JPS6119562B2 - - Google Patents
Info
- Publication number
- JPS6119562B2 JPS6119562B2 JP16007683A JP16007683A JPS6119562B2 JP S6119562 B2 JPS6119562 B2 JP S6119562B2 JP 16007683 A JP16007683 A JP 16007683A JP 16007683 A JP16007683 A JP 16007683A JP S6119562 B2 JPS6119562 B2 JP S6119562B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- oxygen
- valve
- oxygen concentration
- outgoing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Non-Electrical Variables (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
【発明の詳細な説明】
本発明は酸素を含む混合気体の酸素濃度の制御
装置および制御方法に関するものである。さらに
詳しくは、ひとつの電気化学的酸素分離装置に脱
酸素機能と酸素発生機能の双方をもたせるととも
に、酸素濃度の制御対象となる容器と分離し得る
酸素濃度の制御装置と制御方法に関するものであ
る。
生物学、化学、医学、金属学その他の研究分野
で、気相中の酸素濃度を任意に制御する必要があ
る場合が多い。しかるに従来、窒素、アルゴン、
炭酸ガスあるいはヘリウムの如き気体と酸素とを
適当に混合するという方法が採用されていたが、
ボンベ操作およびガスの流量調節操作は煩雑であ
つた。
これに対し、本願発明者らは、特公昭57−
28907号で電気化学的手法を用いて酸素濃度を自
動的に制御する方法を提案した。
すなわち、酸素の電解還元に有効なガス拡散電
極を陰極とし、酸素発生電極を陽極とし、水酸化
カリウム、水酸化ナトリウムあるいは硫酸の水溶
液もしくはカチオン交換膜などを電解液あるいは
電解質としてなる電解槽において、陰極に酸素を
含む混合ガスを供給しつつ、陰・陽両極間に直流
電圧を印加すると、陰極では
O2+2H2O+4e-→4OH-(アルカリ電解液)ま
たは、
O2+4H++4e-→2H2O(酸性電解液またはカチ
オン交換膜)なる反応により、酸素が選択的に消
費され、陽極では
4OH-+O2+2H2O+4e-(アルカリ電解液)ま
たは、
2H2O→O2+4H++4e-(酸性電解液またはカチ
オン交換膜)なる反応により、酸素が発生する。
つまり、酸素を含む混合ガス中の酸素だけが陰
極側から陽極側に移行するので、かゝる電解槽は
酸素分離装置として機能する。
したがつて、かかる酸素分離装置を2個用意
し、そのうちの1個の陰極に酸素濃度を制御しよ
うとする酸素濃度制御室の中の気体を接触させる
とともに陽極から発生してくる酸素を系外に排気
せしめる一方、他の1個の陰極に大気を供給し、
陽極から発生してくる酸素を酸素濃度制御室に供
給するようにし、酸素濃度制御室の酸素濃度が所
定のそれより高すぎる場合には、前者の脱酸素機
能を有する酸素分離装置を作動せしめて酸素濃度
を低下させ、所定の酸素濃度より低すぎるときに
は、後者の酸素濃度発生機能を有する酸素分離装
置を作動せしめて、酸素濃度を増大させることに
より、酸素濃度制御室内の酸素濃度を所定のそれ
に制御することができる。
このように、脱酸素機能を利用する酸素分離装
置と酸素発生機能を利用する酸素分離装置とをそ
れぞれ別途に用意して酸素濃度を制御する方法が
前述の特公昭57−28907号に記載されている方法
であるが、この方法はあまり効果的な方法とはい
えない。
一方、従来の酸素濃度制御装置では、電気化学
的酸素分離装置と酸素濃度の制御の対象となる比
較的大きな容積をもつチヤンバーとが一体となつ
ているとともに酸素濃度計が、このチヤンバの中
に設置されているのが普通であつた。しかしなが
ら、実際には大きなチヤンバ全体の酸素濃度を制
御する必要は必ずしもなく、比較的小さな容積の
容器ですむ場合がむしろ多い。まだ酸素濃度をい
ろいろ変えた実験をおこなう必要がある場合が多
いが、ひとつのチヤンバでこのような実験をおこ
なおうとすると時間がかかりすぎる。
本発明は、かかる欠点を除去せんとするもので
あり、ひとつの電気化学的酸素分離装置に脱酸素
機能と酸素発生機能との双方をもたせるととも
に、酸素濃度を制御すべき容器と電気化学的酸素
分離装置を主体とする酸素濃度制御装置とを別々
に独立させた点に特長を有する。
すなわち、本発明の酸素濃度制御装置は、ひと
つの電気化学的酸素分離装置と、酸素濃度計を収
納せる酸素濃度検出室と制御部と脱酸素ガス系路
と酸素供給系路とで構成され、この酸素濃度制御
装置と気密容器とが接続されたとき、電気化学的
酸素分離装置の陰極での脱酸素反応を利用する脱
酸素ガスの循環系路もしくは陰極に空気を導入し
た際に陽極から発生する酸素を気密容器に供給す
る酸素供給系路を適宜選択して気密容器の酸素濃
度を制御するようになつている。
また、酸素濃度制御装置と気密容器とは着脱自
在のガスソケツトで接続されるようになつてい
て、酸素濃度が制御されたのちには気密容器が酸
素濃度制御装置から切り離され、恒温室であるチ
ヤンバに入れられるようになつている。かかる方
式を採用すると、通常の汎用恒温槽が流用できる
のですこぶる便利である。
また従来、酸素濃度計はチヤンバの中に設置さ
れていたが、本発明の場合には、酸素濃度制御装
置側に設置されているので、上述のように気密容
器は自在にもち運びすることができる。
さらに気密容器毎に異なつた酸素濃度に設定す
ることは全く容易となる。
本発明で用いられる気密容器は蓋つきのもので
なければならないが、内部が観察できるようにす
るためには、ガラスあるいはアクリル樹脂製のも
のが適している。
電気化学的酸素分離装置の電解質としては、炭
酸ガスの影響を受けない硫酸あるいは陽イオン交
換膜が適している。陽イオン交換膜としては、パ
ーフロロカーボンをベースにし、これにスルフオ
ン酸基あるいはカルボン酸基を導入した水素イオ
ン伝導性のものが適している。硫酸を電解質とし
た場合には、陰極としてはカーボンに白金族金属
触媒を担持したものとフツ素樹脂との混合物をチ
タンあるいはタンタルに金あるいは白金をメツキ
したエキスパンドメタルに圧着するとともに、多
孔性ポリ4フツ化エチレン膜を裏打ちしたものが
よく、陽極としては、チタンのエキスパンドメタ
ルか板に白金をメツキするか、白金とイリジウム
の複合酸化物を被覆したものが適している。
電解質として、陽イオン交換膜を用いた場合に
は、陰極および陽極を膜に一体に接合したものが
用いられる。陰極としては白金ブラツク粉末もし
くは白金と金との合金粉末などからなる触媒粉末
とフツ素樹脂との混合物か、この混合物に陽イオ
ン交換樹脂の粉末もしくは短繊維を混入したもの
をイオン交換膜にホツトプレスするのがよい。陽
極としては、酸化イリジウムもしくは白金ブラツ
ク粉末を触媒として、陰極の場合と同様にホツト
プレスするか、白金あるいはロジウムを無電解メ
ツキしたものが適している。
酸素濃度計としては、ガルバニ電池式(燃料電
池式)のもの、ポーラログラフ式のもの、あるい
はジルコニア式のものが用いられる。
酸素濃度制御装置の制御部は、比較器、シーケ
ンス回路および電源から構成される電気回路であ
り、酸素濃度計からの検知信号が所定値より高い
か低いかを比較器で比較し、電気化学的酸素分離
装置を脱酸素装置として作動させるか酸素発生装
置として作動させるかを判断し、シーケンス回路
で、後述のように弁の開閉の順序を制御するとと
もに、電源から電気化学的酸素分離装置に電流が
供給されたり、ポンプが駆動されたりする。
後述の弁は、電磁弁にして制御部で自動制御さ
れるのが望ましいが、場合によつては手動式のも
のにしてもよい。
気密容器の中の相対湿度100%にするためには
気密容器の中に水を入れた容器を収納しておけば
よい。
この酸素濃度制御装置を微生物や細胞の培養に
使用しようとする際には、培地にグツドの緩衝液
を用いれば、気密容器の炭酸ガス濃度を特に調整
しなくても、培地のPHは一定に保持される。
以下、本発明の一実施例について詳述する。
実施例:
第1図に、本発明の一実施例にかかる酸素濃度
制御システムの系統図を示す。
酸素濃度制御システムは大別して酸素濃度制御
装置1と気密容器2とから構成される。酸素濃度
制御装置1は主として電気化学的酸素分離装置3
と酸素濃度検出室4と酸素濃度を制御するための
電気回路5と往路ガス系路6と復路ガス系路7と
で構成される。
電気化学的脱酸素分離装置3は、パーフロロカ
ーボンにスルフオン酸基を導入した陽イオン交換
膜8、白金ブラツク粉末とポリ4フツ化エチレン
との混合物からなる陰極9、酸化イリジウム粉末
とポリ4フツ化エチレンとの混合物からなる陽極
10、白金メツキしたエキスパンデツドチタンか
らなる陰極集電体11、白金メツキしたエキスパ
ンデツドチタンからなる陽極集電体12、チタン
板からなる陰極端子板13、チタン板からなる陽
極端子板14、陰極ガス室15、陽極水室16お
よびセルフレーム17から構成される。
陰極9と陽極10は陽イオン交換膜8に一体に
接合されている。陽極水室16には水タンク18
から水が供給され、この水の供給によつて、陽イ
オン交換膜8が水素イオン伝導体として機能す
る。
気密容器2には、着脱自在の往路用ガスプラグ
19と復路用ガスプラグ20が装着され、酸素濃
度制御装置1の往路ガス系路6の先端部には着脱
自在に往路用ガスソケツト21が、復路ガス系路
7の先端部には復路用ガスソケツト22が装着さ
れていて、往路用ガスプラグ19と往路用ガスソ
ケツト21とが接続され、復路用ガスプラグ20
と復路用ガスソケツト22とが接続されている。
このようにガスプラグとガスソケツトとの接続に
より、酸素濃度制御装置1と気密容器2とが連通
状態になる。ガスプラグとガスソケツトとを切り
離すとガスプラグが一種の弁になり、気密容器2
の気密性が保持される。
気密容器2の中の酸素濃度は酸素濃度検出室4
の中に収納されている酸素濃度計23によつて検
知され、その信号は電気回路部5に送られる。
気密容器2の中の酸素濃度が所望値よりも高す
ぎる場合には、電気化学的酸素分離装置3が脱酸
素装置としての機能を果す。この場合には、往路
ガス系路6に設けられている往路用脱酸素ガス弁
24、酸素放出弁25および復路ガス系路7に設
けられている復路用脱酸素ガス弁26を開き、往
路ガス系路6に設けられている往路用酸素供給弁
27、脱酸素残余空気放出弁28および復路ガス
系路7に設けられている空気導入弁29を閉じ、
循環ポンプ30を駆動させつつ、陰極端子板13
と陽極端子板14との間に直流電流を通電すると
気密容器2内のガスが復路ガス系路7を経て、陰
極ガス室15に供給され、陰極9で脱酸素反応が
起り、脱酸素されたガスが往路用脱酸素ガス弁2
4を経て、気密容器2に供給される、またこの脱
酸素反応の際、陽極10から発生する酸素は、酸
素放出弁25から系外に放出される。
復路ガス系路7に設けられた減圧補償弁31は
いわゆるリリーフ弁あるいはプロピレングリコー
ルの如き蒸気圧の低い液体を用いる液体弁から構
成され、脱酸素によつて系内が減圧になつたと
き、この減圧を補償するためじに、大気を系内に
自動的に導入するためのものである。なお、この
減圧補償のために導入される空気中の酸素をも合
わせて電気化学的酸素分離装置3により除去され
る。
このようなガスの循環と脱酸素操作の繰り返し
によつて、気密容器2内の酸素濃度が所望値まで
下げられる。
他方、気密容器2の中の酸素濃度が所望値より
も低すぎる場合には、電気化学的酸素分離装置3
が酸素発生装置としての機能を果す。この場合に
は、往路用酸素供給弁27、脱酸素残余空気放出
弁28および空気導入弁29を開き、往路用脱酸
素ガス弁24、酸素放出弁25および復路用脱酸
素ガス弁26を閉じ、空気導入ポンプ32を駆動
させつつ、陰極端子板13と陽極端子板14との
間に直流電流を通電すると、空気が系外から空気
導入ポンプ32によつて陰極ガス室15に供給さ
れ、陽極9で酸素の電解還元が起り、脱酸素され
たガスが脱酸素残余空気放出弁28から系外に放
出されると同時に、陽極10から発生する酸素
は、往路用酸素供給弁27を経て気密容器2に供
給される。この酸素ガスの供給によつて気密容器
2から追い出されるガスは酸素濃度検出室4およ
び復路ガス系路7に設けられた過圧補償弁33を
経て系外に放出される。酸素濃度検出室4に収納
された酸素濃度計23の指示が所望値になつたと
き、直流電流の通電が止められる。
上述の各種の弁は、減圧補償弁31および過圧
補償弁33を除いて、いずれも電磁弁になつてい
て、電気回路部5に組み込まれているシーケンス
回路によつて、自動的にしかも適切な順序にした
がつて開閉がおこなわれる。循環ポンプ30およ
び空気導入ポンプ32の駆動も一定のシーケンス
にしたがう。
気密容器2の酸素濃度が所望値に到達したのち
には、往路用ガスプラグ19と往路用ガスソケツ
ト21を切り離すとともに、復路用ガスプラグ2
0と復路用ガスソケツト22とを切り離す。
かくして気密容器2と酸素濃度制御装置1とが
切り離される。この気密容器2の温度を一定にす
るためには、恒温室に入れればよい。
上述の電気化学的酸素分離装置3の陰極9およ
び陽極10の作用面積を2dm2とし、気密容器2
の内容積を15とし、最初気密容器2内に空気が
入つていた場合、酸素濃度を20分で10%および30
%にすることができた。
なお上述の実施例では、電気化学的脱酸素分離
装置3は、単セルで構成されているが、複数のセ
ルで構成してもよい。また過圧補償弁33は電磁
弁にして、電気化学的酸素分離装置3を酸素発生
装置として作動させるときにこの弁を開くように
してもよい。さらには循環ポンプ30と空気導入
ポンプ32とを共通にしてひとつのポンプにし、
循環ポンプ30の位置に設置してもよい。この場
合には空気導入弁29も循環ポンプ30に隣接さ
れることになる。
以上詳述せる如く、本発明はひとつの電気化学
的酸素分離装置に、脱酸素機能と酸素発生機能と
をもたせることにより、より効率的に酸素濃度を
制御することが可能で、しかも酸素濃度を制御す
べき容器と分離独立し得る酸素濃度制御装置およ
び酸素濃度の制御方法を提供するもので、その工
業的価値極めて大である。 DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus and method for controlling the oxygen concentration of a mixed gas containing oxygen. More specifically, it relates to an oxygen concentration control device and control method that allows a single electrochemical oxygen separation device to have both deoxidation and oxygen generation functions, and that can be separated from the container whose oxygen concentration is to be controlled. . In biology, chemistry, medicine, metallurgy, and other research fields, it is often necessary to arbitrarily control the oxygen concentration in the gas phase. However, conventionally, nitrogen, argon,
The method used was to mix oxygen with a gas such as carbon dioxide or helium.
Cylinder operation and gas flow rate adjustment operations were complicated. In contrast, the inventors of the present application
In No. 28907, we proposed a method to automatically control oxygen concentration using electrochemical methods. That is, in an electrolytic cell in which a gas diffusion electrode effective for electrolytic reduction of oxygen is used as a cathode, an oxygen generation electrode is used as an anode, and an aqueous solution of potassium hydroxide, sodium hydroxide, or sulfuric acid, or a cation exchange membrane, etc. is used as an electrolyte or electrolyte, When a DC voltage is applied between the anode and anode while supplying a mixed gas containing oxygen to the cathode, O 2 +2H 2 O+4e - →4OH - (alkaline electrolyte) or O 2 +4H + +4e - →2H at the cathode. Oxygen is selectively consumed by the reaction 2 O (acidic electrolyte or cation exchange membrane), and at the anode 4OH - +O 2 +2H 2 O+4e - (alkaline electrolyte) or 2H 2 O→O 2 +4H + +4e - Oxygen is generated by the reaction (acidic electrolyte or cation exchange membrane). In other words, since only oxygen in the oxygen-containing mixed gas moves from the cathode side to the anode side, such an electrolytic cell functions as an oxygen separation device. Therefore, two such oxygen separation devices are prepared, and one of the cathodes is brought into contact with the gas in the oxygen concentration control chamber in which the oxygen concentration is to be controlled, and the oxygen generated from the anode is removed from the system. while supplying air to the other cathode,
Oxygen generated from the anode is supplied to the oxygen concentration control chamber, and if the oxygen concentration in the oxygen concentration control chamber is too high than a predetermined value, the former oxygen separation device having an oxygen removal function is activated. When the oxygen concentration is lowered and is too low than the predetermined oxygen concentration, the latter oxygen separation device having an oxygen concentration generation function is activated to increase the oxygen concentration, thereby bringing the oxygen concentration in the oxygen concentration control chamber to the predetermined level. can be controlled. In this way, the above-mentioned Japanese Patent Publication No. 57-28907 describes a method of controlling the oxygen concentration by separately preparing an oxygen separation device that uses the oxygen removal function and an oxygen separation device that uses the oxygen generation function. However, this method cannot be said to be very effective. On the other hand, in conventional oxygen concentration control devices, an electrochemical oxygen separation device and a chamber with a relatively large volume that is the target of oxygen concentration control are integrated, and an oxygen concentration meter is placed inside this chamber. It was normal for it to be installed. However, in reality, it is not always necessary to control the oxygen concentration throughout a large chamber, and in many cases a relatively small volume container is sufficient. In many cases, it is still necessary to conduct experiments with various oxygen concentrations, but it would take too much time to conduct such experiments in a single chamber. The present invention aims to eliminate such drawbacks, and provides a single electrochemical oxygen separation device with both deoxidizing and oxygen generating functions, and also integrates a container whose oxygen concentration is to be controlled and an electrochemical oxygen separator. The feature is that the oxygen concentration control device, which is mainly a separation device, is separate and independent. That is, the oxygen concentration control device of the present invention is composed of one electrochemical oxygen separation device, an oxygen concentration detection chamber housing an oxygen concentration meter, a control section, a deoxidizing gas line, and an oxygen supply line, When this oxygen concentration control device and an airtight container are connected, oxygen is generated from the anode when air is introduced into the deoxidizing gas circulation path or the cathode, which utilizes the deoxidizing reaction at the cathode of the electrochemical oxygen separation device. The oxygen concentration in the airtight container is controlled by appropriately selecting an oxygen supply line for supplying the oxygen to the airtight container. In addition, the oxygen concentration control device and the airtight container are connected by a removable gas socket, and after the oxygen concentration is controlled, the airtight container is separated from the oxygen concentration control device and placed in the chamber, which is a constant temperature room. It is now possible to put it in. Adopting this method is extremely convenient because a normal general-purpose constant temperature bath can be used. Furthermore, conventionally, the oxygen concentration meter was installed inside the chamber, but in the case of the present invention, it is installed on the oxygen concentration control device side, so the airtight container can be carried freely as described above. can. Furthermore, it is quite easy to set different oxygen concentrations for each airtight container. The airtight container used in the present invention must have a lid, but a container made of glass or acrylic resin is suitable in order to allow observation of the inside. As the electrolyte for an electrochemical oxygen separator, sulfuric acid or a cation exchange membrane, which is not affected by carbon dioxide gas, is suitable. As the cation exchange membrane, a hydrogen ion conductive membrane based on perfluorocarbon and having sulfonic acid groups or carboxylic acid groups introduced therein is suitable. When sulfuric acid is used as the electrolyte, a mixture of a platinum group metal catalyst supported on carbon and a fluororesin is bonded to an expanded metal made of titanium or tantalum plated with gold or platinum, and porous polyester is used as the cathode. An anode lined with a tetrafluoroethylene film is suitable, and an expanded titanium metal plate plated with platinum or coated with a composite oxide of platinum and iridium is suitable as the anode. When a cation exchange membrane is used as the electrolyte, a cathode and an anode are integrally bonded to the membrane. For the cathode, a mixture of a catalyst powder made of platinum black powder or an alloy powder of platinum and gold and a fluorine resin, or a mixture of cation exchange resin powder or short fibers mixed with this mixture is hot pressed onto an ion exchange membrane. It is better to do so. The anode is suitably hot-pressed using iridium oxide or platinum black powder as a catalyst in the same manner as the cathode, or electrolessly plated with platinum or rhodium. As the oxygen concentration meter, a galvanic cell type (fuel cell type) type, a polarographic type, or a zirconia type is used. The control unit of the oxygen concentration control device is an electric circuit consisting of a comparator, a sequence circuit, and a power supply.The comparator compares whether the detection signal from the oxygen concentration meter is higher or lower than a predetermined value, and It determines whether the oxygen separator is to operate as an oxygen scavenger or an oxygen generator, and a sequence circuit controls the opening and closing order of the valves as described below, as well as directing current from the power source to the electrochemical oxygen separator. is supplied and the pump is driven. The valves described below are preferably electromagnetic valves that are automatically controlled by a control unit, but may be manually operated in some cases. To maintain a relative humidity of 100% in an airtight container, you can store a container filled with water inside an airtight container. When using this oxygen concentration control device for culturing microorganisms or cells, by using a smooth buffer solution in the culture medium, the pH of the culture medium can be kept constant without having to particularly adjust the carbon dioxide concentration in the airtight container. Retained. An embodiment of the present invention will be described in detail below. Embodiment: FIG. 1 shows a system diagram of an oxygen concentration control system according to an embodiment of the present invention. The oxygen concentration control system is broadly divided into an oxygen concentration control device 1 and an airtight container 2. The oxygen concentration control device 1 is mainly an electrochemical oxygen separation device 3
It is composed of an oxygen concentration detection chamber 4, an electric circuit 5 for controlling the oxygen concentration, an outgoing gas line 6 , and an incoming gas line 7 . The electrochemical deoxidation separation device 3 includes a cation exchange membrane 8 in which sulfonic acid groups are introduced into perfluorocarbon, a cathode 9 made of a mixture of platinum black powder and polytetrafluoroethylene, and an iridium oxide powder and polytetrafluoroethylene. Anode 10 made of a mixture with ethylene, cathode current collector 11 made of platinized expanded titanium, anode current collector 12 made of platinized expanded titanium, cathode terminal plate 13 made of a titanium plate, titanium plate. It consists of an anode terminal plate 14, a cathode gas chamber 15, an anode water chamber 16, and a cell frame 17. The cathode 9 and the anode 10 are integrally joined to the cation exchange membrane 8. A water tank 18 is provided in the anode water chamber 16.
Water is supplied from the cation exchange membrane 8, and the cation exchange membrane 8 functions as a hydrogen ion conductor due to this water supply. A removable outward gas plug 19 and a return gas plug 20 are attached to the airtight container 2, and a removable outbound gas socket 21 is attached to the tip of the outbound gas line 6 of the oxygen concentration control device 1 . gas line
A return trip gas socket 22 is attached to the tip of the return trip gas plug 19 and an outward trip gas socket 21, and the return trip gas plug 20 is connected to the return trip gas socket 22.
and the return path gas socket 22 are connected.
By connecting the gas plug and the gas socket in this way, the oxygen concentration control device 1 and the airtight container 2 are brought into communication. When the gas plug and gas socket are separated, the gas plug becomes a kind of valve, and the airtight container 2
Airtightness is maintained. The oxygen concentration inside the airtight container 2 is determined by the oxygen concentration detection chamber 4.
The oxygen concentration meter 23 housed in the oxygen concentration meter 23 detects the oxygen concentration, and the signal is sent to the electric circuit section 5. If the oxygen concentration in the airtight container 2 is too high than the desired value, the electrochemical oxygen separator 3 acts as a deoxidizer. In this case, open the outgoing deoxygenation gas valve 24 and oxygen release valve 25 provided in the outgoing gas line 6 and the return deoxidation gas valve 26 provided in the incoming gas line 7 , and Close the outgoing oxygen supply valve 27 provided in the system line 6 , the deoxygenated residual air release valve 28, and the air introduction valve 29 provided in the return gas system line 7 ,
While driving the circulation pump 30, the cathode terminal plate 13
When a direct current is applied between the anode terminal plate 14 and the anode terminal plate 14, the gas in the airtight container 2 is supplied to the cathode gas chamber 15 via the return gas line 7 , where a deoxidation reaction occurs at the cathode 9, and the gas is deoxidized. Deoxygenation gas valve 2 for gas going out
Oxygen generated from the anode 10 during this deoxidation reaction is released from the oxygen release valve 25 to the outside of the system. The pressure reduction compensation valve 31 provided in the return gas line 7 is composed of a so-called relief valve or a liquid valve that uses a liquid with low vapor pressure such as propylene glycol, and when the pressure inside the system is reduced due to deoxidation, this valve This is to automatically introduce atmospheric air into the system to compensate for the reduced pressure. Note that the oxygen in the air introduced for this pressure reduction compensation is also removed by the electrochemical oxygen separation device 3 . By repeating such gas circulation and deoxidation operations, the oxygen concentration within the airtight container 2 is lowered to a desired value. On the other hand, if the oxygen concentration in the airtight container 2 is too low than the desired value, the electrochemical oxygen separation device 3
functions as an oxygen generator. In this case, open the outbound oxygen supply valve 27, deoxidized residual air release valve 28, and air introduction valve 29, close the outbound deoxygenation gas valve 24, oxygen release valve 25, and return deoxygenation gas valve 26, When the air introduction pump 32 is driven and a direct current is applied between the cathode terminal plate 13 and the anode terminal plate 14, air is supplied from outside the system to the cathode gas chamber 15 by the air introduction pump 32, and the anode 9 Electrolytic reduction of oxygen occurs, and the deoxygenated gas is released from the deoxygenated residual air release valve 28 to the outside of the system, and at the same time, the oxygen generated from the anode 10 passes through the outward oxygen supply valve 27 to the airtight container 2. is supplied to The gas expelled from the airtight container 2 by the supply of oxygen gas is discharged to the outside of the system via the oxygen concentration detection chamber 4 and the overpressure compensating valve 33 provided in the return gas line 7 . When the reading of the oxygen concentration meter 23 housed in the oxygen concentration detection chamber 4 reaches a desired value, the direct current is turned off. The various valves mentioned above, except for the pressure reduction compensation valve 31 and the overpressure compensation valve 33, are all solenoid valves, and are automatically and appropriately controlled by a sequence circuit built into the electric circuit section 5. Opening and closing are performed in accordance with the following order. The circulation pump 30 and the air introduction pump 32 are driven according to a certain sequence. After the oxygen concentration in the airtight container 2 reaches the desired value, disconnect the outbound gas plug 19 and outbound gas socket 21, and disconnect the inbound gas plug 2.
0 and the return gas socket 22 are separated. In this way, the airtight container 2 and the oxygen concentration control device 1 are separated. In order to keep the temperature of this airtight container 2 constant, it may be placed in a constant temperature room. The action area of the cathode 9 and anode 10 of the electrochemical oxygen separator 3 described above is 2 dm 2 , and the airtight container 2
If the internal volume of the container 2 is 15 and there is air in the airtight container 2 at first, the oxygen concentration will increase to 10% and 30% in 20 minutes.
I was able to make it into %. In the above-described embodiment, the electrochemical deoxidation separation device 3 is composed of a single cell, but it may be composed of a plurality of cells. Moreover, the overpressure compensation valve 33 may be a solenoid valve, and this valve may be opened when the electrochemical oxygen separation device 3 is operated as an oxygen generator. Furthermore, the circulation pump 30 and the air introduction pump 32 are made into one pump,
It may be installed at the position of the circulation pump 30. In this case, the air introduction valve 29 will also be adjacent to the circulation pump 30. As described in detail above, the present invention provides a single electrochemical oxygen separation device with a deoxidizing function and an oxygen generating function, thereby making it possible to control the oxygen concentration more efficiently. This invention provides an oxygen concentration control device and a method for controlling oxygen concentration that can be separated and independent from the container to be controlled, and has extremely high industrial value.
第1図は本発明の一実施例にかかる酸素濃度制
御システムの系統図を示す。
1……酸素濃度制御装置、2……気密容器、3
……電気化学的酸素分離装置、4……酸素濃度検
出器、5……電気回路部、6……往路ガス系路、
7……復路ガス系路、8……陽イオン交換膜、9
……陰極、10……陽極、11……陰極集電体、
12……陽極集電体、13……陰極端子板、14
……陽極端子板、15……陰極ガス室、16……
陽極水室、17……セルフレーム、18……水タ
ンク、19……往路用ガスプラグ、20……復路
用ガスプラグ、21……往路用ガスソケツト、2
2……復路用ガスソケツト、23……酸素濃度
計、24……往路用酸素ガス弁、25……酸素放
出弁、26……復路用脱酸素ガス弁、27……往
路用酸素供給弁、28……脱酸素残余空気放出
弁、29……空気導入弁、30……循環ポンプ、
31……減圧補償弁、32……空気導入ポンプ、
33……過圧補償弁。
FIG. 1 shows a system diagram of an oxygen concentration control system according to an embodiment of the present invention. 1 ...Oxygen concentration control device, 2...Airtight container, 3
...Electrochemical oxygen separation device, 4...Oxygen concentration detector, 5...Electric circuit section, 6 ...Outgoing gas system line,
7 ...Return gas line, 8...Cation exchange membrane, 9
... cathode, 10 ... anode, 11 ... cathode current collector,
12... Anode current collector, 13... Cathode terminal plate, 14
... Anode terminal plate, 15 ... Cathode gas chamber, 16 ...
Anode water chamber, 17...Cell frame, 18...Water tank, 19...Gas plug for outbound trip, 20...Gas plug for return trip, 21...Gas socket for outbound trip, 2
2...Gas socket for return trip, 23...Oxygen concentration meter, 24...Oxygen gas valve for outward trip, 25...Oxygen release valve, 26...Deoxidation gas valve for return trip, 27...Oxygen supply valve for outward trip, 28 ... Deoxidized residual air release valve, 29 ... Air introduction valve, 30 ... Circulation pump,
31... pressure reduction compensation valve, 32... air introduction pump,
33... Overpressure compensation valve.
Claims (1)
からなる陰極と酸素発生電極からなる陽極と電解
質とからなり、脱酸素機能と酸素発生機能とを有
する電気化学的酸素分離装置と酸素濃度計を収納
せる酸素濃度検出室と酸素濃度を制御するための
電気回路部と往路ガス系路と復路ガス系路とで構
成され、往路ガス系路の先端部に往路用ガスソケ
ツトを装着し、往路ガス系路を往路用脱酸素ガス
系路と往路用酸素発生系路とに分岐せしめ、往路
用脱酸素ガス系路に往路用脱酸素ガス弁と脱酸素
残余空気放出弁とを設け、往路用酸素発生系路に
往路用酸素供給弁と酸素放出弁とを設けるととも
に、復路ガス系路の先端部に復路用ガスソケツト
を装着し、復路ガス系路に酸素濃度検出室と過圧
補償弁と復路用脱酸素ガス弁と循環ポンプと減圧
補償弁と空気導入ポンプと空気導入弁とを設けて
なることを特徴とする酸素濃度の制御装置。 2 酸素の選択的電解還元に有効なガス拡散電極
からなる陰極と酸素発生電極からなる陽極と電解
質とからなり、脱酸素機能と酸素発生機能とを有
する電気化学的酸素分離装置と酸素濃度計を収納
せる酸素濃度検出室と酸素濃度を制御するための
電気回路部と往路ガス系路と復路ガス系路とで構
成され、往路ガス系路の先端部に往路用ガスソケ
ツトを装着し、往路ガス系路を往路用脱酸素ガス
系路と往路用酸素発生系路とに分岐せしめ、往路
用脱酸素ガス系路に往路用脱酸素ガス弁と脱酸素
残余空気放出弁とを設け、往路用酸素発生系路に
往路用酸素供給弁と酸素放出弁とを設けるととも
に復路ガス系路の先端部に復路用ガスソケツトを
装着し、復路ガス系路に酸素濃度検出室と過圧補
償弁と復路用脱酸素ガス弁と循環ポンプと減圧補
償弁とと空気導入ポンプと空気導入弁とを設けて
なる酸素濃度の制御装置の往路用ガスソケツトお
よび復路用ガスソケツトを酸素濃度を制御すべき
気密容器の往路用ガスプラグおよび復路用ガスプ
ラグにそれぞれ接続し、気密容器内の酸素濃度が
所望値より高すぎる際には、往路用脱酸素ガス
弁、酸素放出弁および復路用脱酸素ガス弁を開
け、脱酸素残余空気放出弁、往路用酸素供給弁お
よび空気導入弁を閉じ、循環ポンプを駆動せしめ
つつ、酸素濃度を制御するための電気回路部から
電気化学的酸素分離装置に直流電流を通電せしめ
ることによつて、前記気密容器に脱酸素されたガ
スを循環せしめ、前記気密容器内の酸素濃度が所
望値よりも低すぎる際には、往路用酸素供給弁、
脱酸素残余空気放出弁および空気導入弁を開け、
往路用脱酸素ガス弁、酸素放出弁および復路用脱
酸素ガス弁を閉じ、空気導入ポンプを駆動させつ
つ、酸素濃度を制御するための電気回路部から電
気化学的脱酸素分離装置に直流電流を通電せしめ
ることによつて、前記容器に酸素を供給せしめる
とともに、気密容器から復路用ガスプラグを経て
追い出されてくるガスを過圧補償弁を経て系外に
放出せしめることによつて前記気密容器の酸素濃
度を制御せしめ、しかるのちに、前記往路用ガス
ソケツトと往路用ガスプラグおよび復路用ガスソ
ケツトと復路用ガスプラグとをそれぞれ切り離す
ことを特徴とする酸素濃度の制御方法。[Scope of Claims] 1. Electrochemical oxygen separation comprising a cathode consisting of a gas diffusion electrode effective for selective electrolytic reduction of oxygen, an anode consisting of an oxygen generating electrode, and an electrolyte, and having an oxygen deoxidizing function and an oxygen generating function. It consists of an oxygen concentration detection chamber that houses the device and oxygen concentration meter, an electric circuit section for controlling the oxygen concentration, an outgoing gas line, and an incoming gas line, and an outgoing gas socket is installed at the tip of the outgoing gas line. The outgoing gas system path is branched into an outgoing deoxidizing gas system path and an outgoing oxygen generating system path, and an outgoing deoxidizing gas valve and a deoxygenated residual air release valve are installed in the outgoing deoxidizing gas system path. In addition to installing an oxygen supply valve and an oxygen release valve in the oxygen generating system for the outward journey, a gas socket for the return journey is installed at the tip of the gas system for the return journey, and an oxygen concentration detection chamber and an overpressure valve are installed in the gas system for the return journey. An oxygen concentration control device comprising a compensation valve, a return deoxygenation gas valve, a circulation pump, a pressure reduction compensation valve, an air introduction pump, and an air introduction valve. 2. An electrochemical oxygen separator and an oxygen concentration meter, which are composed of a cathode consisting of a gas diffusion electrode effective for selective electrolytic reduction of oxygen, an anode consisting of an oxygen generation electrode, and an electrolyte, and have an oxygen removal function and an oxygen generation function. It consists of an oxygen concentration detection chamber to be housed, an electric circuit section for controlling the oxygen concentration, an outgoing gas system line, and an incoming gas system line.The outgoing gas socket is attached to the tip of the outgoing gas system line, and the outgoing gas system The route is branched into an outbound deoxygenation gas system route and an outbound oxygen generation system route, and an outbound deoxygenation gas valve and a deoxidized residual air release valve are provided in the outbound deoxygenation gas system route, and the outbound oxygen generation An outbound oxygen supply valve and an oxygen release valve are installed in the system, and a return gas socket is installed at the tip of the return gas line, and an oxygen concentration detection chamber, an overpressure compensation valve, and a return oxygen deoxidation valve are installed in the return gas line. The outgoing gas socket and the incoming gas socket of an oxygen concentration control device comprising a gas valve, a circulation pump, a pressure reduction compensation valve, an air introduction pump, and an air introduction valve are used as an outgoing gas plug of an airtight container whose oxygen concentration is to be controlled. If the oxygen concentration in the airtight container is too high than the desired value, open the outbound deoxygenation gas valve, oxygen release valve, and return deoxygenation gas valve to release the remaining deoxygenated gas. By closing the discharge valve, outbound oxygen supply valve, and air introduction valve, and driving the circulation pump, a direct current is applied to the electrochemical oxygen separator from the electric circuit for controlling the oxygen concentration. When the deoxygenated gas is circulated in the airtight container and the oxygen concentration in the airtight container is too low than a desired value, an outgoing oxygen supply valve,
Open the deoxygenated residual air release valve and air intake valve,
Close the outbound deoxygenation gas valve, oxygen release valve, and return deoxygenation gas valve, and while driving the air introduction pump, direct current is applied from the electric circuit for controlling oxygen concentration to the electrochemical deoxygenation and separation device. By energizing, oxygen is supplied to the container, and the gas expelled from the airtight container via the return gas plug is discharged to the outside of the system via the overpressure compensating valve. A method for controlling oxygen concentration, comprising controlling the oxygen concentration, and then separating the outgoing gas socket and the outgoing gas plug, and the incoming gas socket and the incoming gas plug, respectively.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16007683A JPS6051610A (en) | 1983-08-31 | 1983-08-31 | Apparatus and method for controlling oxygen concentration |
US06/612,945 US4539086A (en) | 1983-08-31 | 1984-05-23 | Oxygen concentration controlling method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16007683A JPS6051610A (en) | 1983-08-31 | 1983-08-31 | Apparatus and method for controlling oxygen concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6051610A JPS6051610A (en) | 1985-03-23 |
JPS6119562B2 true JPS6119562B2 (en) | 1986-05-17 |
Family
ID=15707352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16007683A Granted JPS6051610A (en) | 1983-08-31 | 1983-08-31 | Apparatus and method for controlling oxygen concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6051610A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323378B2 (en) * | 2010-04-28 | 2012-12-04 | Praxair Technology, Inc. | Oxygen supply method and apparatus |
JP6209327B2 (en) * | 2012-11-16 | 2017-10-04 | 理研計器株式会社 | Constant potential electrolytic gas sensor |
-
1983
- 1983-08-31 JP JP16007683A patent/JPS6051610A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6051610A (en) | 1985-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4539086A (en) | Oxygen concentration controlling method and system | |
JPS6380480A (en) | Fuel battery and generation therewith | |
JPH0293088A (en) | Method and device for water electrolysis | |
Alcaide et al. | Electrogeneration of hydroperoxide ion using an alkaline fuel cell | |
AU2018692A (en) | Electrolytic cell and capillary slit electrode for gas-developing or gas-consuming electrolytic reactions and electrolysis process therefor | |
US4178224A (en) | Apparatus for generation and control of dopant and reactive gases | |
GB2358195A (en) | Electrolytic synthesis of tetramethylammonium hydroxide | |
US4207382A (en) | Fluidized air-depolarized electrodes and related apparatus and methods | |
JPS6119562B2 (en) | ||
JP3264893B2 (en) | Hydrogen / oxygen generator | |
JP2008274391A (en) | Hydrogen generating apparatus and fuel cell system using the same | |
US3284240A (en) | Cells for generating electrical energy employing a hydrogen peroxide electrolyte in contact with an improved platinum electrode | |
JPS6214268B2 (en) | ||
JPH0938653A (en) | Production of electrolyzed ionic water and device therefor | |
JPS6124322B2 (en) | ||
US3470026A (en) | Method of operating fuel cell with carbon-containing fuel | |
CN109638309A (en) | A kind of gas phase adverse current without diaphragm metal-oxygen-containing gas flow battery | |
JPH0371362B2 (en) | ||
JPS6081005A (en) | Operating method of electrochemical oxygen separator | |
JPS59163770A (en) | Method of producing oxygen | |
JPS6120482B2 (en) | ||
JPS5881776A (en) | Operating method of anaerobic glove box | |
WO2022210578A1 (en) | Method for producing hydrogen gas, method for stopping operation of apparatus for producing hydrogen gas, and hydrogen gas production apparatus | |
JPH06200389A (en) | Production of hydrogen peroxide | |
JP2000093962A (en) | Alkali water making method and electrolytic apparatus |