JPS61199014A - Method for setting temperature of heating furnace - Google Patents
Method for setting temperature of heating furnaceInfo
- Publication number
- JPS61199014A JPS61199014A JP60040375A JP4037585A JPS61199014A JP S61199014 A JPS61199014 A JP S61199014A JP 60040375 A JP60040375 A JP 60040375A JP 4037585 A JP4037585 A JP 4037585A JP S61199014 A JPS61199014 A JP S61199014A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- temperature
- temp
- function
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000010438 heat treatment Methods 0.000 title claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 75
- 239000000446 fuel Substances 0.000 claims abstract description 35
- 238000004364 calculation method Methods 0.000 claims description 30
- 238000000605 extraction Methods 0.000 claims description 10
- 238000002791 soaking Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 6
- 238000002485 combustion reaction Methods 0.000 abstract description 3
- 230000005855 radiation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 241000254158 Lampyridae Species 0.000 description 1
- 241000264060 Lethrinus Species 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Control Of Heat Treatment Processes (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、熱間圧延ラインにおける加熱炉の温度制御
において、燃料最少となる炉温設定方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a furnace temperature setting method that minimizes fuel consumption in temperature control of a heating furnace in a hot rolling line.
従来、この種の加熱炉の温度制御としては、例えば特開
昭56−75533号公報に示されているように、炉温
から材料温度を計算するモデル、および炉温と材料温度
とから燃料流iを計算するモデルの両弁線形モデルを用
い、非線形の燃料最少化を行なうために、炉温をステッ
プ状に変化させて摂動シミュレーション法(基準状態と
摂動状態においてシミュレーションを行ない線形化係数
を決定する方法)を用いて線形化を行ない、その結果で
材料の昇温面&iを決定するとともに、この昇温曲線と
材料の現状温度と全比較して炉温を決定する方法が採ら
れている。Conventionally, temperature control for this type of heating furnace has been carried out using a model that calculates the material temperature from the furnace temperature, and a model that calculates the fuel flow from the furnace temperature and the material temperature, as shown in Japanese Patent Application Laid-open No. 56-75533. In order to perform nonlinear fuel minimization using a double-valve linear model for calculating i, the furnace temperature is changed stepwise and the perturbation simulation method (simulation is performed in the standard state and perturbed state to determine the linearization coefficient). The method used is to perform linearization using the method of .
上記のような従来の加熱炉の炉温設定方法では、一般に
炉温の計算ゾーンは燃料流量を制御できるゾーンよりも
数が多いため、炉温を基にした摂動法による最適化後の
最適炉温および昇温曲線は、常に実現可能なパターンと
は限らないという問題があった。In the conventional furnace temperature setting method for a heating furnace as described above, the number of furnace temperature calculation zones is generally greater than the number of zones in which the fuel flow rate can be controlled. There has been a problem in that the temperature and temperature rise curves are not always achievable patterns.
また、線形化係数および昇温パターンを決定する際、炉
壁への損失熱量、炉壁温度分布等を無視し、炉の応答遅
れを考慮せずに炉温をステップ状に変化させてシミュレ
ーションを行なっているため、実際の材料の昇温偵向お
よび炉の状態とかけ離れた昇温曲線が決定されるという
問題があった。In addition, when determining the linearization coefficient and temperature increase pattern, the simulation is performed by ignoring heat loss to the furnace wall, furnace wall temperature distribution, etc., and changing the furnace temperature in steps without considering the furnace response delay. As a result, there was a problem in that a temperature rise curve was determined which was far from the actual temperature rise curve of the material and the state of the furnace.
この発明はかかる問題点を解決するためになされたもの
で、各材料の抽出温度を精度よく制御できるばかりでな
く、燃料消費量を低減させることができる加熱炉の炉温
設定方法を得ることを目的とする。This invention was made to solve these problems, and aims to provide a method for setting the furnace temperature of a heating furnace that not only allows accurate control of the extraction temperature of each material but also reduces fuel consumption. purpose.
この発明に係る加熱炉の炉温設定方法は、燃料流itヲ
基にして非定常熱バランス式により炉温を計算するモデ
ル、この炉温を基にして炉壁温度分布を求めるモデル、
および炉温を基にして材料温度を求めるモデルの3つの
非轟形モデルを使用し、燃料流ikスステップ状変化さ
せる摂動法シミュレーションによV線形化を行なって燃
料流量最少の最適化を行ない、材料毎の昇温曲線を求め
ることなく炉内に存在する材料の抽出温度を満足させる
炉温設定値を決定するようにしたものである。The furnace temperature setting method for a heating furnace according to the present invention includes a model that calculates the furnace temperature using an unsteady heat balance formula based on the fuel flow, a model that calculates the furnace wall temperature distribution based on this furnace temperature,
Using three non-roaring models: 1 and 2, a model that calculates the material temperature based on the furnace temperature, and a perturbation method simulation in which the fuel flow rate is changed stepwise, V-linearization is performed to optimize the minimum fuel flow rate. , the furnace temperature setting value that satisfies the extraction temperature of the material existing in the furnace is determined without determining the temperature rise curve for each material.
この発明においては、炉壁温度分布を求めるモデルを含
む3つの非線形モデルを使用し、燃料流量をステップ状
に変化させる摂動法シミュレーションにより線形化を行
なって燃料流量最少の最適化を行ない、炉内に存在する
材料の抽出温度を満足させる炉温設定値を決定するよう
にしているので、各材料について燃料流量が最少となり
、しかも実現可能な炉温設定値を決定することができる
。In this invention, three nonlinear models including a model for determining the furnace wall temperature distribution are used, and linearization is performed using a perturbation method simulation that changes the fuel flow rate in steps to optimize the minimum fuel flow rate inside the furnace. Since the furnace temperature setting value that satisfies the extraction temperature of the materials present in the furnace temperature is determined, it is possible to determine a furnace temperature setting value that minimizes the fuel flow rate for each material and is also achievable.
以下、この発明の原理について説明する。 The principle of this invention will be explained below.
炉温計算モデルは以下の様にして構成されている。The furnace temperature calculation model is constructed as follows.
第1図に示す様に加熱炉を炉長方向にn個に分割し、各
分割されたメツシュについて各々次の様な熱バランス方
程式をたてる。As shown in FIG. 1, the heating furnace is divided into n pieces in the furnace length direction, and the following heat balance equation is established for each divided mesh.
dTg工
C・□ 拳11e炉温の温度変化t
−Q1 ・・・燃料、空気の崩熱+ Hg
a W 1 ・・・燃料発熱量+ (
)1,1°Cpg”gi’1
・・・上流よりの排ガス熱量
−G−C! @T
i Pg gl
・・・下流への排ガス熱量
+ΣK11j ((Tg、1+273)’−(rg、+
27g′)j=1
・Φ・他メツシュ炉温よりのふく射
・・・炉壁よりのふく射
・・・材料へのふく射
+C2(Twi−Tgi)+C3(Tel−Tgi)・
・・炉壁、材料への対流
−QviL ・・・スキッド冷却水損失・
・・(υ
ここでHは燃料の単位流量当りの発熱量、C7は排ガス
比熱、G1は各メツシュの排ガス流量であり、K工ij
、 K2□1(lK31J はそれぞれふく射交換係
数、C工、C2,C3は定数である。またnは炉長分割
数、mはスラブ本数である0
上記式(1)は燃料流量Wが与えられれば、炉壁温度、
スラブ温度を既知とすれば、次の様に変形される。dTg Engineering C・□ Fist 11e Temperature change in furnace temperature t -Q1 ... Heat decay of fuel and air + Hg
a W 1 ...Fuel calorific value + (
)1,1°Cpg"gi'1 ... Calorific value of exhaust gas from upstream - GC! @T i Pg gl ... Calorific value of exhaust gas to downstream + ΣK11j ((Tg, 1 + 273)' - (rg, +
27g') j = 1 ・Φ・ Radiation from other mesh furnace temperatures... Radiation from the furnace wall... Radiation to the material + C2 (Twi-Tgi) + C3 (Tel-Tgi)
・・Convection to the furnace wall and materials - QviL ・・Skid cooling water loss・
...(υ Here, H is the calorific value per unit flow rate of fuel, C7 is the exhaust gas specific heat, G1 is the exhaust gas flow rate of each mesh, and K work ij
, K2□1 (lK31J is the radiation exchange coefficient, C, C2, C3 are constants, n is the number of furnace length divisions, m is the number of slabs, For example, furnace wall temperature,
If the slab temperature is known, it can be transformed as follows.
+ΣB1に11Tgk+01(1=1φ・・n)・・・
(2)
これは、8元連立の非線形微分方程式であるが、1et
ep前の炉内温度分布を出発値として、時間また、材料
温度モデルは、良く知られている2次元の熱伝導方程式
より次の様に表わせる。+ΣB1 to 11Tgk+01 (1=1φ...n)...
(2) This is an 8-element simultaneous nonlinear differential equation, but 1et
Using the temperature distribution in the furnace before ep as a starting value, a time and material temperature model can be expressed as follows using a well-known two-dimensional heat conduction equation.
表面における境界条件は
ここでXは材料厚み方向、Yは材料の巾方向?表わし、
dよ、d2はそれぞれ材料厚み、材料中を衣わす。また
C8.λ8.γBはそれぞれ材料の比熱、熱伝導率、比
重であり、q8は材料の表面熱流束であり次式で表わせ
る。What is the boundary condition on the surface, where X is the thickness direction of the material and Y is the width direction of the material? Representation,
d and d2 are the thickness of the material and the coating inside the material, respectively. Also C8. λ8. γB is the specific heat, thermal conductivity, and specific gravity of the material, respectively, and q8 is the surface heat flux of the material, which can be expressed by the following equation.
q8= Σに3i i ((Tgl ” 275)
’ −(T 8□+273)′″)1=1
+ 03(T8,4.□) ・・・(52式(3
1は式(4)の境界条件を用いれば、通常の差分手法で
解く事ができる。q8= 3i i ((Tgl ” 275)
'-(T8□+273)''')1=1+03(T8,4.□)...(52 formula (3
1 can be solved by a normal differential method using the boundary condition of equation (4).
炉壁温度モデルは第1図に示されている様に炉長手方向
分割毎のメツシュ内において、厚み方向のみの1次元熱
伝導刀根式によって、次の様に表わせる。As shown in FIG. 1, the furnace wall temperature model can be expressed as follows using a one-dimensional heat conduction knife equation in the thickness direction only within the mesh for each division in the longitudinal direction of the furnace.
炉内表面における境界条件は
+02(Tgl−Tw) ・・・(7)炉外
表面における境界条件は
ここでXは炉壁厚み方向、d、td炉壁の厚み、Cw、
入w”wは炉壁の比熱、熱伝導率、比tt−表わしてお
り、HOIJTは外部熱伝達率、Ta1rは外部温度を
示している。式(6ンも式(7)、式(8)の境界条件
を用いる事により通常の差分方程式で解く事が可能とな
る。The boundary condition on the furnace inner surface is +02 (Tgl-Tw)...(7) The boundary condition on the furnace outer surface is where X is the furnace wall thickness direction, d, td is the furnace wall thickness, Cw,
Input w"w represents the specific heat, thermal conductivity, and ratio tt of the furnace wall, HOIJT represents the external heat transfer coefficient, and Ta1r represents the external temperature. ) can be solved using a normal difference equation.
なお、上記5つのモデルを組み合わせて使用する事によ
り、燃料流量を与えれば、炉温、材料温度、炉壁温度の
現在値を初期値として炉温、材料温度、炉壁温度、6者
の将来温度が計其出米る。By using the above five models in combination, if the fuel flow rate is given, the future values of the furnace temperature, material temperature, furnace wall temperature, and the six The temperature will be measured.
次に燃料を最少とする材料毎の最適炉温の計算方法を第
2図に示す流れ図に従って説明する。なお図中、(1)
は昇温曲線決定の第1θtep 、(2)は同様の第2
5top 、 (81は同様の第58tep、(5Jは
炉温計算モデル、(6)は炉壁温度計算モデル、(7)
は材料温度計算モデル、(8)は材料通過位置炉温の討
奔、(9)は平均温度、均熱度の計算、叫は線形化gf
−,v、の計算、(2)は線形計画法(LP)の計算で
るる。Next, a method for calculating the optimum furnace temperature for each material to minimize fuel consumption will be explained according to the flowchart shown in FIG. In the figure, (1)
is the first θtep of the heating curve determination, and (2) is the similar second θtep.
5top, (81 is the same 58th step, (5J is the furnace temperature calculation model, (6) is the furnace wall temperature calculation model, (7)
is the material temperature calculation model, (8) is the calculation of the furnace temperature at the material passing position, (9) is the average temperature, calculation of the degree of uniform heating, and the symbol is the linearization gf
-,v, calculation (2) is a linear programming (LP) calculation.
まず、第1step(1)として、現在の流twK’で
もって全材料が抽出されるまでの時間、3つのモデル(
5) 、 (6) 、 (7)を繰υ返して使用する事
により、各材料抽出時の平均温iT8’・均mW Cj
lei“8− jtit Im 温度) JT、 ’
、および材料通過時の谷位置での炉内温度Tg□。が
計算できる。First, as the first step (1), the time required until all materials are extracted with the current flow twK', the three models (
By repeating steps 5), (6), and (7), the average temperature iT8' and average mW Cj when extracting each material is
lei"8- jtit Im temperature) JT,'
, and the furnace temperature Tg□ at the valley position when the material passes through. can be calculated.
次に、第28tθp(2)として、各燃料流蓋fffl
J御帝毎に上記燃料流量をΔWK′だけs tep状に
変化させる串によって、前記第i 5tep(1)と同
悸に各流量変化時の各材料抽出時平均温度T 8K、均
熱;褪ΔTK、および材料通過時の炉内温rTg、”−
*計θ
算する事が可能になる。Next, as the 28th tθp(2), each fuel flow lid fffl
By using a skewer that changes the fuel flow rate in steps by ΔWK' every time, the average temperature at the time of each material extraction at each flow rate change is T 8K, soaked; ΔTK, and the furnace temperature rTg when the material passes through, "-
*It becomes possible to calculate θ.
次に第5atθp(3)として、以下の線形化係数の計
算(lO)を実行する。第28tap(2Jの処置によ
り、非線形方程式の解である抽出時各材料平均温度、均
熱度、および各材料通過時の各計算ゾーンでの炉内温度
は次の様に線形化する事ができる。Next, as the fifth atθp(3), the following linearization coefficient calculation (lO) is executed. By the procedure of the 28th tap (2J), the average temperature of each material at the time of extraction, the soaking degree, and the furnace temperature in each calculation zone when each material passes, which are solutions of the nonlinear equation, can be linearized as follows.
ここで、KMAXは燃料流量制御帯の数であり、PIK
IP2K IP31K は各々流量を変化させた場
会の線形化係数であり次で与えられる。Here, KMAX is the number of fuel flow control bands, and PIK
IP2K and IP31K are linearization coefficients for each case where the flow rate is changed, and are given as follows.
′また、各燃料流量はΔWKを各制御帯の変化量とする
と
w、 = wK +ΔWK
と表わす事ができる。'Also, each fuel flow rate can be expressed as w, = wK + ΔWK, where ΔWK is the amount of change in each control band.
燃料最適化を行ううえでの制約条件は材料の冶金学的制
約、および炉操菜上の制約から欠の様なものである。Constraints in fuel optimization are due to metallurgical constraints on materials and constraints on reactor operation.
ここで、添字MIN 、 MAX はそれぞれの下限
値および上限値を示している。Here, the subscripts MIN and MAX indicate the respective lower and upper limits.
また、最適化の評価関係は燃料最少化であるから欠のも
kになる。Furthermore, since the evaluation relationship for optimization is fuel minimization, the missing value is also k.
式(15ンの制約条件下での式(16)の最少化は通常
の紛形計画法(4,p )の計$ 1lllで求める事
が可能である。Minimization of Equation (16) under the constraint condition of Equation (15) can be obtained with a total cost of $ 1lll using the ordinary form planning method (4,p).
上bピ触の流jが谷材料の厳迩流輩W工。2でめ9、同
時に式α1)によって谷材料の最適炉温T 0が討算さ
れる事になる。The flow of the upper part B is the strict flow of the material of the valley. At the same time, the optimum furnace temperature T0 of the valley material is calculated using equation α1).
上記結果による谷材料毎の谷計其ゾーンの最適炉温は同
じ計算ゾーンの炉温であっても各材料の存在している現
在位置によって意味が異なってくる。すなわち、破細出
側に存在する材料の破細出9111計算ゾーンの最適炉
温は、今設定しなければならない炉温であるが、破裂入
側に存在する材料の破細出側計算ゾーンの最適炉温は、
この材料が破細出側位置に達した時に実現すれば良いも
のでろって時間的に遅れたものである。The optimum furnace temperature for each valley meter zone for each valley material based on the above results has different meanings depending on the current position of each material even if it is a furnace temperature for the same calculation zone. In other words, the optimum furnace temperature for the fracture exit 9111 calculation zone for the material existing on the fracture exit side is the furnace temperature that must be set now, but the optimum furnace temperature for the fracture exit calculation zone for the material existing on the fracture entry side is The optimal furnace temperature is
It would be better to realize this when the material reaches the fracture exit position, but it is delayed in terms of time.
そこで、6蛍の炉温設定計算は以下の様にして決定する
。Therefore, the furnace temperature setting calculation for 6 fireflies is determined as follows.
視時刻から任意時間後に炉内に存在する全材料の炉内位
置予想を行ない、各制御帯に任意時間後存仕する全材料
の谷制御帯用炉温検出器の位置での最適炉温を用いて決
定する。Predict the position of all materials in the furnace after an arbitrary time from the visual time, and calculate the optimum furnace temperature at the position of the furnace temperature detector for the valley control zone of all the materials that will remain in each control zone after an arbitrary time. Use to determine.
但し、T :制御帯設定炉温 s IT n:制御帯に将来存在する材料本 数 Cj:材料毎重み T 0 :材料jの各制御帯用炉温検出g’+ J 器位置での最適炉温 である。However, T: Control zone setting furnace temperature s IT n: Material book that will exist in the future in the control zone number Cj: Weight per material T0: Furnace temperature detection g’+J for each control zone of material j Optimal furnace temperature at the vessel position It is.
次にこの発明の一実施例に基づく加熱炉制御について第
5図を参照して説明する。Next, heating furnace control based on one embodiment of the present invention will be explained with reference to FIG.
第5図において、複数のflI:I両帝に分割でれた加
熱炉(ioi)には燃焼用バーナ(105)、炉温検出
器(104)が配置されており、炉温設定機能(106
)によって設定された各制両帝毎の設定温度になるよう
燃料流量制御器(103)によって#L″Jiが制御さ
れている。(102)は材料情報機能であり、炉内の材
料の寸法、重量、抽出gL厩、炉内搬送情報等の材料情
4!Itを炉温設定機能(106)に指示する。In Fig. 5, a combustion burner (105) and a furnace temperature detector (104) are arranged in the heating furnace (IOI) divided into a plurality of flI:I two emperors, and a furnace temperature setting function (106).
) #L''Ji is controlled by the fuel flow controller (103) so that the temperature is set for each control system. (102) is a material information function, and the material size in the furnace , the material information such as weight, extraction weight, and furnace conveyance information to the furnace temperature setting function (106).
炉温設定機能(106)は、現状温度計算機能(イ))
と材料毎最適炉温計算機能(21:と設定炉温計算機症
(2))とからなっており、周期的に起動される。現状
温度計算機能に)Jは、材料情報ケ水にして炉温計算モ
デル(6)、炉壁温度計算モデル(6)、材料温度計算
モデル(7)により、現在の材料温度を計算する。材料
毎最適炉温計算機能(21)は、この発明の説明で述べ
設定炉温計算機能≠6)は、谷材料毎の最適炉温を用い
て、式(17)に従って、各制御帯の炉温を計算し、慾
料湧i量制御器(103)に設定炉温を指示する。The furnace temperature setting function (106) is the current temperature calculation function (a))
It consists of an optimum furnace temperature calculation function for each material (21: and a setting furnace temperature calculation function (2)), which are activated periodically. Current temperature calculation function) J uses the material information to calculate the current material temperature using the furnace temperature calculation model (6), furnace wall temperature calculation model (6), and material temperature calculation model (7). The optimum furnace temperature calculation function for each material (21) is described in the description of this invention. The furnace temperature is calculated and the set furnace temperature is instructed to the fermentation material flow rate controller (103).
しかして、燃R171t: ttを基にし炉内温度、炉
憾温要、材*+温度の谷賛素をも考慮して、各材料につ
いて燃料流量が最少となる炉温設定値を決定しているの
で、実現可能でしかも現実に即した炉温設定値が侍られ
る。Therefore, based on the fuel R171t: tt, the furnace temperature setting value that minimizes the fuel flow rate for each material is determined, taking into account the furnace temperature, furnace temperature requirement, and material * + temperature valley factor. Therefore, a furnace temperature setting value that is both achievable and realistic can be set.
この発明は以上説明したとおり、燃N bItitc
K基づき非定常熱バランス式により炉温をぎr其するモ
デル、炉温を基にして炉壁温度分布を求めるモデル、お
よび炉温を基にして材料温度を求めるモデルの6つの非
線形モデルを使用し、燃、I+k faを基にし炉内温
度、炉壁温度、材料1M度の谷す素をも考慮して、各材
料について燃料流量が最少となる炉温設定値を決定して
いるので、実現可能で炉内に存在する材料の抽出温度を
満足させる炉温設定値を材料毎の昇温曲線を求めること
なく決定することが可能となる。このため、各材料の抽
出温度を精度よく制御できるばかりでなく、S科消費量
を大幅に低減できる等の効果がある。As explained above, this invention
Six nonlinear models are used: a model that calculates the furnace temperature using an unsteady heat balance equation based on K, a model that calculates the furnace wall temperature distribution based on the furnace temperature, and a model that calculates the material temperature based on the furnace temperature. However, based on the fuel consumption, I+k fa, the furnace temperature setting value that minimizes the fuel flow rate for each material is determined, taking into account the furnace temperature, furnace wall temperature, and the material's 1M degree valley element. It becomes possible to determine a furnace temperature setting value that is realizable and satisfies the extraction temperature of the material present in the furnace without determining a temperature rise curve for each material. Therefore, not only can the extraction temperature of each material be controlled with high accuracy, but also the amount of S consumption can be significantly reduced.
第1図は加熱炉の炉温計算ゾーン分割を示す概念図、第
2図は最通炉温設定値決定の流れ図、第6図はこの発明
の一実施悪様を示す全体構成図である。
(51−・炉温計算モデル
(6)・・炉壁温度計算モデル
(7)・・材料温度計算モデル
閾」)・・現状温度計算機能
(211・・材料毎ivt適炉温計算機能幽)・・設定
炉温針n憬能
(101)・・加熱炉
(103)・・燃料流量制御器
(104)・・炉温検出器
(105)・・燃焼用バーナ
(106)・・炉温設定機能
なお、図中、同一符号は同−又は相当部分を示すQFIG. 1 is a conceptual diagram showing the zone division of the furnace temperature calculation, FIG. 2 is a flowchart for determining the continuous furnace temperature set value, and FIG. 6 is an overall configuration diagram showing one implementation mode of the present invention. (51-・Furnace temperature calculation model (6)・Furnace wall temperature calculation model (7)・・Material temperature calculation model threshold”)・・Current temperature calculation function (211・・IVT appropriate furnace temperature calculation function for each material) ... Setting furnace temperature needle n function (101) ... Heating furnace (103) ... Fuel flow rate controller (104) ... Furnace temperature detector (105) ... Combustion burner (106) ... Furnace temperature setting Function: In the figures, the same reference numerals indicate the same or equivalent parts.
Claims (1)
て、燃料流量に基づき非定常熱バランス式により炉温の
時間変化を計算する機能、炉温から炉壁内部温度の時間
変化を計算する機能、および炉温から材料内部温度の時
間変化を計算する機能を備え、上記3機能を用いて各制
御帯の現状燃料流量での材料抽出時平均温度、均熱度、
および材料通過時の各炉温を計算するとともに、上記3
機能を用いて各制御帯の燃料流量を現状流量からある一
定値変化させた時の材料抽出時平均温度、均熱度、およ
び材料通過時の各炉温を計算し、かつ上記両計算結果に
より現状流量まわりでの線形化係数を計算し、これを用
いて制約条件下で燃料最少化となる最適炉温を決定する
ことを特徴とする加熱炉の炉温設定方法。In the furnace control of continuous heating furnaces that have multiple control zones, a function that calculates the time change in furnace temperature using an unsteady heat balance formula based on the fuel flow rate, and a function that calculates the time change in the furnace wall internal temperature from the furnace temperature. , and a function to calculate the temporal change in material internal temperature from the furnace temperature, and use the above three functions to calculate the average temperature at the time of material extraction, soaking degree,
In addition to calculating each furnace temperature when the material passes through,
Using the function, the average temperature at the time of material extraction, the soaking degree, and each furnace temperature at the time of material passage are calculated when the fuel flow rate in each control zone is changed by a certain value from the current flow rate, and the current state is calculated based on the above calculation results. A furnace temperature setting method for a heating furnace characterized by calculating a linearization coefficient around a flow rate and using this to determine an optimal furnace temperature that minimizes fuel under constraint conditions.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60040375A JPS61199014A (en) | 1985-02-27 | 1985-02-27 | Method for setting temperature of heating furnace |
KR1019860000907A KR900005989B1 (en) | 1985-02-27 | 1986-02-10 | Heating control method for heat frunace |
DE19863605740 DE3605740A1 (en) | 1985-02-27 | 1986-02-22 | METHOD FOR CONTROLLING THE HEATING IN A HEATER |
US06/833,023 US4657507A (en) | 1985-02-27 | 1986-02-26 | Heating control method of heat furnace |
GB08604732A GB2171816B (en) | 1985-02-27 | 1986-02-26 | Heating control method of heat furnace |
AU54091/86A AU573425B2 (en) | 1985-02-27 | 1986-02-26 | Heating control method of heat furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60040375A JPS61199014A (en) | 1985-02-27 | 1985-02-27 | Method for setting temperature of heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61199014A true JPS61199014A (en) | 1986-09-03 |
JPH0532445B2 JPH0532445B2 (en) | 1993-05-17 |
Family
ID=12578901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60040375A Granted JPS61199014A (en) | 1985-02-27 | 1985-02-27 | Method for setting temperature of heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61199014A (en) |
-
1985
- 1985-02-27 JP JP60040375A patent/JPS61199014A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0532445B2 (en) | 1993-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5848011B2 (en) | Furnace combustion control method | |
JPS5947324A (en) | Controlling method of heating in heating furnace | |
US4657507A (en) | Heating control method of heat furnace | |
JPS61199014A (en) | Method for setting temperature of heating furnace | |
Yoshitani et al. | Optimal slab heating control with temperature trajectory optimization | |
JPS61261433A (en) | Method for controlling temperature of heating furnace | |
JP5849612B2 (en) | Combustion control method and combustion control apparatus for hot stove | |
JPS61199018A (en) | Method for controlling heating of heating furnace | |
JPS62127422A (en) | Method for determining temperature rising curve of material in heating furnace | |
JPH0532450B2 (en) | ||
JPH0532446B2 (en) | ||
JPH0532449B2 (en) | ||
JPS61199022A (en) | Method for controlling continuous heating furnace | |
US5609785A (en) | Method and apparatus for improving the performance of a heating furnace for metal slabs | |
JPS6036452B2 (en) | Control method for continuous heating furnace | |
JPH11335739A (en) | Method and apparatus for controlling heating temperature of continuous heating furnace | |
Ezure et al. | Development of a simulator to calculate an optimal slab heating pattern for reheat furnaces | |
JPS61199013A (en) | Method for controlling continuous heating furnace | |
JPS6140053B2 (en) | ||
JPH0532448B2 (en) | ||
JPH06281364A (en) | Temperature control method for heating furnace | |
JPS61170508A (en) | Method for erasing skid marks in continuous heating furnaces | |
KR100689153B1 (en) | Method for predicting slab temperature in a furnace. | |
Xu et al. | Establishment of the Temperature Field Model of 72LX Blooms in the Reheating Furnace | |
JPS629650B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |