JPS61195746A - Continuous casting mold - Google Patents
Continuous casting moldInfo
- Publication number
- JPS61195746A JPS61195746A JP3615485A JP3615485A JPS61195746A JP S61195746 A JPS61195746 A JP S61195746A JP 3615485 A JP3615485 A JP 3615485A JP 3615485 A JP3615485 A JP 3615485A JP S61195746 A JPS61195746 A JP S61195746A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- cooling
- wall surface
- passages
- meniscus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、連続鋳造途中の鋳片に縦割れや横ひび割れ
等の表面疵を発生したり、熱間直送圧延やホットチャー
ジ圧延を含む熱間圧延時に前記槽ひび割れと類似の表面
疵を発生したりし易い鋼種の連続鋳造に際しても、その
ような表面疵が発生することのない熱間割れ感受性の低
い鋳片を安定して製造することができる、構造が簡単で
安価な連続鋳造用鋳型に関するものである。[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to the occurrence of surface flaws such as vertical cracks and horizontal cracks in slabs during continuous casting, and heat treatment including hot direct rolling and hot charge rolling. To stably produce slabs with low hot cracking susceptibility that do not generate surface flaws even during continuous casting of steel types that tend to generate surface flaws similar to the tank cracks during inter-rolling. This invention relates to a continuous casting mold that has a simple structure and is inexpensive.
〈背景技術〉
近年、鉄鋼の製造にあたっては、垂直型若しくは彎曲型
等の連続鋳造機を便用した連続鋳造工程が不可決なもの
となっているが、このような連続鋳造法によってブルー
ムやスラブ等の鋳片を製造しようとすると、その鋳造の
途中で、鋳片に印加される曲げ応力や冷却に起因して生
じる熱応力によって表面疵(表面割れ)が発生したり、
更には得られた鋳片の熱間圧延時(特に、熱間直送圧延
又はホットチャージ圧延時に著しい)にも同様な表面疵
を発生すると言ったトラブルが目立ち、これらが、製品
歩留りの向上や、熱間直送圧延又はホットチャージ圧延
等を採用して鉄fII4製造プロセスの省力・省エネル
ギー化を推進する上で大きな障害となっていた。<Background technology> In recent years, continuous casting processes that make use of vertical or curved continuous casting machines have become unreliable in the production of steel. When attempting to manufacture slabs such as these, surface flaws (surface cracks) may occur during the casting process due to bending stress applied to the slabs and thermal stress caused by cooling.
Furthermore, problems such as the occurrence of similar surface defects during hot rolling of the obtained slabs (particularly significant during hot direct rolling or hot charge rolling) are noticeable, and these problems lead to improvements in product yield and This has been a major obstacle in promoting labor-saving and energy-saving of the iron fII4 manufacturing process by adopting hot direct rolling or hot charge rolling.
ところで、上述のような表面疵の発生状況を調査してみ
るといずれもオーステナイ) (r)粒界の割れを伴っ
て起きることが観察されることから、従来、前記表面疵
の発生原因の1つとして「鋳片の凝固・冷却中にオース
テナイト(γ)粒界へ析出又は偏析する炭化物や窒化物
(NbC、A/−N等)、 (Mn 、 Fe ) S
等の硫化物、及びPやS等の不純物元素が結晶粒界の脆
弱化を招くJ二とがあげられるようになり、表面疵(割
れ)の発生頻度は、上記の如き析出物や偏析を生じさせ
る元素の含有量に大きく影響されることが知られるよう
になってきた。By the way, when we investigated the occurrence of the above-mentioned surface flaws, it was observed that they occur together with cracking of the austenite (r) grain boundaries. As one example, carbides and nitrides (NbC, A/-N, etc.), (Mn, Fe) S that precipitate or segregate at austenite (γ) grain boundaries during solidification and cooling of slabs.
Sulfides such as sulfides and impurity elements such as P and S weaken grain boundaries, and the frequency of surface flaws (cracks) increases due to the presence of precipitates and segregation such as those mentioned above. It has come to be known that the content of the elements to be produced is greatly affected.
そこで、このような元素の含有量を制御することによっ
て鋳片の表面疵防止を図る試みもなされたが、この場合
には、製品の品質(特性)確保やコスト面で限界がある
上、化学成分の調整基準が今一つ明確でなく、従って、
化学成分のv4整のみでは十分に満足できる効果をあげ
得なかったのである。Therefore, attempts have been made to prevent surface defects in slabs by controlling the content of these elements, but in this case, there are limitations in terms of ensuring product quality (characteristics) and cost, and chemical The standards for adjusting ingredients are not very clear, so
It was not possible to achieve a sufficiently satisfactory effect by adjusting the V4 chemical components alone.
一方、かかる鋳片表面疵の発生頻度は、第2図で示され
るように鋳片のC含有量に大きく依存すると言う事実も
あるが、その原因は未だに不明であり、これに対する何
らの方策も見付からないこともあって、結局はこの上う
なC含有量域を避けて操業が行われること丁らあった0
しかしながら、第2図にみられるような表面疵発生頻度
が急激に高くなる領域は必ずしも一定していないで、鋼
種によってもバラツキがあり、特に低合金鋼の場合には
C含有量からは推量れないような思いがけない成分組成
領域で表面疵発生頻度が極端に高くなることが多く、シ
ばしば、操業上極めて不都合な結果を招く事態がもたら
されていたのである。On the other hand, there is a fact that the frequency of occurrence of such surface defects in slabs is largely dependent on the C content of slabs, as shown in Figure 2, but the cause is still unknown and no measures have been taken to address this problem. In some cases, they were not found, and in the end, operations were carried out avoiding this C content range. However, as shown in Figure 2, the area where the frequency of surface flaw occurrence increases rapidly is It is not necessarily constant and varies depending on the steel type, and especially in the case of low-alloy steel, the frequency of surface flaw occurrence often becomes extremely high in unexpected compositional regions that cannot be estimated from the C content. This often led to extremely inconvenient operational results.
従って、従来一般に実施されている表面疵防止対策は、
オシレー7ヨンマークを浅くしたり、凝固シェルに作用
する熱応力を軽減したりてるために鋳片の冷却速度を小
さくすると言った不十分なものでしかなかった。Therefore, the surface flaw prevention measures commonly implemented in the past are as follows:
The oscillation marks were made shallower, and the cooling rate of the slab was reduced to reduce the thermal stress acting on the solidified shell, which was insufficient.
このようなことから、鋼の連続鋳造や、これに次いで実
施される熱間圧延において鋳片表面に割れ疵が発生する
のを確実に防止し、表面性状の良好な熱間加工鋼材を工
業的に量産し得る手段の出現が強く望まれているのが現
状であった。For this reason, it is necessary to reliably prevent cracks from occurring on the surface of the slab during continuous casting of steel and subsequent hot rolling, and to produce hot-processed steel materials with good surface properties for industrial use. At present, there is a strong desire for the emergence of a means for mass production.
本発明者等は、上述のような観点から、連続鋳造によっ
て製造されるf/R鋳片の鋳造途中における表面疵発生
や、連続鋳造鋳片を熱間加工する際に起こりがちな表面
疵発生を確実に防止する実施容易な手段を見出丁べく、
そのためには、第2図で示したような特定C含有置載近
傍での表面疵発生頻度急増の原因解明が不可欠であると
の考えの下に種々の実態・研究を重ねたところ、次に示
すような知見を得たのである。即ち。From the above-mentioned viewpoints, the present inventors have investigated the occurrence of surface flaws during the casting of f/R slabs produced by continuous casting, and the occurrence of surface flaws that tend to occur when continuously cast slabs are hot worked. In order to find easy-to-implement measures to reliably prevent
To this end, we have carried out various research on the actual situation based on the idea that it is essential to clarify the cause of the rapid increase in the frequency of surface flaws occurring near specific C-containing containers as shown in Figure 2. We obtained the knowledge shown below. That is.
(JL) 連続鋳造鋳片の結晶粒界割れは、従来言わ
れていたように、結晶粒界に析出又は偏析する炭化物、
窒化物;硫化物或いは不純物等に係る元素の含有量に影
響されることもさることながら、これらの析出や偏析密
度を左右するオーステナイト(γ)粒の粒度に大きく影
響され、凝固・冷却中のオーステナイト(r)粒の粗大
化は鋳片の粒界割れを著しく助長すること、
(′b)凝固・冷却中の炭素鋼鋳片のオーステナイト(
r)粒粗大化の程度はそのC含有量の変化によりて大き
く変わり、それもC含有量との単なる比例的関係を維持
しながら変化するわけそはなく、第3図で示されるよう
に、前述した表面疵を発生しや丁いC含有領域で急激に
著しくなると言う挙動を示すこと(因に、第3図はFe
−C系鋼の凝固・冷却中に冷却速度を5℃/seaとし
たときの、C含有量とオーステナイト粒径との関係を示
す曲線である)。(JL) Grain boundary cracking in continuously cast slabs is caused by carbides precipitated or segregated at grain boundaries, as previously said.
Nitride: Not only is it affected by the content of elements related to sulfides or impurities, but it is also greatly affected by the particle size of austenite (γ) grains, which influences the precipitation and segregation density, and the Coarsening of austenite (r) grains significantly promotes intergranular cracking in slabs; ('b) austenite (r) grains in carbon steel slabs during solidification and cooling;
r) The degree of grain coarsening changes greatly depending on changes in the C content, and there is no way that it will change while maintaining a mere proportional relationship with the C content, as shown in Figure 3. The above-mentioned surface flaws occur and exhibit a behavior that rapidly becomes noticeable in the C-containing region (by the way, Fig. 3 shows the behavior of the Fe
- This is a curve showing the relationship between C content and austenite grain size when the cooling rate is 5° C./sea during solidification and cooling of C-based steel.
(c) これらの結果と、「凝固・冷却中のオーステ
ナイトケ)粒の粗大化は、オーステナイト単相となって
から急激に起こり、しかも温度が高いほどその傾向が著
しい」と言う実験による確認事項とからみて、凝固・冷
却中の炭素t#4鋳片は、同一冷却条件下であると、必
然的に、第4図で示されるFe −C系平衡状態図から
も明らかなオーステナイト単相化温度が鰻も高い組成の
もの、即ち包晶点組成(Fe −C系では0.18重f
lc)のものが最も粗大なオーステナイト(r)粒を呈
するようになり(因に、第4図中の破線は、第3図で示
したオーステナイト粒粗大化挙動を表わ丁)、従って熱
間割れ感受性もこの付近のものが9激に高くなるのであ
ると結論されること。(c) These results and the experimental confirmation that ``the coarsening of austenite grains during solidification and cooling occurs rapidly after the austenite becomes a single phase, and the higher the temperature, the more remarkable this tendency is.'' Considering this, under the same cooling conditions, the carbon t#4 slab during solidification and cooling will inevitably change to austenite single phase, which is clear from the Fe-C system equilibrium phase diagram shown in Fig. 4. Compositions with high temperatures, that is, peritectic point compositions (0.18 f
lc) exhibits the coarsest austenite (r) grains (the broken line in Fig. 4 represents the austenite grain coarsening behavior shown in Fig. 3), and therefore It can be concluded that the cracking susceptibility is significantly higher in this area.
け)ところで、第3図に示されるオーステナイト(r)
粒径粗大化挙動と第2図で示される鋳片表面疵発生頻度
傾向とは必ずしも合致していない。しかしながら、これ
は、第3図が純粋なFe −C系での実験結果であるの
に対して第2図は実用鋼の場合のデータであると言う相
違に起因するものであり、C以外の含有元素(合金元素
等)の影響によって包晶点がずれているからに他ならな
いこと、(e)シかも、鋼中に含有されるC以外の元素
の種類によっては、鋼の熱間割れ感受性が一層鋭敏化し
、鋳片表面疵の増大を招く恐れがあること1、・(f)
従って、鋳片の熱間割れ感受性を評価する場合には
、C含有量のみではなく、合金元素の影響をも含めたC
当量(Cp)を指標にする必要があること、
■ 状態図的な検討から、鋼の包晶点に影響を及ぼ丁と
考えられる元素としてC、Mn + Ni 。By the way, austenite (r) shown in Figure 3
The grain size coarsening behavior does not necessarily match the tendency of frequency of occurrence of defects on the slab surface shown in FIG. However, this is due to the difference that Figure 3 shows the experimental results for pure Fe-C system, while Figure 2 shows the data for practical steel. This is because the peritectic point is shifted due to the influence of the contained elements (alloy elements, etc.); 1.(f)
Therefore, when evaluating the hot cracking susceptibility of slabs, it is important to consider not only the C content but also the influence of alloying elements.
It is necessary to use the equivalent weight (Cp) as an index. From a phase diagram study, C and Mn + Ni are elements that are considered to affect the peritectic point of steel.
Cu 及びNがあげられ、C当量(Cp)は次式で整
理されること(なお、以下、成分割合を表わす彊は重量
部とでる)。即ち。Examples include Cu and N, and the C equivalent (Cp) is expressed by the following formula (hereinafter, the component ratios are expressed as parts by weight). That is.
(社) 状態図的検討(=よって得られた上記式は実際
と良く合致しており、これに基づいて鋳片の熱間割れ感
受性を極めて的確に評価できること。(Company) Phase diagram study (=The above equation obtained from the equation is in good agreement with the actual situation, and based on this, the hot cracking susceptibility of slabs can be evaluated very accurately.
第5図は、これを確認するため(二本発明者等が実施し
た実験結果を示すものであり、第1表に示される成分組
成内の合計50種類の鋼から採取した小片をアルミする
つぼ中で再溶解した後、冷却速度:5℃/seaで冷却
し、そのオーステナイト粒径を測定して上記式で算出さ
れるCp値(二より整理したグラフである。Figure 5 shows the results of an experiment conducted by the inventors in order to confirm this. After being redissolved in the water, it was cooled at a cooling rate of 5° C./sea, and the austenite grain size was measured, and the Cp value was calculated using the above formula (this is a graph organized from two points).
この第5図からも明らかなように、オーステナイ) (
r)粒径はCp値で良く整理され、Cp値が0.18で
最大値をとることがわかる0
(i) また一方、同−組成−を凝固・冷却l−だ場
合の鋳片のオーステナイト粒度は高温領域での冷却速度
に大きく左右され、特に1450〜1200し稈′隻の
温辺匂城にお1する冷却速I隻ζ二よってほぼ決゛、5
てさτ−てしようこと。As is clear from this Figure 5, Austenai) (
r) Grain size is well organized by Cp value, and it can be seen that the maximum value is reached at Cp value of 0.180 (i) On the other hand, when the same composition is solidified and cooled, the austenite of the slab is The particle size is greatly influenced by the cooling rate in the high temperature region, and in particular, it is almost determined by the cooling rate of 1,450 to 1,200 and the cooling rate of 1,450 to 1,200 culms.
What to do.
受−ッて、オーステナ()ffi相化記度が高くてオー
ステナイ)flQが粗大化しや丁い包晶mGW(Cp=
1118 )付近の釣片であったとしても、上記温度域
での冷却速度を速くしてやれば、オーステナイト粒の粗
大化が抑えられて単位体積当りの結晶粒界面の大きい細
粒結晶が得られ、このため結晶粒層に集まる析出物や偏
析の密度が低くなって熱間割れ感受性が緩和されること
。As a result, the austenite () ffi is high and the austenite) flQ becomes coarse and the peritectic mGW (Cp=
1118), if the cooling rate in the above temperature range is increased, the coarsening of austenite grains will be suppressed and fine-grained crystals with large grain interfaces per unit volume will be obtained. Therefore, the density of precipitates and segregation that collect in the grain layer becomes lower, and hot cracking susceptibility is alleviated.
@6図は、第2表に示される成分組成の鋼について、凝
固に続く冷却速度を種々に変え、1000℃に到達後急
冷してその組織を固定したもののオーステナイト粒径を
前記冷却速度で整理して表わしたグラフであるとともに
、これらの鋳片から採取した試験片(直径lowφ)を
通電加熱にて中、し部を部分的に再溶融(1580℃)
させた後それぞれ前記の各冷却速度で1000℃まで降
温し7.2.05ec−’の歪速度で引張り破断して得
た断面収縮率〔R人〕を前記冷却速度で整理し併記した
ものでもある。そして、この第6図からも、最もオース
テナイ)fff成長が起りや丁い包晶組成の鋼であって
も、凝固に続く冷却速度を上げることによってオーステ
ナイト粒の粗大化を防止することができ、その結果、延
性も十分に良好な値を示すようになることがわかる。Figure @6 shows the austenite grain sizes of steels with the chemical composition shown in Table 2, which are arranged at various cooling rates following solidification, and after reaching 1000°C, are rapidly cooled to fix the structure. This is a graph showing test specimens (diameter lowφ) taken from these slabs, with the middle and bottom portions partially remelted by electrical heating (1580°C).
After that, the temperature was lowered to 1000 ° C. at each of the cooling rates described above, and the cross-sectional shrinkage ratios [R people] obtained by tensile fracture at a strain rate of 7.2.05 ec-' were arranged by the cooling rates and listed together. be. Also, from this Figure 6, even in steels with a fine peritectic composition where the most austenitic (fff) growth occurs, coarsening of austenite grains can be prevented by increasing the cooling rate following solidification. As a result, it can be seen that the ductility also shows a sufficiently good value.
また、第7図は、前記第2表に示した成分組成の鋼から
採取した小片をアルミするつぼ中で再溶解してから、冷
却速度:5℃/ see及び12℃/seeで冷却する
とともに、その途中から水焼入れして組織を固定したも
のについて、水φ入れ温度とオーステナイト粒径との関
係をプロットしたグラフであるが、この第7図からも、
冷却速度がオーステナイト粒成長に大きく影響するのは
極く高い温度域に限られることが明らかである。Further, Fig. 7 shows that a small piece taken from steel having the composition shown in Table 2 above was remelted in an aluminum crucible, and then cooled at a cooling rate of 5°C/see and 12°C/see. This is a graph plotting the relationship between the water φ addition temperature and the austenite grain size for those whose structure was fixed by water quenching from the middle of the process, and from this Figure 7,
It is clear that the cooling rate has a significant effect on austenite grain growth only at extremely high temperatures.
す) このようなことから、連続鋳造によって製造され
る鋳片の鋳造途中における表面疵(割れ)発生や、連続
鋳造鋳片を熱間圧延する際の表面疵(割れ)発生の起こ
りや丁い鋼種を前記式(Cpを算出する式)によって簡
単・確実に予測することが6■能であり、また、これら
の鋼種についても、連続鋳造の際の表面が凝固したiI
後の一片を出来るだけ早い時期に速い冷却速度で冷却す
ることによって表面疵発生を抑えることができること。For this reason, surface flaws (cracks) may occur during the casting of continuous cast slabs, and surface flaws (cracks) may occur during hot rolling of continuously cast slabs. It is possible to easily and reliably predict the steel type using the above formula (formula for calculating Cp), and also for these steel types, it is possible to predict the surface solidified iI during continuous casting.
To be able to suppress the occurrence of surface flaws by cooling the next piece at a high cooling rate as early as possible.
そこで、本発明者等は、これら知見に基づいて、ジ1型
内の凝固途中の鋳片の表層部(表面から1ON@程度ま
で)温度が1200℃になるまでを冷却速度=10℃/
sec以上で急冷し、表面性状の良好な連続鋳造釣片を
製造しようと試みたが、凝固初期(表層部の温度が14
00℃桿度になるまで)の鋳片を急冷すると凝固シェル
に不均一が生じ、逆に鋳片表面割れが助長される恐れの
あることがわかつ、だのである。Therefore, based on these findings, the present inventors determined that the cooling rate = 10℃/
Attempts were made to produce continuous casting fishing rods with good surface properties by rapid cooling at a temperature of 14 sec or more.
This is because it has been found that if a slab is rapidly cooled (to a temperature of 00°C), the solidified shell may become non-uniform, and conversely, surface cracking of the slab may be promoted.
このようなことから、本発明者等は更に研究を重ね、連
続鋳造鋳片表層部のオーステナイト粒の粗大化を抑えて
表面疵の発生を防止するには、凝固初期に鋳片表層部の
温度が1200℃程度になるまでの間を急冷子れば良い
が、その際、1400℃以上の部分の凝固シェルを組織
的にも強度的にも均一化するためにメニスカス近傍、特
(:厚さが3胃以下の凝固シェル部分を緩冷却しないと
、前記急冷による鋳片表面割れ発生防止効果を安定・確
実に確保することができないため、健全な鋳片の量産の
ためには溶鋼メニスカスの近傍だけは緩冷却されるよう
な連続鋳造用鋳型が必須であるとの結論を得たのである
。For this reason, the present inventors have conducted further research and found that in order to suppress the coarsening of austenite grains in the surface layer of continuously cast slabs and prevent the occurrence of surface defects, it is necessary to It is sufficient to quench the temperature until the temperature reaches about 1200℃, but in this case, in order to make the solidified shell in the area above 1400℃ uniform both in structure and strength, Unless the solidified shell portion with 3 stomachs or less is not slowly cooled, it is not possible to stably and reliably secure the effect of preventing the slab surface cracking caused by the rapid cooling. It was concluded that a continuous casting mold with slow cooling was essential.
ところで、これまでにも、鋳片のオシレーションマーク
を浅くしたり、凝固シェルへの熱応力の影響を少なくす
ると言う観点から生み出されたところの、次に示すよう
な鋳片緩冷却手段が知られていた。即ち、
■ 第8図に示されるように、鋳型1の内壁面のメッキ
層2の厚さや材質を部分的に変えて抜熱量に差をつける
手段。なお、図中において、符号3は溶鋼を、符号4は
凝固シェルを、そして符号5は冷却水スプレーノズルで
ある。By the way, the following means of slow cooling of slabs have been known so far, which were created from the viewpoint of making the oscillation marks of slabs shallower and reducing the influence of thermal stress on solidified shells. It was getting worse. (1) As shown in FIG. 8, the thickness and material of the plating layer 2 on the inner wall surface of the mold 1 are partially changed to vary the amount of heat removed. In the figure, numeral 3 represents molten steel, numeral 4 represents a solidified shell, and numeral 5 represents a cooling water spray nozzle.
■ 第9図に示されるように、鋳型1の内壁面に熱伝導
度の違う異種金属6を部分的に貼り付ける手段。■ As shown in FIG. 9, means for partially pasting dissimilar metals 6 having different thermal conductivities on the inner wall surface of the mold 1.
■ 第10図に示されるように、溶鋼3中にヒ−ダ等;
+ 7.+o魅手段7を挿入−するブー法。■ As shown in Figure 10, there is a heater etc. in the molten steel 3;
+7. Boo method of inserting +o attractive means 7.
■ 第11図に示さすするように、鋳型】の内壁面に塀
8を付設し、溶鋼3と鋳型内壁面との溶触面績を変える
手段。(2) As shown in FIG. 11, a wall 8 is attached to the inner wall surface of the mold to change the weld contact surface between the molten steel 3 and the inner wall surface of the mold.
しかしながら、ギI記■の手段では、メッキを厚くてろ
と剥離を生じ易い上、メッキ材のコストが坏いと言う不
都合があ1」、前記■の手段では異種金属の押込みコス
トが高い上、異種金属の早滅が起り易い、前記■の手段
ではヒーター自身の溶(Hや溶鋼の汚染が生じ易い、そ
して前記■の手段では鋳型内壁面に設けた溝に鋳造パウ
ダーが流れ込んで緩冷却を達成できなくなる等の問題が
それぞれあり、いずれも、先に述べた如き良好な表面性
状の鋳片をコスト安く製造するには不向きなものであっ
た。However, the method described in Section ① has the disadvantages of making the plating too thick and causing peeling, and the cost of the plating material is low.However, with the method described above, the cost of pressing dissimilar metals is high, and The method (2) above tends to cause premature destruction of the metal, the heater itself is easily contaminated with molten H and molten steel, and the method (2) above allows the casting powder to flow into the grooves provided on the inner wall of the mold to achieve slow cooling. Each method has its own problems, such as not being able to be used, and all of them are unsuitable for manufacturing slabs with good surface quality as described above at low cost.
く問題点を解決するための手段〉
この発明は、以上に説明したような問題点を踏まえた上
で、fl/4の成分組成に影響されることなく。Means for Solving the Problems> The present invention is based on the above-described problems and is not influenced by the component composition of fl/4.
表面疵の無い、しかも表面割れ感受性の小さい連[v5
造鋳片を安定して、かつコスト安くt産する手段を提供
しようとしてなされたもので、第1:くに示されるよう
に。A series with no surface flaws and low susceptibility to surface cracks [v5
This was done in an attempt to provide a means to produce cast slabs stably and at low cost, as shown in Part 1.
連続?′!漬用両用両端開放鋳型鋳型壁内部に設けられ
ている冷却媒体(通常は水が便われている)導通路9を
、鋳型内@湯のメニスカス近傍の位置では鋳型の内壁面
から遠くなるように離間させ、そして該メニスカス近傍
の位置よりも下部では鋳型の内壁面に近接させる如く配
置することによって、前記メニスカス近傍の鋳型の冷却
能を下げて緩冷却がなされるようにでるとともに、それ
以降の鋳型出側までの急速冷却が実現されるようにし、
以て、表面疵が年<、シかも表面割れ感受性の低い連続
鋳造鋳片の安定生産を可能とした点、に特徴な有〒ろも
のである。continuous? ′! A mold with both ends open for immersion.The cooling medium (usually water is used) conduit 9 provided inside the mold wall is located far away from the inner wall surface of the mold at a position near the meniscus of the hot water inside the mold. By arranging them so that they are spaced apart from each other, and closer to the inner wall surface of the mold below the position near the meniscus, the cooling ability of the mold near the meniscus is lowered to achieve slow cooling, and the subsequent To achieve rapid cooling up to the exit side of the mold,
This feature makes it possible to stably produce continuously cast slabs with low susceptibility to surface cracks.
なお、@1図において符号10で示されるものは、第8
乃至11図では省略したfA造パウダ一層である。In addition, what is indicated by the symbol 10 in Figure @1 is the 8th
This is a single layer of fA powder, which is omitted in Figures 1 to 11.
さて、@1図において、タンディシュを介して鋳型1円
に鋳込まれた溶′M3は鋳型壁からの抜熱により凝固シ
ェル4を形成するが、鋳型壁内部の冷却媒体導通路9が
溶鋼メニスカス近傍では鋳型内壁面との距離を大きくと
り、それ以降は鋳型内壁面に近付ける如くに設けられて
いるので、凝固シェルr!13 y程度までは緩冷却さ
れ、かつそれ以降は急速冷却された連続鋳造鋳片を極め
て容易に得ることができるのである。Now, in Figure @1, the molten metal M3 poured into the mold through the tundish forms a solidified shell 4 by removing heat from the mold wall, but the cooling medium conduit 9 inside the mold wall forms a molten steel meniscus. The solidified shell r! It is extremely easy to obtain a continuously cast slab that is slowly cooled up to about 13 y and rapidly cooled thereafter.
そして、鋳造速度が遅い場合には鋳型内の溶鋼メニスカ
スの位置を下げ、高速鋳造時には該メニスカスの位置を
上げて鋳込むことにより、緩冷却される凝固シェル厚を
自在にコントロールできることはもちろんである。Of course, by lowering the position of the molten steel meniscus in the mold when the casting speed is slow, and raising the position of the meniscus during high-speed casting, it is possible to freely control the thickness of the solidified shell that is slowly cooled. .
鋳型内溶鋼メニスカス近傍の緩冷却を要する部分の範囲
には格別な制限はなく、例えばメニスカスより10−ま
での間、或いはメニスカスより30鱈までの間等で良い
が、好ましくはメニスカスから少なくとも501Rまで
の間を緩冷却することが推奨されるので、鋳型壁内の冷
却媒体導通路の設計はこれに合わせて行うのが好ましい
。There is no particular restriction on the range of the part near the meniscus of the molten steel in the mold that requires slow cooling; for example, it may be between 10 and 30 degrees below the meniscus, but preferably from the meniscus to at least 501R. It is recommended that the cooling medium passages in the mold wall be designed accordingly.
次に、この発明を実施例により、比較例と対比しながら
説明する。Next, the present invention will be explained using Examples and in comparison with Comparative Examples.
〈実施例〉
まず、250トン転炉によって第3表に示される如き成
分組成の溶鋼を溶製した後1通常の鋳型と本発明に係る
鋳型とを取イ」けたところの彎曲型連続鋳造機(彎曲半
径:12.5m)で、それぞれ断面寸法が200 w−
x X 1200−のスラブを鋳造速度: 1.0〜1
.2m/minにて約150m1lC3造した。<Example> First, after melting molten steel having the composition shown in Table 3 in a 250-ton converter, a conventional mold and a mold according to the present invention were installed in a curved continuous casting machine. (curvature radius: 12.5 m), and each cross-sectional dimension is 200 w-
Casting speed of x x 1200- slab: 1.0~1
.. Approximately 150 ml of C3 was produced at 2 m/min.
なお、このとき便用した鋳型はいずれも水冷銅鋳型で、
その冷却水導通路は、
通常の鋳型・・・
鋳型内壁面から40FIだけ離れた一定の位置、
本発明に係る清楚・・・
第1図に例示されているのと同様構造で、メニスカス近
傍である[ t、 = 50%+3までをt、=50m
とし、それ以降の〔tよ=70−〕以下の部分はt、=
20西である寸法、
としたものであった。The molds used at this time were all water-cooled copper molds.
The cooling water conduit is located in a normal mold...at a certain position 40 FI away from the inner wall surface of the mold, and in the neat structure according to the present invention...which has a structure similar to that illustrated in Fig. 1, near the meniscus. [t, = 50% + 3 up to t, = 50m
Then, the part after [tyo=70-] is t,=
The dimensions were 20 West.
、−Q’)ようにして得られた鋳片の表面疵を目視評価
した結果を第12図に示T、なお、第12図において、
「割れ指数」とは、窮片1m当りに発生する表面割れの
総長さく長さ×個数)である。, -Q') The results of visual evaluation of the surface flaws of the slab obtained in the above manner are shown in Fig. 12.In Fig. 12,
The "cracking index" is the total wall length x number of surface cracks that occur per meter of cracks.
第】2図からも明らかなように、この発明の鋳型を使用
することによって1表面割れ傾向の強い鋼であっても表
面疵を殆んど発生しなくなり、無手入れ化が可能となる
ことがわかる。As is clear from Figure 2, by using the mold of the present invention, even steel with a strong tendency to surface cracking will hardly have any surface flaws, and maintenance-free work will be possible. Recognize.
四に、鋳型内溶鋼にFeSを添加することによって、初
IO!凝固シェルの状態をサルファープリントにより観
察したが、第13図に示されるように、本発明の鋳型を
愛用すると凝固シェル厚が格段に均一化されることが明
らかである。なお、i!13図において、「凝固シェル
厚不均一度」とは、鋳片幅方向の凝固シェル厚の平均値
に対して1割の厚み変動がある部位の全体に対する割合
であり、この値が小さいほど凝固シェル厚が均一と言え
る。Fourth, by adding FeS to the molten steel in the mold, the first IO! The state of the solidified shell was observed using a sulfur print, and as shown in FIG. 13, it is clear that the thickness of the solidified shell becomes much more uniform when the mold of the present invention is used. In addition, i! In Fig. 13, "nonuniformity of solidified shell thickness" is the ratio of the area where the thickness varies by 10% to the average value of the solidified shell thickness in the width direction of the slab, and the smaller this value is, the more solidified it is. It can be said that the shell thickness is uniform.
なお、この実施例では、連続鋳造途中の鋳片の表面疵発
生について調査したものであるが、連続鋳造の後に引き
続いて実施される熱間直送圧延やホットチャージ圧延(
=おいても、この発明のl二型で製造された鋳片は表面
疵を殆んど生じないことが確認された。In this example, the occurrence of surface flaws on slabs during continuous casting was investigated, but hot direct rolling and hot charge rolling (
It was confirmed that the cast slab manufactured by the type I2 of the present invention has almost no surface flaws even when
〈総括的な効果〉
以上説明したように、この発明によれば、連続鋳造途中
や、これに続く熱間圧延中に割れ疵を発生しや丁い鋼種
を用いても、それらのトラブルを生じることなく所望製
品の製造を実施することが可能となるなど、産業上極め
て有用な効果がもたらされるのである。<Overall Effects> As explained above, according to the present invention, even if a steel grade that is difficult to generate cracks during continuous casting or subsequent hot rolling is used, these problems will not occur. This brings about extremely useful effects industrially, such as making it possible to manufacture a desired product without any problems.
第1図は、本発明の連続鋳造用鋳型の1例を示す要部概
略構成図。
第2図は、C含有量と鋳片表面疵発生頻度との関係を示
すグラフ、
第3図は、Fe−C系鋼のC含有量とオーステナイト粒
径との関係を示すグラフ、
第4図は、Fe−C系平衡状態図、
第5図は、鋼のCp値とオーステナイト粒径との関係を
示すグラフ、
第6図は、銅の冷却速度とオースナナイト粒径との関係
、並びに冷却速度と断面収縮率との関係を示すグラフ、
第7図は、各種冷却速度で冷却途中の鋼の、水φ入れ温
度とオーステナイト粒径との関係を示すグラフ、
第8図乃至第11図は、従来の鋳型内溶鋼緩冷却手段を
示す概略模式図であって、第8図、第9図、第10Z及
び第11図はそれぞれ別の例、第12図は、通常の鋳型
と本発明の鋳型をそれぞれ用いて得られた鋳片の割れ指
数?比較したグラフ。
第13図は、通常の凹型と本発明の鋳型をそれぞれ用い
て得られた鋳片の凝固シェル厚均一度を比較したグラフ
である。
1g13面において、
l・・・鋳型、 2・・・メッキ層。
3・・・溶鋼、 4・・・凝固シェル。
5・・・冷却水スプレーノズル。
6・・・異種金属、 7・・・加熱子役。
8・・・溝、 9・・・冷却媒体導通路。
10・・・鋳造バラグ一層。
出願人 住友金属工業株式会社
代理人 富 1)和 央 ばか2名
第2図
c4膚量+Lf−人)
傑3図
C含惰量(!量y、)
条4図
0 01 α2 0〕 α4
05cl濱t (重量°八)
差7図
水1人れ3;2屡 (°C)FIG. 1 is a schematic diagram of the main parts of an example of the continuous casting mold of the present invention. Figure 2 is a graph showing the relationship between the C content and the frequency of occurrence of defects on the slab surface. Figure 3 is a graph showing the relationship between the C content and austenite grain size of Fe-C steel. Figure 4 is a Fe-C system equilibrium phase diagram, Figure 5 is a graph showing the relationship between Cp value of steel and austenite grain size, Figure 6 is a graph showing the relationship between copper cooling rate and austenite grain size, and cooling rate. Figure 7 is a graph showing the relationship between water φ addition temperature and austenite grain size of steel during cooling at various cooling rates; Figures 8 to 11 are: 8, 9, 10Z and 11 are different examples, and FIG. 12 is a conventional mold and a mold according to the present invention. What is the cracking index of slabs obtained using each method? Comparative graph. FIG. 13 is a graph comparing the solidified shell thickness uniformity of slabs obtained using a conventional concave mold and a mold of the present invention. On the 1g13 side, l...mold, 2... plating layer. 3... Molten steel, 4... Solidified shell. 5... Cooling water spray nozzle. 6...Dissimilar metal, 7...Heating child actor. 8...Groove, 9...Cooling medium conduction path. 10... One layer of casting bulk. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Bakaka2 figure 2 c4 skin amount + Lf - person) Jie 3 figure C content (! amount y,) Article 4 figure 0 01 α2 0] α4
05cl weight (weight °8) Difference 7 figures Water 1 person 3; 2 meters (°C)
Claims (1)
鋳型内溶湯メニスカス近傍位置では鋳型の内壁面から離
間させ、かつそれ以降では鋳型の内壁面に近接させて設
けたことを特徴とする、メニスカス近傍緩冷却鋳型。In a mold with both ends open for continuous casting, the cooling medium passage is
1. A slow cooling mold near the meniscus, characterized in that a position near the meniscus of the molten metal in the mold is spaced apart from the inner wall surface of the mold, and thereafter, it is provided close to the inner wall surface of the mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3615485A JPS61195746A (en) | 1985-02-25 | 1985-02-25 | Continuous casting mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3615485A JPS61195746A (en) | 1985-02-25 | 1985-02-25 | Continuous casting mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61195746A true JPS61195746A (en) | 1986-08-30 |
Family
ID=12461857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3615485A Pending JPS61195746A (en) | 1985-02-25 | 1985-02-25 | Continuous casting mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61195746A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5927378A (en) * | 1997-03-19 | 1999-07-27 | Ag Industries, Inc. | Continuous casting mold and method |
JP2000033461A (en) * | 1998-07-16 | 2000-02-02 | Sms Schloeman Siemag Ag | Continuous casting mold |
US7445036B2 (en) * | 2003-08-13 | 2008-11-04 | Km Europa Metal Ag | Liquid-cooled permanent mold |
-
1985
- 1985-02-25 JP JP3615485A patent/JPS61195746A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5927378A (en) * | 1997-03-19 | 1999-07-27 | Ag Industries, Inc. | Continuous casting mold and method |
JP2000033461A (en) * | 1998-07-16 | 2000-02-02 | Sms Schloeman Siemag Ag | Continuous casting mold |
US7445036B2 (en) * | 2003-08-13 | 2008-11-04 | Km Europa Metal Ag | Liquid-cooled permanent mold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8409375B2 (en) | Method of producing a copper alloy wire rod and copper alloy wire rod | |
JP5041029B2 (en) | Method for producing high manganese steel | |
RU2421298C2 (en) | Steel article with high temperature of austenitic grain enlargement and method of its production | |
TWI326714B (en) | Low-carbon resulfurized free-machining steel excellent in machinability | |
JP4323166B2 (en) | Metallurgical products of carbon steel especially for the purpose of galvanization, and methods for producing the same | |
JP4922971B2 (en) | Composite roll for hot rolling and manufacturing method thereof | |
EP0512118B1 (en) | Process for continuous casting of ultralow-carbon aluminum-killed steel | |
JPS61195746A (en) | Continuous casting mold | |
JP3925697B2 (en) | Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof | |
JP6862723B2 (en) | Continuously cast steel slabs and continuous casting methods | |
KR930009973B1 (en) | Method for producing prestressed steel | |
Shihab et al. | Effect of grain size on orange peel in oxygen free copper wire produced by upcast | |
US4411713A (en) | Shell for a composite roll | |
Ditze et al. | Strip casting of magnesium with the single‐belt process | |
Sumi et al. | Macrosegregation Behavior of 8Cr Tool Steel with Induced Bridging of Solidification in Laboratory-scale Ingot | |
Kondratyuk et al. | Structure formation and properties of overheated steel depending on thermokinetic parameters of crystallization | |
JPS61195742A (en) | continuous steel casting equipment | |
JP2518618B2 (en) | Mold for continuous casting of steel | |
JPH0324297B2 (en) | ||
JPS61193758A (en) | Production of hot worked steel material having good surface characteristic | |
JP2001162353A (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JPS61193757A (en) | Method for producing continuously cast slabs with good surface quality | |
Ludlow et al. | Precipitation of nitrides and carbides during solidification and cooling in continuous casting | |
JPS61189851A (en) | Method for preventing hot cracking of continuously cast steel billets | |
JPS61193754A (en) | Preventive method for hot cracking of steel ingot |