル本体1
に導かれる。セル本体1の出口側に設けられたフィルタ
2は回転軸4に枢支され、それ・を中心に回転可能であ
るが、第2図に示した状態では、胴部開口縁を閉じて充
填室を区画形成するためセル本体1に流入した液体試料
19中の粒状物質5はフィルター2に捕集される。粒状
物質5がセル本体1に充分に捕集、充填されたところで
、2つの電磁弁3,9を閉にし、その゛後分析波長に相
当する単色光をセル本゛体1に入射させて吸光度を測定
する。吸光度測定は光源部11、分光部12、受光部1
3、増幅・指示部14から構成される装置部分で行われ
る。測定終了後、再び電′磁弁3,9を開とし、フィル
ター2を下方に回転させた後、試料吸入ロアよ)洗浄水
を導入してセルlに充填された粒状物質をセル外に洗い
流して廃液入れlOに導く。以上の操作を繰シ返すこと
によって、液体試料中に含有される粒状物質の・吸光度
測定が連続的に行え、測定の迅速化、自動化を図ること
がてきる。In FIG. 1, when the pressure reducing device ft8 is activated and the two electromagnetic valves 3 and 9 are opened, a large amount of sample 19 is sucked into the sample suction lower (tank 15), passes through the sample transport pipe 6, and enters the cell main body.
guided by. The filter 2 provided on the outlet side of the cell body 1 is pivotally supported by a rotating shaft 4, and is rotatable around it. In the state shown in FIG. 2, the opening edge of the body is closed and the filling chamber is Particulate matter 5 in the liquid sample 19 that has flowed into the cell body 1 to form compartments is collected by the filter 2. When the particulate matter 5 is sufficiently collected and filled into the cell body 1, the two electromagnetic valves 3 and 9 are closed, and then monochromatic light corresponding to the analysis wavelength is incident on the cell body 1 to measure the absorbance. Measure. Absorbance measurement is performed using the light source section 11, spectroscopic section 12, and light receiving section 1.
3. This is carried out in the device section consisting of the amplification/instruction section 14. After the measurement is completed, open the electromagnetic valves 3 and 9 again, rotate the filter 2 downward, and then introduce cleaning water (from the sample suction lower) to wash away the particulate matter filled in the cell 1. and lead it to the waste liquid container lO. By repeating the above operations, it is possible to continuously measure the absorbance of particulate matter contained in a liquid sample, thereby speeding up and automating the measurement.
従来の純水中の低濃度のシリカの分析はモリブデンブル
ー法で行われておシ、第3図に示す様な従来法の検出限
界は5ppb@度であ〕、電子工業用超細水中火力発電
所の高圧?イツー水など、シリカ含有量について5 P
I)b以下の基準が示されている純水については測定不
可能だった。シリカのモリブデンブルー錯イオンをセフ
アゾ、クスrルに吸着させた粒状物質を、本発明の装置
を用いて805nmの分析波長で測定したところ、0.
1ppbレベルのシリカの分析が行えた。また、K2図
に示したセルニニ、トな用いる従来法に比べ5分の1程
度に測定時間を短縮できた。同時に測定の自動化を図る
ことができた。Conventionally, analysis of low concentrations of silica in pure water has been carried out using the molybdenum blue method, and as shown in Figure 3, the detection limit of the conventional method is 5 ppb@degrees. High pressure at power plants? Regarding the silica content of Itsu water etc. 5 P
I) It was not possible to measure pure water with standards below b. When a particulate material in which molybdenum blue complex ions of silica were adsorbed to Cefazo and Kussur was measured using the apparatus of the present invention at an analytical wavelength of 805 nm, it was found that 0.
Analysis of silica at the 1 ppb level was possible. Furthermore, the measurement time could be reduced to about one-fifth compared to the conventional method using cellulose shown in Figure K2. At the same time, we were able to automate the measurement.
以上実施例に示した様に、本発明の装置によれば液体試
料中の含有される粒状物質の吸光度測定を迅速に行うこ
とができ、従来行えなかった超微量成分の分析が可能に
な〕、分析時間の短縮及び(,6’)
分析の自動化を実現できる効果を有するものである。As shown in the examples above, the apparatus of the present invention can quickly measure the absorbance of particulate matter contained in a liquid sample, making it possible to analyze ultratrace components, which was previously impossible. This has the effect of shortening the analysis time and realizing automation of the (,6') analysis.
第1図は本発明の装置の構成を示す断面図、第2図は粒
状物質測定用に従来用いられているセルユニットの断面
図、第3図は従来のフロ一式吸光光度針を示す断面図で
ある。
l・・・セル本体、2・・・フィルター、3・・・電磁
弁、4・・・回転軸、5・・・粒状物質、6・・・試料
輸送管、7・・・試料注入口、8・・・減圧装置、9・
・・電磁弁、10・・・廃液入れ、11・・・光源部、
12・・・分光部、13・・・受光部、14・・・増幅
・指示部、15・・・サンプルタンク、16・・・小孔
、17・・・濾過材、18・・・送液ポ/7°、 1
9・−・試料。Fig. 1 is a cross-sectional view showing the configuration of the device of the present invention, Fig. 2 is a cross-sectional view of a cell unit conventionally used for measuring particulate matter, and Fig. 3 is a cross-sectional view showing a conventional flow-type absorbance meter. It is. l... Cell body, 2... Filter, 3... Solenoid valve, 4... Rotating shaft, 5... Particulate matter, 6... Sample transport tube, 7... Sample injection port, 8... pressure reducing device, 9...
...Solenoid valve, 10...Waste liquid container, 11...Light source section,
12... Spectroscopic section, 13... Light receiving section, 14... Amplification/instruction section, 15... Sample tank, 16... Small hole, 17... Filtering material, 18... Liquid feeding Po/7°, 1
9.--Sample.
Claims (1)
閉弁を備えたセル本体に、その内部を区画して粒状物質
の充填室を形成するフィルターを開閉可能に設置し、そ
の下流側に、セル本体内に試料を吸引送入する減圧装置
を接続したことを特徴とする吸光光度計。(1) In a flow-type spectrophotometer, a filter that partitions the inside of the cell and forms a chamber filled with particulate matter is installed in a cell main body equipped with an on-off valve on the outlet side so as to be openable and closable, and on the downstream side thereof, A spectrophotometer characterized by being connected to a decompression device for sucking and feeding a sample into the cell body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4435285A JPS61202141A (en) | 1985-03-06 | 1985-03-06 | Absorptiometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4435285A JPS61202141A (en) | 1985-03-06 | 1985-03-06 | Absorptiometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61202141A true JPS61202141A (en) | 1986-09-06 |
Family
ID=12689120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4435285A Pending JPS61202141A (en) | 1985-03-06 | 1985-03-06 | Absorptiometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61202141A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10557786B2 (en) | 2011-01-21 | 2020-02-11 | Theranos Ip Company, Llc | Systems and methods for sample use maximization |
US10634667B2 (en) | 2007-10-02 | 2020-04-28 | Theranos Ip Company, Llc | Modular point-of-care devices, systems, and uses thereof |
-
1985
- 1985-03-06 JP JP4435285A patent/JPS61202141A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11199538B2 (en) | 2007-10-02 | 2021-12-14 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US10634667B2 (en) | 2007-10-02 | 2020-04-28 | Theranos Ip Company, Llc | Modular point-of-care devices, systems, and uses thereof |
US10670588B2 (en) | 2007-10-02 | 2020-06-02 | Theranos Ip Company, Llc | Modular point-of-care devices, systems, and uses thereof |
US11899010B2 (en) | 2007-10-02 | 2024-02-13 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US10900958B2 (en) | 2007-10-02 | 2021-01-26 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US11061022B2 (en) | 2007-10-02 | 2021-07-13 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US11092593B2 (en) | 2007-10-02 | 2021-08-17 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US11137391B2 (en) | 2007-10-02 | 2021-10-05 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US11143647B2 (en) | 2007-10-02 | 2021-10-12 | Labrador Diagnostics, LLC | Modular point-of-care devices, systems, and uses thereof |
US11366106B2 (en) | 2007-10-02 | 2022-06-21 | Labrador Diagnostics Llc | Modular point-of-care devices, systems, and uses thereof |
US11199489B2 (en) | 2011-01-20 | 2021-12-14 | Labrador Diagnostics Llc | Systems and methods for sample use maximization |
US10557786B2 (en) | 2011-01-21 | 2020-02-11 | Theranos Ip Company, Llc | Systems and methods for sample use maximization |
US11644410B2 (en) | 2011-01-21 | 2023-05-09 | Labrador Diagnostics Llc | Systems and methods for sample use maximization |
US10876956B2 (en) | 2011-01-21 | 2020-12-29 | Labrador Diagnostics Llc | Systems and methods for sample use maximization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9518900B2 (en) | Sample preparation system for an analytical system for determining a measured variable of a liquid sample | |
CN109444070A (en) | Oil content all automatic measurement instrument in water | |
CN111443074A (en) | Automatic online pretreatment and Raman detection device and method | |
CN103389279B (en) | The device and method of sub-methyl blue spectrum analysis on-line checkingi water quality medium sulphide content concentration | |
CN106872452A (en) | A kind of free chlorine in-line analyzer and its application method | |
CN108801959A (en) | One kind being based on microflow control technique original position ammonia nitrogen on-line computing model | |
CN102590411B (en) | Method for detecting divalent cadmium ion in aquatic product by using HPLC-ICP-MS coupling technique | |
CN112461814B (en) | A kind of on-line detection device and detection method of thallium in water | |
CN112903612A (en) | Online analyzer for anionic surfactant | |
Miró et al. | Determination of ultratraces of nitrite by solid-phase preconcentration using a novel flow-through spectrophotometric optrode | |
CN109655477A (en) | Algae enriching apparatus and method for X-ray fluorescence spectra detection heavy metal in water | |
JPS61202141A (en) | Absorptiometer | |
CN206671204U (en) | A kind of detecting system for fruits and vegetables pesticide residues | |
WO2022099800A1 (en) | Online analyzer for water quality permanganate index | |
CN110044867A (en) | A kind of fruit surface pesticide residue in-situ acquisition detection device and method | |
Heanes | Determination of trace elements in plant materials by a dry-ashing procedure. Part I. Cobalt and molybdenum | |
CN217404129U (en) | On-line monitoring instrument for trace heavy metals in water based on-line separation and enrichment technology | |
Blanco et al. | Liquid–liquid extraction in flow injection analysis using an open-phase separator for the spectrophotometric determination of copper in plant digests | |
CN209589830U (en) | A kind of ultraviolet spectrometry oil content analyzer | |
CN209231218U (en) | A semi-quantitative on-line detection device for Mn(II) content in water | |
CN208537538U (en) | A kind of micro-fluidic chip | |
CN219285148U (en) | An online chlorine ion analyzer performance test device | |
CN218298013U (en) | Quick detection device of aflatoxin B1 in chinese-medicinal material pseudo-ginseng | |
CN217521010U (en) | Automated photoelectric detection of container lids | |
JPH08304376A (en) | Analyzing method and analyzing device of tree-type nitrogen in water |