JPS61198716A - Production unit for thin-film - Google Patents
Production unit for thin-filmInfo
- Publication number
- JPS61198716A JPS61198716A JP60039244A JP3924485A JPS61198716A JP S61198716 A JPS61198716 A JP S61198716A JP 60039244 A JP60039244 A JP 60039244A JP 3924485 A JP3924485 A JP 3924485A JP S61198716 A JPS61198716 A JP S61198716A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- reaction chamber
- chamber
- preparation
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims abstract description 82
- 238000006243 chemical reaction Methods 0.000 claims abstract description 74
- 238000002360 preparation method Methods 0.000 claims abstract description 30
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 238000000926 separation method Methods 0.000 claims description 21
- 239000007789 gas Substances 0.000 abstract description 44
- 239000010408 film Substances 0.000 abstract description 24
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 230000007723 transport mechanism Effects 0.000 abstract 1
- 239000011261 inert gas Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 201000005569 Gout Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は1lilllI製造装置に係り、特に多層の薄
膜を連続的に制御性よ(形成する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for manufacturing 1lillI, and more particularly to an apparatus for continuously and controllably forming multilayer thin films.
非晶質半導体薄膜を多層に積層することにより、各種の
電子デバイスや光電デバイスが製作されている。非晶質
半導体として例えば水素を含むアモルファス・シリコン
膜を形成するには、3iH4等のガスをグロー放電分解
する方法が通常用いられる。この場合、一つの反応チャ
ンバをもつグロー放電分解装置で多層半導体膜を形成す
るには、各薄膜形成の都度必要な原料ガスを反応チャン
バ内に導入することが必要である。この方法では、■名
簿膜間の相互作用(汚染)を避けるために、一つの薄膜
の堆積を行なった後反応チャンバ内に残つlcガスを十
分に排気して、次の原料ガスを導入することが必要であ
る、■従って放電を連続的に行なうことはできない、■
またガスの置換前後に放電をオン・オフしなければなら
ない、などの理由で特性の優れた多層薄膜デバイスを効
率よく製作することが困難であった。Various electronic devices and photoelectric devices are manufactured by laminating multiple layers of amorphous semiconductor thin films. To form an amorphous silicon film containing hydrogen as an amorphous semiconductor, for example, a method of glow discharge decomposition of a gas such as 3iH4 is usually used. In this case, in order to form a multilayer semiconductor film using a glow discharge decomposition apparatus having one reaction chamber, it is necessary to introduce the necessary raw material gas into the reaction chamber each time each thin film is formed. In this method, in order to avoid interactions (contamination) between films, the remaining LC gas in the reaction chamber is sufficiently exhausted after one thin film is deposited, and the next raw material gas is introduced. ■Therefore, continuous discharge is not possible.■
Furthermore, it has been difficult to efficiently produce multilayer thin film devices with excellent characteristics because the discharge must be turned on and off before and after gas replacement.
口れに対して最近、連続的に多層半導体薄膜を形成する
技術がいくつか提案されている。第6図はその一例であ
る。この装置は、複数の反応室511.512を間に分
離室54を挟んで連結し、一方の端に基板を導入するた
めの準備室52、他方の端に基板を取出すための取出し
空53を連結して構成される。各室の間には基板を移送
するためにグー・トバルブが設けられている。この装置
では、先ず基板を準備室52に導入し、合掌を十分に排
気した後、準備室52と反応室512の間のゲートバル
ブを開けて一枚の基板を反応室512に移送する。そし
てこの反応室512に適当な原料ガスを所定圧になるよ
うに導入し、RF電力を印加して原料ガスを分解して1
l191を形成する。この;il膜形成後は、この反応
室512での放電を止め、この反応室512を高真空に
排気した後、分離苗54との間のゲートバルブを開けて
基板を分離室54を介して次の反応室511に移送する
。Recently, several techniques have been proposed for continuously forming multilayer semiconductor thin films to reduce mouth irritation. FIG. 6 is an example. This device connects a plurality of reaction chambers 511 and 512 with a separation chamber 54 in between, and has a preparation chamber 52 at one end for introducing the substrate and a take-out space 53 for taking out the substrate at the other end. Constructed by connecting. A gout valve is provided between each chamber to transfer the substrate. In this apparatus, a substrate is first introduced into the preparation chamber 52, the gassho is sufficiently evacuated, a gate valve between the preparation chamber 52 and the reaction chamber 512 is opened, and one substrate is transferred to the reaction chamber 512. Then, an appropriate raw material gas is introduced into the reaction chamber 512 to a predetermined pressure, and RF power is applied to decompose the raw material gas into 1
Form l191. After the il film is formed, the discharge in the reaction chamber 512 is stopped, the reaction chamber 512 is evacuated to a high vacuum, and the gate valve between the separation seedlings 54 is opened and the substrate is transferred through the separation chamber 54. Transfer to the next reaction chamber 511.
そしてこの反応室511で、先の反応室512で行なっ
たと同様にして次の薄膜形成を行なう。このようにして
必要な特性の薄膜を連続的に堆積しで、最後に取出し苗
53から基板を取出す。Then, in this reaction chamber 511, the next thin film is formed in the same manner as in the previous reaction chamber 512. In this way, a thin film having the required characteristics is continuously deposited, and finally the substrate is taken out from the seedling 53.
第7図は別の例で、ロール状に巻取られるフィルム基板
に連続的に薄膜形成を行なう装置である。FIG. 7 shows another example of an apparatus for continuously forming a thin film on a film substrate wound into a roll.
この装置は複数の反応¥611,612.・・・が狭い
間隙の分離部を介して連結され、これらの両端部に準@
至62及び基板取り出し¥63が設けられ、フィルム基
板は準備室62と取り出し至63の間に全反応室を連通
して装着される。各反応室にはそれぞれガス導入口、排
気口及びRF電源が接続され、フィルム基板を移送しな
がら各反応室で順次必要な薄膜を形成するようになって
いる。This device can perform multiple reactions for ¥611,612. ... are connected through a narrow gap separation part, and semi-@
A to 62 and a substrate take-out 63 are provided, and the film substrate is mounted between the preparation chamber 62 and the take-out 63 in communication with the entire reaction chamber. Each reaction chamber is connected to a gas inlet, an exhaust port, and an RF power source, so that necessary thin films are sequentially formed in each reaction chamber while the film substrate is being transferred.
これら第6図、第7図の装置は、複数の反応室で順次膜
形成を行なうため、一つの反応!で複数層の膜形成を行
なう場合に比べると不要な原料ガスの混入が防止される
点で有効である。しかしながら、第6図の装置は、基板
の移送のためにゲートバルブの開閉を利用するため、各
薄膜形成工程の後一旦放電を止めて反応室の排気を行な
う、という操作をやはり必要とする。また図では示さな
かっだが、各反応室間の基板の移送機構は複雑なものと
なり、更に反応室の数が多い場合は装置全体が非常に大
計りなものになる。また第7図のものは、フィルム基板
の場合にのみ有効であり、個別の基板を各反応室で順次
処理するためにはやはり府雑な移送機構を必要とし、装
置が大計りなものとなる。The apparatuses shown in FIGS. 6 and 7 sequentially form films in multiple reaction chambers, so one reaction! This method is more effective in preventing unnecessary raw material gases from being mixed in than in the case of forming a plurality of layers. However, since the apparatus shown in FIG. 6 utilizes the opening and closing of a gate valve to transfer the substrate, it is still necessary to temporarily stop the discharge and evacuate the reaction chamber after each thin film forming process. Although not shown in the figure, the mechanism for transferring the substrate between the reaction chambers is complicated, and if there are a large number of reaction chambers, the entire apparatus becomes very large in size. Furthermore, the system shown in Fig. 7 is effective only in the case of film substrates, and requires a complicated transfer mechanism in order to sequentially process individual substrates in each reaction chamber, resulting in a large-scale apparatus. .
C発明の目的〕
本発明は、基板移送機構が簡単でしかも全体をコンパク
トに構成することができ、高品質の多層11を連続的に
基板上に形成することを可能とした/1膜製造装置を提
供することを目的とする。CObject of the Invention The present invention provides a /1 film manufacturing apparatus that has a simple substrate transfer mechanism and can be configured compactly as a whole, and that enables continuous formation of high-quality multilayers 11 on a substrate. The purpose is to provide
本発明にかかる薄膜製造装置は、原料ガスを導入して所
定の基板上に薄膜形成を行なう、直列に連結された複数
の反応室と、これらの反応室に送り込む基板の出入れを
行なう準備室と、この準備室と前記複数の反応室の間を
連続的に基板を移送する基板移送機構とを備える。この
様な基本構成において、本発明は、前記基板移送機構を
、回転駆動される、外周に複数の基板支持部を有する円
筒体により構成し、前記複数の反応室及び準備室は前記
基板移送機構を取囲みかつ基板移送機構の外周を一つの
壁として狭い間隙の分離部を介して順次連通するように
配置して構成したことを特徴とする。The thin film manufacturing apparatus according to the present invention includes a plurality of reaction chambers connected in series, into which raw material gas is introduced to form a thin film on a predetermined substrate, and a preparation chamber into which substrates to be fed into and out of these reaction chambers are taken in and out. and a substrate transfer mechanism that continuously transfers the substrate between the preparation chamber and the plurality of reaction chambers. In such a basic configuration, the present invention provides that the substrate transfer mechanism is constituted by a rotationally driven cylindrical body having a plurality of substrate support parts on the outer periphery, and the plurality of reaction chambers and preparation chambers are connected to the substrate transfer mechanism. The device is characterized in that it is arranged so as to surround the substrate transfer mechanism and communicate with each other sequentially through a narrow separation part with the outer periphery of the substrate transfer mechanism as one wall.
本発明による装置は、基板移送機構が円筒体であって、
その外周がそのまま基板支持部となっている。従って直
線運動と基板の受は渡しを必要とする従来の基板移送機
構に比べて構成が非常に簡単である。また複数の反応室
は、この基板移送機構を一方の壁としてこれを取囲むよ
うに配置されるから、装置全体が非常にコンパクトなも
のとなる。また反応室間の基板の移送はゲートバルブの
開閉等を要せず、反応室間の狭い間隙の分離部を介して
行われるから、例えばこの分離部にガス・カーテンなど
を形成することにより、各反応室の放電を止めることな
く、また原料ガスの混合を生じることなく速やかに行な
うことができ、無駄な時間を減らして高品質の多層71
膿デバイスを形成することが可能になる。In the apparatus according to the present invention, the substrate transfer mechanism is a cylindrical body,
The outer periphery directly serves as the substrate support portion. Therefore, the structure of the linear motion and substrate receiving is very simple compared to the conventional substrate transfer mechanism which requires transfer. Further, since the plurality of reaction chambers are arranged so as to surround the substrate transfer mechanism as one wall, the entire apparatus becomes very compact. In addition, the transfer of substrates between reaction chambers does not require the opening and closing of gate valves, and is carried out through the narrow separation section between the reaction chambers. For example, by forming a gas curtain in this separation section, The process can be carried out quickly without stopping the discharge in each reaction chamber and without mixing the raw material gases, reducing wasted time and producing high-quality multi-layer 71
It becomes possible to form a pus device.
以下本発明の詳細な説明する。 The present invention will be explained in detail below.
第1図は一実施例の薄膜製造装置を示す斜視図である。FIG. 1 is a perspective view showing a thin film manufacturing apparatus according to one embodiment.
第2図はその横断面図であり、第3図は反応室部の縦断
面図、第4図は分離部の縦断面図で必る。FIG. 2 is a cross-sectional view thereof, FIG. 3 is a vertical cross-sectional view of the reaction chamber, and FIG. 4 is a vertical cross-sectional view of the separation section.
これらの図において、11 (111,112。In these figures, 11 (111, 112.
113)は反応室であり、12は基板の出し入れを行な
うための準備室であり、これらはリング状をなして直列
に連結されて配置されている。これらの反応室11及び
準備室12の中心部に円筒体からなる基板移送機構13
が配置されている。この基板移送機構13は、任意の方
向に任意の角度回転駆動されるものであって、その外壁
が反応室11及び準備室12の一つの壁を構成している
。113) is a reaction chamber, 12 is a preparation chamber for loading and unloading substrates, and these are arranged in a ring shape and connected in series. A substrate transfer mechanism 13 made of a cylindrical body is located in the center of these reaction chambers 11 and preparation chambers 12.
is located. The substrate transfer mechanism 13 is driven to rotate at any angle in any direction, and its outer wall constitutes one wall of the reaction chamber 11 and the preparation chamber 12.
また基板移送機構13の外周には、各反応室11及び準
備室12に対応して複数の基板支持部が形成され、ここ
に基板14 (141,142。Further, a plurality of substrate support parts are formed on the outer periphery of the substrate transfer mechanism 13, corresponding to each reaction chamber 11 and preparation chamber 12, and the substrates 14 (141, 142) are formed here.
143.144)が配置される。基板支持部はこのよう
にM板14を保持するとともに、第3図に示すように円
筒体の中心部を介して加熱1構22により所定温度に加
熱できるようになっている。143.144) are placed. The substrate support part holds the M plate 14 in this manner, and is also capable of heating the M plate 14 to a predetermined temperature by means of a heating member 22 through the center of the cylindrical body, as shown in FIG.
また同様に円筒体の中心部を介して基板支持部に冷媒を
流す冷媒通路23も設けられている。Similarly, a refrigerant passage 23 is also provided through which refrigerant flows through the center of the cylindrical body to the substrate support section.
各反応室11内には、基板14に対向する電極を兼ねた
原料ガス導入系15 (151,152。Inside each reaction chamber 11 is a source gas introduction system 15 (151, 152) that also serves as an electrode facing the substrate 14.
153)が設けられている。この原料ガス導入系15は
原料ガスをほぼ基板14に向かって導入するようになっ
ている。またこの原料ガス導入系15にIIF電源18
(18t 、182.183 )が接続され、基板1
4を対向電極としてここにRF電力を供給することによ
り、容量結合的に原料ガスのグロー放電分解を行なうよ
うになっている。各反応室11及び準備室12にはまた
、第3図に示すように高真空用の排気系20があり、こ
こにゲートバルブ21を介して図示しない拡散ポンプ、
回転ポンプが接続され、例えば10−”torr以下の
高真空に排気できるようになっている。153) is provided. This raw material gas introduction system 15 is designed to introduce the raw material gas almost toward the substrate 14. In addition, IIF power supply 18 is connected to this raw material gas introduction system 15.
(18t, 182.183) are connected and board 1
By using 4 as a counter electrode and supplying RF power thereto, the raw material gas is decomposed by glow discharge in a capacitive manner. Each reaction chamber 11 and preparation chamber 12 also has a high vacuum exhaust system 20 as shown in FIG.
A rotary pump is connected to enable evacuation to a high vacuum of, for example, 10-'' torr or less.
膜形成時の排気系1つには、例えばON / OF F
バルブ、圧力制御バルブを介してメカニカル・ブースタ
ー・ポンプと回転ポンプが接続される。準In!12に
は基板出し入れを行なうための扉24が設けられている
。One exhaust system during film formation includes, for example, ON/OF
A mechanical booster pump and a rotary pump are connected through a valve and a pressure control valve. Semi-In! 12 is provided with a door 24 for taking in and out substrates.
各反応室11及び準備室12の間には、基板移送に構1
3をやはり一方の壁として狭い間隙で冬至を連結する分
離部17(171,172゜173.174)が構成さ
れている。これら各分離117には、不活性ガス導入系
16(16t。There is a structure for substrate transfer between each reaction chamber 11 and preparation chamber 12.
A separation part 17 (171, 172° 173, 174) is formed which connects the winter solstice with a narrow gap using 3 as one wall. Each of these separations 117 includes an inert gas introduction system 16 (16t).
162.163.164 )が設けられ、これにより第
4図に示すように基板移送機構13側に不活性ガスを吹
き付けてガス・カーテンを形成するようになっている。162, 163, 164) are provided so that an inert gas is blown onto the substrate transfer mechanism 13 side to form a gas curtain as shown in FIG.
即ちこの分離部17に吹きつけられるガスの流量を調整
して、この部分の圧力を反応室11の内圧より高くする
と、この不活性ガスは分離部17から両側の反応室11
に流れ各反応室11の排気系19を介して原料ガスなど
と共に排気される。この分離部17に導入する不活性ガ
スは、その流量を原料ガスのそれの1%以下とすること
が可能であり、これにより反応室11で形成される薄膜
の特性への悪影響を防止することができる。That is, by adjusting the flow rate of the gas blown into the separation section 17 to make the pressure in this section higher than the internal pressure of the reaction chamber 11, this inert gas flows from the separation section 17 into the reaction chambers 11 on both sides.
The gas flows through the exhaust system 19 of each reaction chamber 11 and is exhausted together with the raw material gas and the like. The flow rate of the inert gas introduced into the separation section 17 can be set to 1% or less of that of the source gas, thereby preventing an adverse effect on the properties of the thin film formed in the reaction chamber 11. I can do it.
このように構成された装置を用いて、具体的な多層薄膜
デバイスを製作した例を次に説明する。An example of manufacturing a specific multilayer thin film device using the apparatus configured as described above will be described next.
第1の例は、予め透明導電膜を形成したガラス基板上に
p i nl造をもつアモルファス・シリコン(a−8
i)及び微結晶シリコン膜を形成したものである。排気
系バルブを全て閉じた状態で、各反応室11.準備室1
2及び分離部17に不活性ガスとしてHeガスを導入し
、大気圧に設定する。準備室12のm24を開け、基板
支持部に基板を取付ける。扉24を閉じてガスの導入を
止め、高真空用排気系20のバルブ21を開き、全体を
10− ’ torp以下の高真空に排気する。このと
ぎ基板加熱ヒータにより基板を所定温度0例えば250
℃まで加熱する。The first example is amorphous silicon (A-8
i) and a microcrystalline silicon film is formed. With all exhaust system valves closed, each reaction chamber 11. Preparation room 1
2 and the separation section 17 as an inert gas, and the pressure is set to atmospheric pressure. Open m24 of the preparation room 12 and attach the board to the board support part. The door 24 is closed to stop the introduction of gas, and the valve 21 of the high vacuum exhaust system 20 is opened to evacuate the entire system to a high vacuum of 10-' torp or less. This heater heats the substrate to a predetermined temperature of 0, for example 250.
Heat to ℃.
こうして全体を十分に排気した後、高真空用ガス排気系
20のバルブ21を閉じ、ガス排気系19側に切換え、
同時にガス導入系15.16により所要のガスを流し始
める。反応室111には、p型のa−8i:C:Hll
llを形成するに必要なガスS iH4,CH4,82
H&及びH2を100:20:1 :10の割合いで流
す。次の反IE至112には、1型a−8i:Hlll
を形成するに必要なガスSiH+を流す。更に次の反応
室113には、n型微結晶シリコン膜を形成するに必要
なガスSiH+、PHs及びH2を100:1:500
の割合いで流す。それぞれの反応室11の圧力は1 t
orrになるように排気系のy4節バルブを調節する。After sufficiently evacuating the whole in this way, close the valve 21 of the high vacuum gas exhaust system 20, switch to the gas exhaust system 19 side,
At the same time, the required gas starts flowing through the gas introduction systems 15 and 16. In the reaction chamber 111, p-type a-8i:C:Hll
Gas necessary to form ll S iH4, CH4, 82
Flow H& and H2 at a ratio of 100:20:1:10. The next anti-IE to 112 has type 1 a-8i: Hllll
Flow the gas SiH+ necessary to form . Furthermore, in the next reaction chamber 113, gases SiH+, PHs and H2 necessary for forming an n-type microcrystalline silicon film are added in a ratio of 100:1:500.
Flow at the rate of The pressure in each reaction chamber 11 is 1 t.
Adjust the Y4-node valve in the exhaust system so that it is orr.
また同時に準備室12及び分離部17には、不活性ガス
としてHeガスを流し、準備室12では1torrの圧
力を保ち、分離部17では圧力が1 torr以上にな
るように調節する。At the same time, He gas is flowed as an inert gas into the preparation chamber 12 and the separation section 17, and the pressure is maintained at 1 torr in the preparation chamber 12, and the pressure is adjusted to 1 torr or more in the separation section 17.
ガスの状態及び基板の温度が安定するまで待ち、その後
各反応室でRF電力を印加しグロー放電を開始する。R
Fパワー密度は例えば、基板に対して0.01〜I W
/ ciとなるようにする。放電が安定した状態で基
板移送機#113を働かせ、準備室12にある基板を分
離部171を介して反応室]11に移動させる。これに
より、基板上にp型a−8i:C:HQIが堆積される
。所定の厚さ、例えば100人のa−8i:C:H膜が
堆積された後、基板を次の反応室112に移動させる。Wait until the gas state and substrate temperature stabilize, and then apply RF power to each reaction chamber to start glow discharge. R
The F power density is, for example, 0.01 to I W with respect to the substrate.
/ci. When the discharge is stable, the substrate transfer device #113 is operated to move the substrate in the preparation chamber 12 to the reaction chamber 11 via the separation section 171. This deposits p-type a-8i:C:HQI on the substrate. After a predetermined thickness, for example 100 a-8i:C:H films, is deposited, the substrate is moved to the next reaction chamber 112.
ここでi型a−8i:HWAを所定厚さ例えば5000
人堆積させる。更に基板を次の反応室113に移動させ
、ここでn型微結晶シリコン膜を所定厚さ例えば500
人堆積させる。Here, I type A-8i: HWA is made to a specified thickness, for example, 5000 mm.
Deposit people. Furthermore, the substrate is moved to the next reaction chamber 113, where an n-type microcrystalline silicon film is deposited to a predetermined thickness, for example, 500 nm.
Deposit people.
この後金ての反応室での放電を停止し、原料ガスの供給
を止め、不活性ガスと切換える。そして基板の加熱を止
め、冷却して準備室12から取出す。After this, the discharge in the reaction chamber is stopped, the supply of raw material gas is stopped, and the supply of raw material gas is switched to inert gas. Then, the heating of the substrate is stopped, and the substrate is cooled and taken out from the preparation chamber 12.
こうしてこの実施例によれば、各反応室の放電を維持し
た状態のまま、各反応室を順次基板を移送して、a−3
iと微結晶3i膜からなる優れた特性のplnダイオー
ドを簡単に製作することができた。Thus, according to this embodiment, the substrates are sequentially transferred to each reaction chamber while maintaining the discharge in each reaction chamber, and
A PLN diode with excellent characteristics consisting of I and microcrystalline 3I films could be easily manufactured.
第2の例として、pnpn・・・接合をもつa−8i:
HMIによる多層構造デバイスを製作した例を説明する
。この場合には、反応室111には第1の例と同様にS
iH+、CH+、B2H6及びH2を導入し、ここでp
型a−3i:)−1膜を形成できるようにする。また次
の反応室112はHeガスを流してグロー放電を生じさ
せないでおく。次の反応室113には、SiH+、PH
3及びH2を100二1:10の割合いで流し、n型a
−8i:Hlllが形成できるようにしておく。As a second example, a-8i with pnpn... junction:
An example of manufacturing a multilayer structure device using HMI will be described. In this case, the reaction chamber 111 contains S as in the first example.
Introducing iH+, CH+, B2H6 and H2, where p
A type a-3i:)-1 film can be formed. Further, He gas is supplied to the next reaction chamber 112 to prevent glow discharge from occurring. The next reaction chamber 113 contains SiH+, PH
3 and H2 at a ratio of 100 to 1:10 to form an n-type a
-8i: Allow formation of Hllll.
そして第1の例と同様の準備を行なった後、反iE?1
1tでp型a−8i:Hlllを100人堆積し、その
基板を基板移送機構13を右回転させることにより反応
室113まで移送して、ここでn型a−3i:l−1膜
を100人堆積する。次に基板移送機構を逆回転させて
基板を反応室11tに戻し、ココテ再度p型a−8i:
H1llを100人堆積する。以下同様の操作を繰返し
て、pnpn・・・構造の多層デバイスを形成すること
ができた。各層間の接合部では不純物の切れがよく、優
れた特性が得られた。After making the same preparations as in the first example, anti-iE? 1
100 p-type a-8i:Hlll films were deposited in 1t, and the substrate was transferred to the reaction chamber 113 by rotating the substrate transfer mechanism 13 clockwise, where 100 n-type a-3i:l-1 films were deposited. Accumulate people. Next, the substrate transfer mechanism is rotated in the opposite direction to return the substrate to the reaction chamber 11t, and the p-type a-8i is transferred again.
Deposit 100 H1ll. Thereafter, similar operations were repeated to form a multilayer device having a pnpn... structure. Impurities were easily removed at the joints between each layer, and excellent properties were obtained.
本発明は上記実施例に限られない。The present invention is not limited to the above embodiments.
第5図は別の実施例の一つの反応室の構成を第2図の断
面に対応させて示す。この実施例では、ガス導入系15
とは別に、基板14と直交する形で対向電極25.26
を設けている。このような構成としても、先の実施例と
同様の効果が得られる。FIG. 5 shows the configuration of one reaction chamber of another embodiment, corresponding to the cross section of FIG. In this embodiment, the gas introduction system 15
Separately, counter electrodes 25 and 26 are provided perpendicularly to the substrate 14.
has been established. Even with such a configuration, the same effects as in the previous embodiment can be obtained.
また上記実施例では、主としてSiH+を原料として用
いた膜形成を説明したが、GeH+。Furthermore, in the above embodiment, film formation was mainly explained using SiH+ as a raw material, but GeH+.
CH4、NH3,8i (CH3)4などを原料ガスど
して用いる:a膜形成の場合にも本発明は有効である。The present invention is also effective in the case of film formation using CH4, NH3, 8i (CH3)4, etc. as a raw material gas.
更に上記実施例は、原料ガスの分解手段として高周波電
界を利用する場合を説明したが、光エネルギーや熱エネ
ルギーの付与による分解を利用する装置にも同様に本発
明を適用することができる。Further, in the above embodiments, a case has been described in which a high frequency electric field is used as a means for decomposing the raw material gas, but the present invention can be similarly applied to an apparatus that utilizes decomposition by applying light energy or thermal energy.
第1図は本光明の一実施例の薄膜製造装置を示す斜視図
、第2図はその横断面図、第3図及び第4図はそれぞれ
反応室部及び分離部での縦断面図、第5図は池の実施例
の反応室の構成を第2図に対応させて示す図、第6図及
び第7図は従来の薄膜製造装置の例を示す図である。
11(111,112,113)・・・反応室、12・
・・準備室、13・・・基板移送機構、14 (141
,142,143,144)・・・基板、15 (15
r 、152.153 )・・・電極兼ガス導入系、1
6 (161,162,163,164)・・・ガス導
入系、17(171,172,173゜174)・・・
分離部、18 (18r 、182 。
183)・・・RF電源、19.20・・・ガス排気系
、21・・・バルブ、22・・・基板加熱機構、23・
・・冷媒通路、24・・・辱、25.26・・・電極。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
第4図
第6図
第7図Fig. 1 is a perspective view showing a thin film manufacturing apparatus according to an embodiment of the present invention, Fig. 2 is a cross-sectional view thereof, Figs. 3 and 4 are longitudinal sectional views of the reaction chamber section and separation section, respectively. FIG. 5 is a diagram showing the configuration of a reaction chamber in the embodiment of the present invention, corresponding to FIG. 2, and FIGS. 6 and 7 are diagrams showing an example of a conventional thin film manufacturing apparatus. 11 (111, 112, 113)...reaction chamber, 12.
...Preparation room, 13...Substrate transfer mechanism, 14 (141
, 142, 143, 144)...Substrate, 15 (15
r, 152.153)...electrode and gas introduction system, 1
6 (161,162,163,164)...Gas introduction system, 17 (171,172,173°174)...
Separation unit, 18 (18r, 182. 183)...RF power supply, 19.20...Gas exhaust system, 21...Valve, 22...Substrate heating mechanism, 23.
...refrigerant passage, 24...humiliation, 25.26...electrode. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 6 Figure 7
Claims (2)
なう、直列に連結された複数の反応室と、これらの反応
室に送り込む基板の出入れを行なう準備室と、この準備
室と前記複数の反応室の間を連続的に基板を移送する基
板移送機構とを備え、前記基板移送機構は外周に複数の
基板支持部を有する回転駆動される円筒体により構成さ
れ、前記複数の反応室及び準備室は前記基板移送機構を
取囲みかつ基板移送機構の外周を一つの壁として狭い間
隙の分離部を介して順次連通するように配置されている
ことを特徴とする薄膜製造装置。(1) A plurality of reaction chambers connected in series into which raw material gas is introduced to form a thin film on a predetermined substrate, a preparation room where the substrates to be sent into and out of these reaction chambers are taken in and out, and this preparation room. a substrate transfer mechanism that continuously transfers the substrate between the plurality of reaction chambers, the substrate transfer mechanism is configured of a rotationally driven cylindrical body having a plurality of substrate supports on the outer periphery, and the substrate transfer mechanism A thin film manufacturing apparatus characterized in that the chamber and the preparation chamber are arranged so as to surround the substrate transfer mechanism and communicate with each other sequentially through a narrow separation part with the outer periphery of the substrate transfer mechanism as one wall.
、ガス・カーテンを形成するようにした特許請求の範囲
第1項記載の薄膜製造装置。(2) The thin film manufacturing apparatus according to claim 1, wherein a gas curtain is formed in a separation section between the plurality of reaction chambers and preparation chambers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60039244A JPS61198716A (en) | 1985-02-28 | 1985-02-28 | Production unit for thin-film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60039244A JPS61198716A (en) | 1985-02-28 | 1985-02-28 | Production unit for thin-film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61198716A true JPS61198716A (en) | 1986-09-03 |
Family
ID=12547717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60039244A Pending JPS61198716A (en) | 1985-02-28 | 1985-02-28 | Production unit for thin-film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61198716A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158823U (en) * | 1986-03-31 | 1987-10-08 | ||
US5091217A (en) * | 1989-05-22 | 1992-02-25 | Advanced Semiconductor Materials, Inc. | Method for processing wafers in a multi station common chamber reactor |
-
1985
- 1985-02-28 JP JP60039244A patent/JPS61198716A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158823U (en) * | 1986-03-31 | 1987-10-08 | ||
US5091217A (en) * | 1989-05-22 | 1992-02-25 | Advanced Semiconductor Materials, Inc. | Method for processing wafers in a multi station common chamber reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6151630B2 (en) | ||
JPS61198716A (en) | Production unit for thin-film | |
JPS642193B2 (en) | ||
JP3957126B2 (en) | Deposition equipment | |
JPS58196063A (en) | Manufacture of photovoltaic element | |
US5327624A (en) | Method for forming a thin film on a semiconductor device using an apparatus having a load lock | |
JP2004047644A (en) | Method and apparatus for depositing film | |
JPH0445584B2 (en) | ||
JPS60230981A (en) | Apparatus for producing deposited film by vapor phase method | |
JPH0427293B2 (en) | ||
JPS59167012A (en) | Plasma cvd equipment | |
JPS6067671A (en) | Thin film forming apparatus | |
JP5378631B2 (en) | Vapor growth crystal thin film manufacturing method | |
JP2001077028A (en) | System and device manufacture semiconductor | |
JPS61229322A (en) | Plasma CVD equipment | |
JPH0324274A (en) | Vapor phase growing device | |
JPS62149116A (en) | Manufacture of thin-film layered superlattice structure | |
JPS6324614A (en) | Apparatus for manufacturing semiconductor | |
JPS6222423A (en) | Forming device for deposited film | |
JP3640376B2 (en) | Thin film manufacturing method | |
CN114709151A (en) | Wafer processing equipment | |
JPH01259175A (en) | Plasma cvd device for forming multilayered film | |
JPS62146267A (en) | Deposited film forming equipment | |
JP2849206B2 (en) | Functional deposition film manufacturing equipment | |
JPH02274877A (en) | Vapor phase growing device |