JPS61202134A - Flow direction measuring apparatus - Google Patents
Flow direction measuring apparatusInfo
- Publication number
- JPS61202134A JPS61202134A JP4320985A JP4320985A JPS61202134A JP S61202134 A JPS61202134 A JP S61202134A JP 4320985 A JP4320985 A JP 4320985A JP 4320985 A JP4320985 A JP 4320985A JP S61202134 A JPS61202134 A JP S61202134A
- Authority
- JP
- Japan
- Prior art keywords
- flow direction
- model
- camera
- converted
- tufts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003973 paint Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000010191 image analysis Methods 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000012876 topography Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/06—Measuring arrangements specially adapted for aerodynamic testing
- G01M9/065—Measuring arrangements specially adapted for aerodynamic testing dealing with flow
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
【発明の詳細な説明】
従来の技術
建物の周辺あるいは、複雑な地形の流体の流れはその建
物の構造太さ種類により、また地形によって種々複雑な
変化をする。DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION The flow of fluid around a building or around a complex topography varies in various complex ways depending on the thickness and type of the building's structure and the topography.
これら自然界における流体の流れを実験室内で模擬実験
する場合には一般的に風胴実験もしくは水槽が用いられ
ることが多いが、その際風胴または水槽内に建物および
地形の縮尺模型を設置してこの模型上で流向を測定する
ことが必要となる。Wind cylinder experiments or water tanks are generally used to simulate fluid flows in the natural world in a laboratory, but scale models of buildings and terrain are installed inside the wind cylinder or water tank. It is necessary to measure the flow direction on this model.
このような小さな模型上で流向を測定する場合には野外
の気象測定に使用されるような矢板式の流向測定装置は
大きすぎて使用できない。風胴内の建物および地形模型
上の流向を測定する装置としては、従来熱線風速計、2
孔円筒型ピトー管お利用して流速を測るもので、流れの
方向を測定するには適当しているとはいえない。When measuring the flow direction on such a small model, a sheet pile type flow direction measuring device such as that used for outdoor weather measurements is too large to be used. Conventional hot wire anemometers, 2
This method uses a cylindrical hole pitot tube to measure flow velocity, and is not suitable for measuring the direction of flow.
2孔円筒型ピトー管は第3図に示すように平行でないピ
トー管を一体とすれば、ピトー管のなす角の2等分線上
の流れに対してピトー管の読みが等しくなるという性質
を利用して流体の流向を求めるものであるが、水槽によ
く用いられる。The two-hole cylindrical pitot tube utilizes the property that, as shown in Figure 3, if two non-parallel pitot tubes are integrated, the reading of the pitot tube will be equal to the flow on the bisector of the angle formed by the pitot tube. This method is used to determine the flow direction of fluid, and is often used in aquariums.
(発明が解決しようとする問題点)
熱線風速計は自動的な測定ができるが、空気あるいは水
の流れの向きの変動が大である場合は測定困難となる。(Problems to be Solved by the Invention) A hot wire anemometer can automatically measure the speed, but it becomes difficult to measure when the direction of the flow of air or water varies greatly.
また2孔円筒型ピトー管は方向を変えてやる必要があり
、また導圧管を流路外に導かねばならないから多数の測
定点の設定を要する場合には適当でない。またタフトは
流向変動が大きくても測定可能であるが流向を測定する
のに人力による読取作業が必要となり、多大の測定時間
と費用とを要する欠点がある。In addition, the two-hole cylindrical pitot tube requires changing its direction and the impulse tube must be guided outside the flow path, so it is not suitable when a large number of measurement points need to be set. Furthermore, although tufts can be measured even when there are large fluctuations in flow direction, manual reading is required to measure the flow direction, which has the drawback of requiring a large amount of measurement time and cost.
(問題点を解決するための手段)
間を要していた。これに対し本発明では、風胴を暗室と
して、タクトに蛍光塗料を塗布して、テレビカメラによ
り撮影し、このテレビカメラの出力を画像解析装置によ
って2価値号に変換し、タフトの向きを数値的に認識す
るもので、至短時間で流向測定ができる。なお、テレビ
カメラによる識別を容易にするためタフトまたはその背
景に蛍光塗料を塗布する。(Means to solve the problem) It took a long time. In contrast, in the present invention, the wind barrel is used as a dark room, the tact is coated with fluorescent paint, the image is photographed by a television camera, the output of this television camera is converted into a binary code by an image analysis device, and the direction of the tuft is numerically determined. Flow direction can be measured in the shortest possible time. In addition, fluorescent paint will be applied to the tuft or its background to facilitate identification by television cameras.
(実施例)
第1図について本発明の詳細な説明する。流向測定装置
は風胴の壁l、建物模型2、地形模型3、送風機4、整
流格子5、蛍光塗料を塗布したタフト6(毛糸、絹糸)
、テレビカメラ7、画像解析装置8、画像表示装置9、
スイッチ10、ビデオレコーダ11、カメラ12から構
成されている。この白画像解析装置8は、白黒の画像を
白黒の2価値号に変える装置、整流格子5は、送風機4
より吐出後、拡大された流路による流体の乱流を整流す
るものである。画像解析装置8により暗い背景の中の白
いタフトが2価値号に変換され、各タフトの向きが自動
的に解析された後、風向角が画像表示装置9に入力され
る。(Example) The present invention will be described in detail with reference to FIG. The flow direction measuring device is the wall l of the wind barrel, the building model 2, the terrain model 3, the blower 4, the rectifying grid 5, and the tuft 6 coated with fluorescent paint (wool, silk thread).
, television camera 7, image analysis device 8, image display device 9,
It is composed of a switch 10, a video recorder 11, and a camera 12. This white image analysis device 8 is a device that converts a black and white image into a black and white binary code.
This is to rectify the turbulent flow of fluid caused by the enlarged flow path after the fluid is discharged. The image analysis device 8 converts the white tufts in the dark background into binary codes, automatically analyzes the orientation of each tuft, and then inputs the wind direction angle to the image display device 9.
(作用)
空気は送風機4によって風速を与えられ、整流格子5に
よって整流された後、建物模型、および地形模型を流れ
た後、排出されるか、または回流する。これら模型の周
わりに設置されたタフト6は蛍光塗料を塗布されている
ので暗黒の風胴内ではタクトが白く光り、容易にテレビ
カメラで撮影することができる。この場合外部よりの照
明光を必要としないので、建物模型、地形模型2.3に
よる影が生じることはない。模型自体2.3はテレビカ
メラ7に写らず、タフト6を示す信号のみが画像解析装
置に入力される。(Function) Air is given a wind speed by the blower 4, rectified by the rectifying grid 5, flows through the building model and the terrain model, and then is discharged or circulated. The tufts 6 installed around these models are coated with fluorescent paint, so the tufts glow white in the darkness of the wind barrel, making them easy to photograph with a television camera. In this case, since no illumination light from the outside is required, shadows caused by the building model and the terrain model 2.3 are not caused. The model itself 2.3 is not captured by the television camera 7, and only the signal indicating the tuft 6 is input to the image analysis device.
テレビカメラ7の信号はビデオレコーダ11に記録され
た後画像解析装置8に入力されるように、スイッチ10
によって切替えることもできる。また、タフト6は写真
材12で静止画像として、記録された後、ビデオカメラ
7で再度撮影して画像解析装置8へ入力することもでき
る。A switch 10 is configured so that the signal from the television camera 7 is recorded on the video recorder 11 and then input to the image analysis device 8.
It can also be switched by Furthermore, after the tuft 6 is recorded as a still image using the photographic material 12, it can be photographed again using the video camera 7 and inputted to the image analysis device 8.
以−ヒの実施例では建物模型、地形模型に取付られたタ
フト6に蛍光塗料を塗布した場合につl、Xて述べたが
、蛍光塗料は建物、地形の模型に塗布して、タフトの方
に塗布しなければ相対的には全く前記実施例と同様で、
同じ結果を得ることができる。勿論模型全体の他、タフ
ト周囲の一部分のみに塗布することもできる。In the following embodiments, the fluorescent paint was applied to the tufts 6 attached to the building model and the terrain model. If it is not applied to the other side, it is relatively the same as the previous example,
You can get the same result. Of course, it can be applied not only to the entire model but also to only a portion around the tuft.
(発明の効果)
以上述べたことにより明かなように、本発明によれば、
建物模型および地形模型上のタフトの向きを自動的に解
析し、各タクトの流向角を自動的に短時間に解析するこ
とができ、これによって大気または液体の流れを模型上
で求め、このデータを基として、実物における流体の流
れを推定することができる。(Effects of the Invention) As is clear from the above description, according to the present invention,
The orientation of tufts on building and terrain models can be automatically analyzed, and the flow direction angle of each tact can be automatically analyzed in a short time.This allows the flow of air or liquid to be determined on the model and this data can be analyzed automatically. Based on this, the fluid flow in the actual object can be estimated.
第1図は発明の全体図を、第2図は熱線風速計の外観図
を、第3図は2孔円筒型ピトー管の断面図を示す。
符号の説明
1・・・風胴、2・・・建物模型、3・舎・地形模型、
4・・φ送風機、5・・・整流格子、6・0.タクト、
7・0.テレビカメラ、8−−−画像解析装置、9・・
・画像表示装置、10−−・スイッチ、1111・・ビ
デオレコーダ、12・・番写真機、13.14・・・熱
線。FIG. 1 shows an overall view of the invention, FIG. 2 shows an external view of a hot wire anemometer, and FIG. 3 shows a sectional view of a two-hole cylindrical pitot tube. Explanation of symbols 1...Wind barrel, 2...Building model, 3. Building/terrain model,
4...φ blower, 5... Rectifier grid, 6.0. tact,
7.0. Television camera, 8---Image analysis device, 9...
- Image display device, 10-- Switch, 1111 Video recorder, No. 12 Photographer, 13.14 Heat wire.
Claims (1)
方向(以下、流向と呼ぶ。)を測定する装置において、
暗室化された前記風胴または水槽と、模型上に配置され
た流向指示器と、同指示器を撮影するテレビカメラと同
テレビカメラの出力信号を輝度によって2値信号に変換
してこの信号から前記流向指示器の向きを解析する画像
解析装置とを具え、前記模型の一部もしくは全部、また
は流向指示器に傾向塗料を塗布してなることを特徴とす
る流向測定装置。In a device that measures the direction of fluid flow around a model placed in a wind barrel or water tank (hereinafter referred to as flow direction),
The wind barrel or water tank in a darkened room, the flow direction indicator placed on the model, the TV camera that photographs the indicator, and the output signal of the TV camera are converted into a binary signal depending on the brightness, and the output signal is converted from this signal. A flow direction measuring device comprising: an image analysis device for analyzing the direction of the flow direction indicator; and a part or all of the model or the flow direction indicator is coated with a tendency paint.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4320985A JPS61202134A (en) | 1985-03-05 | 1985-03-05 | Flow direction measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4320985A JPS61202134A (en) | 1985-03-05 | 1985-03-05 | Flow direction measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61202134A true JPS61202134A (en) | 1986-09-06 |
Family
ID=12657527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4320985A Pending JPS61202134A (en) | 1985-03-05 | 1985-03-05 | Flow direction measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61202134A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5186046A (en) * | 1990-08-20 | 1993-02-16 | Board Of Regents Of The University Of Washington | Surface pressure measurement by oxygen quenching of luminescence |
JP2009192470A (en) * | 2008-02-18 | 2009-08-27 | Tokyo Electric Power Co Inc:The | Attachment for flange, gas leak detection system and computer program |
JP2011017601A (en) * | 2009-07-08 | 2011-01-27 | Honda Motor Co Ltd | Particle image flow velocity measuring device |
CN104266815A (en) * | 2014-09-30 | 2015-01-07 | 南车青岛四方机车车辆股份有限公司 | Device and method for testing state of flow field in high speed train bogie cabin |
US8953035B2 (en) | 2009-07-08 | 2015-02-10 | Honda Motor Co., Ltd. | Particle image velocimetry method, particle image velocimetry method for 3-dimensional space, particle image velocimetry system, and tracer particle generating device in particle image velocimetry system |
JP2017161329A (en) * | 2016-03-09 | 2017-09-14 | 株式会社ジェイテクト | Flow velocity distribution measurement method |
-
1985
- 1985-03-05 JP JP4320985A patent/JPS61202134A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5186046A (en) * | 1990-08-20 | 1993-02-16 | Board Of Regents Of The University Of Washington | Surface pressure measurement by oxygen quenching of luminescence |
JP2009192470A (en) * | 2008-02-18 | 2009-08-27 | Tokyo Electric Power Co Inc:The | Attachment for flange, gas leak detection system and computer program |
JP2011017601A (en) * | 2009-07-08 | 2011-01-27 | Honda Motor Co Ltd | Particle image flow velocity measuring device |
US8953035B2 (en) | 2009-07-08 | 2015-02-10 | Honda Motor Co., Ltd. | Particle image velocimetry method, particle image velocimetry method for 3-dimensional space, particle image velocimetry system, and tracer particle generating device in particle image velocimetry system |
CN104266815A (en) * | 2014-09-30 | 2015-01-07 | 南车青岛四方机车车辆股份有限公司 | Device and method for testing state of flow field in high speed train bogie cabin |
JP2017161329A (en) * | 2016-03-09 | 2017-09-14 | 株式会社ジェイテクト | Flow velocity distribution measurement method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chan et al. | Evaluating forest vegetative cover with computerized analysis of fisheye photographs | |
TWI473976B (en) | Module for measuring the height of a liquid surface | |
CN103487104B (en) | A kind of image acquisition identification system and method for capillary pipe liquid level type data | |
US20170299382A1 (en) | Online measuring method of concentration and diameter of particles in multiphase system | |
CN110530432A (en) | A kind of grid equipment electrification detection system, thermal infrared imager and method | |
US20050212794A1 (en) | Method and apparatus for removing of shadows and shadings from texture images | |
US20170299415A1 (en) | Immersion-type online multiphase measuring instrument and method | |
US3690234A (en) | Apparatus for taking photographs at times of minimum image motion | |
JPS61202134A (en) | Flow direction measuring apparatus | |
KR890000691B1 (en) | Simulator of fluid flow in fille of flow entaling combustion or reaction | |
GB2129550A (en) | Velocity in water flow model | |
TW200538842A (en) | Methods and systems for detecting flash rate of surrounding lights for controlling camcorder frame rate | |
CN106124562A (en) | A kind of Liquid water content measuring method | |
KR100196439B1 (en) | Image Remote Weighing Device | |
CN110823305A (en) | Counting device based on pixel sensing and counting method thereof | |
KR102732838B1 (en) | System for recognizing analog meter | |
Rodes et al. | Experimental considerations for the study of contaminant dispersion near the body | |
JPS639832A (en) | Measuring method for wind direction frequency distribution | |
TWI242369B (en) | Integrated image fetching device | |
TW202008183A (en) | Air quality system analysed by image | |
CN208079221U (en) | A kind of gas cloud imaging device | |
CN202002890U (en) | Quantitative measuring instrument for gold immunochromatographic test strip | |
JPH0222563A (en) | Detecting method for flow direction of air at periphery of body | |
CN205620659U (en) | Underwater photography camera device | |
Borleteau | Concentration measurement with digital image processing |