[go: up one dir, main page]

JPS61194158A - Production of lead frame material for semiconductor - Google Patents

Production of lead frame material for semiconductor

Info

Publication number
JPS61194158A
JPS61194158A JP3355485A JP3355485A JPS61194158A JP S61194158 A JPS61194158 A JP S61194158A JP 3355485 A JP3355485 A JP 3355485A JP 3355485 A JP3355485 A JP 3355485A JP S61194158 A JPS61194158 A JP S61194158A
Authority
JP
Japan
Prior art keywords
annealing
lead frame
temperature
frame material
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3355485A
Other languages
Japanese (ja)
Other versions
JPS6366891B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Satoru Hanadayama
花田山 悟
Yasuhiro Nakajima
安啓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3355485A priority Critical patent/JPS61194158A/en
Publication of JPS61194158A publication Critical patent/JPS61194158A/en
Publication of JPS6366891B2 publication Critical patent/JPS6366891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a lead frame for a semiconductor having high strength, good repetitive bending characteristic and high heat resistance by subjecting a specifically composed copper alloy casting ingot to controlled cooling after hot rolling then to temper finish rolling after the cycle of cold cooling and annealing followed further by a short period of annealing. CONSTITUTION:The copper alloy contg. 1.0-3.5wt% Ni, 0.2-0.9% Si, 0.02-1.0% Mn, 0.1-5.0% Zn, 0.001-0.01% Mg and further 0.001-0.01>=1 kinds among Cr, Ti and Zr is cast. The casting ingot thereof is hot rolled and is then cooled at >=5 deg.C/sec rate from >=600 deg.C. The hot rolled sheet is subjected to >=30% cold working, then to annealing for 1-10hr at 300-600 deg.C. Such stage is repeated >=2 times. The worked material is then subjected to annealing for a short period of 5-60sec at 300-600 deg.C after temper finish rolling. The material formed in such a manner has the excellent electrical conductivity of >=60% IACS and has the excellent stiffness strength and repetitive bending characteristic.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はIC,LSI等の半導体用リードフレーム材の
製造方法に関し、さらに詳しくは、60%lAC3以上
の高導電率、強度、スティ7ネス強度、繰り返し曲げ性
、耐熱性に優れた半導体用リードフレーム材の製造方法
に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for manufacturing lead frame materials for semiconductors such as ICs and LSIs. The present invention relates to a method for manufacturing lead frame materials for semiconductors that have excellent strength, repeated bendability, and heat resistance.

[従来技術1 一般に従来より半導体用リードフレーム材としては、素
子およびセラミックスと線膨張係数が近似したFe  
42wt%Ni合金が使用されてきている。
[Prior Art 1 In general, lead frame materials for semiconductors have been made of Fe, which has a coefficient of linear expansion similar to that of elements and ceramics.
A 42 wt% Ni alloy has been used.

しかして、近年、素子の接着技術および封着材の改善に
伴なって、熱放散性の優れた、かつ、比較的安価なCu
−Ni−8i合金等の材料に代替されてきているが、高
い信頼性が要求されるIC。
However, in recent years, with improvements in device bonding technology and sealing materials, Cu, which has excellent heat dissipation properties and is relatively inexpensive, has been developed.
- ICs that are being replaced by materials such as Ni-8i alloy, but require high reliability.

LSI等の半導体用リードフレーム材としては、優れた
導電率とFe−42wt%Ni合金が有している優れた
強度、繰り返し曲げ性、耐熱性等を満足できる銅系の材
料は開発が充分なされておらず、さらに、IC,LSI
等の素子内における発熱量の増大を伴なう高集積度化お
よゾより高い信頼性を確保するという要求に応じて、リ
ードフレーム材自体からの放熱効率を向上させるため、
導電率は60%lAC3以上という高い要望を満たすこ
とは上記のCu−Ni−8i系合金の従来の製造法では
困難である。
As a lead frame material for semiconductors such as LSI, copper-based materials that can satisfy the excellent electrical conductivity and the excellent strength, repeated bendability, and heat resistance of Fe-42wt%Ni alloy have been sufficiently developed. In addition, IC, LSI
In order to improve the efficiency of heat dissipation from the lead frame material itself,
It is difficult to satisfy the high demand for electrical conductivity of 60% lAC3 or more using the conventional manufacturing method of the Cu-Ni-8i alloy.

[発明が解決しようとする問題点] 本発明は上記に説明した従来における半導体用リードフ
レーム材における数々の問題点を解決するためになされ
たものであり、本発明者の鋭意研究の結果、導電率は6
0%lAC3以上であって、かつ、半導体用リードフレ
ーム材としてFe−42wt%Ni合金が有している高
強度、良好な繰り返し曲げ性および高耐熱性であり、さ
らに、耐蝕性、耐応力腐蝕割れ性、はんだ付は性、めっ
された錫およびはんだ等の加熱後の耐剥離性に優れた半
導体用リードフレーム材の製造方法を開発したのである
[Problems to be Solved by the Invention] The present invention has been made in order to solve the numerous problems in the conventional lead frame materials for semiconductors as explained above. The rate is 6
0%lAC3 or more, and has the high strength, good repeated bending property, and high heat resistance that Fe-42wt%Ni alloy has as a lead frame material for semiconductors, and also has corrosion resistance and stress corrosion resistance. We have developed a method for manufacturing lead frame materials for semiconductors that have excellent crackability, solderability, and peeling resistance after heating of plated tin and solder.

[問題点を解決するための手段] 本発明に係る半導体用リードフレーム材の製造方法の特
徴とするところは、 Ni 1.0〜3,5wt%、Si0.2〜0.9u+
L%、Mn 0.02−1.0wt%、Zn 0.1−
5,0wt%、Mg 0.001−0.01wt% を含有し、さらに、 Cr、Ti、Zrのうちから選んだ1種または2種以上
0.001〜0.01wt% を含有し、残部実質的にCuからなる銅合金の鋳塊を熱
間圧延後、600℃以上の温度から5°C/秒以上の速
度で冷却した後、30%以上の冷間加工を施してから3
00〜600℃の温度で1〜10時間の焼鈍を行なうと
いう工程を2回以上繰り返し行なった後、調質仕上圧延
を行ない、次いで、300〜600℃の温度で5〜60
秒の短時間焼鈍を行なうことにある。 本発明に係る半
導体用リードフレーム材の製造方法について以下詳細に
説明する。
[Means for Solving the Problems] The method for manufacturing a semiconductor lead frame material according to the present invention is characterized by: Ni 1.0 to 3.5 wt%, Si 0.2 to 0.9 u+
L%, Mn 0.02-1.0wt%, Zn 0.1-
5.0 wt%, Mg 0.001-0.01 wt%, and further contains 0.001-0.01 wt% of one or more selected from Cr, Ti, and Zr, with the remainder being substantially After hot-rolling a copper alloy ingot consisting of Cu, it is cooled at a rate of 5°C/second or more from a temperature of 600°C or higher, and then cold-worked by 30% or more.
After repeating the process of annealing for 1 to 10 hours at a temperature of 00 to 600°C twice or more, heat-finish rolling is performed, and then annealing for 5 to 60 hours at a temperature of 300 to 600°C is performed.
The purpose is to perform short-time annealing of seconds. The method for manufacturing a semiconductor lead frame material according to the present invention will be described in detail below.

先ず、本発明に係る半導体用リードフレーム材の製造方
法において使用される銅合金の含有成分および成分割合
について説明する。
First, the components and component ratios of the copper alloy used in the method for manufacturing a semiconductor lead frame material according to the present invention will be explained.

Niは強度向上の効果を付与する元素であり、含有量が
1.0wt%未満ではSi含有量が0.2〜0.9wt
%の範囲に含有されていても強度向上は期待できず、ま
た、3,5wt%を越えて含有されると加工性が悪化し
、さらに、強度向上の効果は少な(なる、よって、Ni
含有量は1.0〜3.5wt%とする。
Ni is an element that imparts the effect of improving strength, and when the content is less than 1.0 wt%, the Si content is 0.2 to 0.9 wt%.
Even if Ni is contained within the range of
The content is 1.0 to 3.5 wt%.

Siは強度向上に寄与する元素であり、含有量が0,2
wt%未満ではNi含有量が1.0−3.5wt%の範
囲において含有されていても強度向上は期待できず、さ
らに、高導電率を備えることもできず、また、0.9w
t%を越えて含有されると加工性、導電性が低下し、そ
の上、はんだ付は性も低下する。
Si is an element that contributes to improving strength, and the content is 0.2
If the Ni content is less than 0.9 wt%, no improvement in strength can be expected even if the Ni content is in the range of 1.0-3.5 wt%, and furthermore, high conductivity cannot be achieved.
If the content exceeds t%, processability and conductivity will decrease, and in addition, soldering properties will also decrease.

よって、Si含有量は0.2〜0,9wt%とする。Therefore, the Si content is set to 0.2 to 0.9 wt%.

Mnは溶湯の清浄作用を有し、熱間加工性を改善する元
素であり、含有量がQ、02wt%未満では熱間加工性
の向上は期待できず、また、1.0wt%を越えて含有
されると導電性およびはんだ濡れ性の低下が着しくなる
。よって、Mn含有量は0.02〜1.0wt%とする
Mn is an element that has a cleaning effect on molten metal and improves hot workability.If the content is less than 0.2wt%, improvement in hot workability cannot be expected, and if the content exceeds 1.0wt%, If it is contained, conductivity and solder wettability are likely to deteriorate. Therefore, the Mn content is set to 0.02 to 1.0 wt%.

Znはめっき錫およびはんだの加熱後の耐剥離性を向上
させるための必須元素であり、含有量が0.1wt%未
満ではこの効果が少なく、また、5.0wt%を越えて
含有されるとはんだ付は性が低下する。よって、Zn含
有量は0.1〜5.0wt%とする。
Zn is an essential element for improving the peeling resistance of plating tin and solder after heating. If the content is less than 0.1 wt%, this effect will be small, and if the content exceeds 5.0 wt%, Soldering becomes less effective. Therefore, the Zn content is set to 0.1 to 5.0 wt%.

Mgは混入してくるSを安定したMgとの化合物の形で
母相中に固定させ、熱間加工を可能にするための必須元
素であり、含有量が0,001wt%未満ではSは安定
したM、どの化合物とはならず、Sはそのままか或いは
MnSの形で存在し、これらS或いはMnSは熱間圧延
の加熱時、または、熱間圧延中に粒界に移動して割れを
生じさせるようになり、また、0,01wt%を越えて
含有されると鋳塊中にCu + M g Cu 2の共
晶(融点722℃)を生じ、722℃以上の温度に加熱
すると割れを発生し、溶湯が酸化し、湯流れ性の低下が
着しくなI)、鋳塊を不健全とする。よって、M8含有
量は0.001〜0.01wt%とする。
Mg is an essential element that fixes the mixed S in the matrix in the form of a stable compound with Mg and enables hot working, and S is stable when the content is less than 0,001 wt%. The M, S does not form any compound, and S exists as it is or in the form of MnS, and these S or MnS migrate to the grain boundaries during heating during hot rolling or during hot rolling, causing cracks. Moreover, if the content exceeds 0.01 wt%, a eutectic of Cu + M g Cu 2 (melting point 722°C) will occur in the ingot, and if heated to a temperature of 722°C or higher, cracks will occur. However, the molten metal oxidizes and the flowability of the metal deteriorates (I), making the ingot unsound. Therefore, the M8 content is set to 0.001 to 0.01 wt%.

Cr、Ti、Zrは熱間加工時の割れを防止するために
1種または2種以上を含有させるのであり、含有量が0
,001wt%未満では熱間加工時の割れを抑制するこ
とができず、また、0.01wt%を越えて含有させる
と溶湯が酸化し易くなり、健全な鋳塊が得られない。よ
って、Cr、Ti、Zrはその1種または2種以上の含
有量は0.001〜0.01wt%とする。
One or more of Cr, Ti, and Zr are contained in order to prevent cracking during hot working, and the content is 0.
If the content is less than 0.001 wt%, cracking during hot working cannot be suppressed, and if the content exceeds 0.01 wt%, the molten metal is likely to oxidize, making it impossible to obtain a sound ingot. Therefore, the content of one or more of Cr, Ti, and Zr is set to 0.001 to 0.01 wt%.

次に、本発明に係る半導体用リードフレーム材の製造方
法における銅合金の加工法について説明する。
Next, a method for processing a copper alloy in the method for manufacturing a semiconductor lead frame material according to the present invention will be described.

上記に説明したような含有成分および成分割合の銅合金
鋳塊を熱間圧延した後に、600℃以上の温度から5℃
/秒以1の速度で冷却するのは、溶体化処理を目的とす
るものであって、600℃未満の温度から冷却した場合
、冷却速度が5℃/秒以上であっても冷却開始前に既に
析出が起っており、充分な溶体化処理効果が得られず、
その後の冷開加工性を悪化させ、また、600℃以上の
温度から冷却した場合でも、冷却速度が5℃/秒未満で
は冷却中に析出が起り、充分な溶体化処理効果が得られ
ず、その後の冷間加工性を悪化させる。従って、銅合金
鋳塊は熱間圧延後、600℃以下の温度から5℃/秒以
上の冷却速度で冷却するのである。
After hot rolling a copper alloy ingot with the ingredients and proportions explained above, it is heated to 5℃ from a temperature of 600℃ or higher.
Cooling at a rate of 1/sec or more is for the purpose of solution treatment, and when cooling from a temperature below 600°C, even if the cooling rate is 5°C/sec or more, it is necessary to cool before starting cooling. Precipitation has already occurred and sufficient solution treatment effect cannot be obtained.
Further, even when cooling from a temperature of 600°C or higher, precipitation occurs during cooling if the cooling rate is less than 5°C/sec, and a sufficient solution treatment effect cannot be obtained. It worsens subsequent cold workability. Therefore, after hot rolling, the copper alloy ingot is cooled from a temperature of 600°C or less at a cooling rate of 5°C/second or more.

次に30%以上の冷間加工を施してから300〜600
℃の温度で1〜10時間の焼鈍を行なうのは、Ni、S
i化合物を析出させるためであり、300℃未満の温度
では1〜10時間の焼鈍を行なってもNi、Si化合物
の析出は不充分であり、また、600℃を越える温度で
は析出は起らずNi、Siの大半は固溶したままであり
、何れにしても固溶したNiBよびSiはめっきされた
錫およびはんだの150℃の温度における耐剥離性を着
しく低下させるので焼鈍温度は300〜600℃としな
ければならず、焼鈍時間は1時間未満では不充分であり
、10時間を越えても析出はそれ以上進行せず不経済で
あり、1〜10時間とする。
Next, after 30% or more cold working, 300~600
Annealing for 1 to 10 hours at a temperature of
This is to precipitate Ni and Si compounds. At temperatures below 300°C, precipitation of Ni and Si compounds is insufficient even if annealing is performed for 1 to 10 hours, and at temperatures above 600°C, precipitation does not occur. Most of Ni and Si remain in solid solution, and in any case, the solid solution of NiB and Si seriously reduces the peeling resistance of plated tin and solder at a temperature of 150°C, so the annealing temperature is set at 300° C. The annealing time must be 600°C, and annealing time of less than 1 hour is insufficient, and even if it exceeds 10 hours, precipitation will not proceed any further and is uneconomical, so the annealing time is set to 1 to 10 hours.

焼鈍前の冷間加工は、冷間加工によって導入された歪エ
ネルギーにより析出を促進させる効果があり、この効果
を得るためには30%以上の冷間加工率は必要である。
Cold working before annealing has the effect of promoting precipitation due to strain energy introduced by cold working, and a cold working ratio of 30% or more is required to obtain this effect.

そして、上記説明した冷間加工と焼鈍の工程を2回以上
行なうのは、1回では析出しきれずに固溶しているNi
、SiをNi、Si化合物として析出させるためであり
、通常は2〜3回繰り返して行なうことにより析出は充
分に進行する。
The reason why the above-described cold working and annealing steps are performed two or more times is because Ni remains in solid solution and cannot be precipitated in one step.
This is to precipitate , Si as a Ni, Si compound, and the precipitation will normally proceed sufficiently by repeating the process 2 to 3 times.

さらに、調質仕上圧延を行なってから、300〜600
℃の温度で5〜60秒の短時間の焼鈍を行なうのは、圧
延により低下した伸びを回復させると共に残留応力を低
減し、かつ、応力を均一化させるためであり、300℃
未満の温度では5〜60秒の焼鈍を行なってもこのよう
な効果は不充分であり、600℃を越える温度では析出
しているNi、Si化合物は再固溶してしまい、要求さ
れる導電性およびはんだの加熱後の耐剥離性等が劣化す
るので焼鈍温度は300〜600℃とする必要があり、
また、焼鈍時間が5秒未満では伸びの回復および残留応
力の低減や応力を均一化するという効果は不充分であり
、かつ、この上うな熱処理は連続熱処理ラインで行なわ
れるものであるから、60秒を越えると生産性が低下し
不経済となるので、焼鈍時間は5〜60秒とする。
Furthermore, after performing temper finish rolling, 300 to 600
The reason for performing short-time annealing at a temperature of 300°C for 5 to 60 seconds is to recover the elongation decreased by rolling, reduce residual stress, and equalize the stress.
At temperatures below 600°C, even if annealing is performed for 5 to 60 seconds, this effect is insufficient, and at temperatures above 600°C, the precipitated Ni and Si compounds re-dissolve, resulting in the required conductivity. The annealing temperature needs to be 300 to 600°C, since the properties and peeling resistance of the solder after heating will deteriorate.
Furthermore, if the annealing time is less than 5 seconds, the effects of elongation recovery, residual stress reduction, and stress uniformity will be insufficient, and furthermore, such heat treatment is carried out on a continuous heat treatment line. If the annealing time exceeds 2 seconds, the productivity decreases and becomes uneconomical, so the annealing time is set to 5 to 60 seconds.

[実 施 例1 本発明に係る半導体用リードフレーム材の製造方法につ
いて実施例を説明する。
[Example 1] An example of the method for manufacturing a semiconductor lead frame material according to the present invention will be described.

実施例 第1表に示す含有成分および成分割合の銅合金をクリプ
トル溶解炉を使用して、木炭被覆下において大気中で溶
解し、鋳鉄製ブックモールドを用いて厚さ45論纏×幅
80輸−×長さ200輸−の鋳塊を鋳造した後、この鋳
塊の表裏両面を2.5m−ずつ固剤した後、880℃の
温度で厚さ10mmまで熱間圧延を行ない、600℃以
上の温度から30℃/秒の速度で水冷後、スケールを除
去し、厚さ1、Ommまで冷同圧延を行ない、450℃
の温度で5時間の第1焼鈍を行ない、さらに、厚さ0.
5m11まで冷間圧延した後、さらに、450℃の温度
で5時間の第2焼鈍を行なった。その後、冷間圧延によ
り厚さ0.2511Imの板材とし、硝石炉を使用して
425℃の温度で20秒間の短時間焼鈍を行なった。
Example A copper alloy having the ingredients and proportions shown in Table 1 was melted in the atmosphere under charcoal coating using a Kryptor melting furnace, and then melted in a cast iron book mold to a thickness of 45 mm x width of 80 mm. After casting an ingot with a length of 200 cm, the front and back sides of this ingot were hardened by 2.5 m, and then hot rolled to a thickness of 10 mm at a temperature of 880°C, and then heated to a temperature of 600°C or higher. After cooling with water at a rate of 30°C/sec from a temperature of
The first annealing was performed for 5 hours at a temperature of
After cold rolling to 5 m11, a second annealing was further performed at a temperature of 450° C. for 5 hours. Thereafter, it was cold rolled into a plate having a thickness of 0.2511 Im, and was annealed for a short period of 20 seconds at a temperature of 425° C. using a saltpetre furnace.

比較例(従来材)は、880℃の温度で厚さ10mmま
で熱間圧延を行ない、600℃以上の温度から30℃/
秒の冷却速度で水冷した後、スケールを除去し、厚さ0
.5mmまで冷間圧延を行ない、500℃の温度で2時
間の焼鈍を行ない、その後、冷間圧延により厚さ0.2
511II11の板材を製作し、硝石炉を使用して50
0℃の温度で20秒間の短時間焼鈍を行なった。
The comparative example (conventional material) was hot-rolled to a thickness of 10 mm at a temperature of 880°C, and then rolled to a thickness of 30°C/30°C from a temperature of 600°C or higher.
After water cooling at a cooling rate of seconds, the scale is removed and the thickness is 0.
.. Cold rolled to a thickness of 5 mm, annealed at 500°C for 2 hours, and then cold rolled to a thickness of 0.2 mm.
511 II 11 plate materials were manufactured and 50
Short-time annealing was performed at a temperature of 0° C. for 20 seconds.

このようにして製作された試料について、以下のような
試験を行なった。
The following tests were conducted on the samples produced in this way.

(1)導電率はダブルブリッジを用いて平均断面積法に
より算出した。
(1) Electrical conductivity was calculated by the average cross-sectional area method using a double bridge.

(2)引張試験は圧延方向に平行に切出したJIS13
号試験片全試験片また、硬度はマイクロビッカース硬度
計を用いた。
(2) The tensile test was conducted using JIS13 cut parallel to the rolling direction.
No. test piece All test pieces Hardness was measured using a micro Vickers hardness tester.

これらの試験結果を第2表に示すが、本発明に係る半導
体用リードフレームの製造方法による場合は第2表にお
いて1−1および2−1とし、比較例は第2表において
1−2および2−2として示しである。
These test results are shown in Table 2. Cases based on the manufacturing method of semiconductor lead frames according to the present invention are designated as 1-1 and 2-1 in Table 2, and comparative examples are designated as 1-2 and 2-1 in Table 2. It is shown as 2-2.

第2表から明らかなように、本発明に係る半導体用リー
ドフレーム材の製造方法の1−1お上り2−1は、半導
体用リードフレーム材として総合的に優れた性能を有し
ており、また、比較例1−2および2−2に比して、以
下説明する通り優れていることがわかる。
As is clear from Table 2, 1-1 and 2-1 of the method for manufacturing a lead frame material for semiconductors according to the present invention have overall excellent performance as a lead frame material for semiconductors, Furthermore, it can be seen that the results are superior to Comparative Examples 1-2 and 2-2, as explained below.

即ち、1−1および2−1は冷間加工と焼鈍とを2同経
り返し行なっているので、1−2および2−2よりNi
、Si化合物の析出が促進され、導電率は向上している
上に、さらに、他の特性においては同等である。
In other words, since 1-1 and 2-1 are subjected to cold working and annealing twice, Ni
, the precipitation of Si compounds is promoted, the electrical conductivity is improved, and other properties are the same.

■発明の効果1 以上説明したように、本発明に係る半導体用リードフレ
ーム材の製造方法は上記の構成を有しているものである
から、60%lAC3以上の優れた導電率を有し、さら
に、高強度であり、スティ7ネス強度、繰り返し曲げ性
に優れ、高耐熱性を有するリードフレーム材を製造する
ことができるという効果を有する。
■Effect of the invention 1 As explained above, since the method for manufacturing a semiconductor lead frame material according to the present invention has the above configuration, it has an excellent electrical conductivity of 60%lAC3 or more, Furthermore, it has the effect that it is possible to manufacture a lead frame material that has high strength, excellent stiffness strength, and repeated bendability, and has high heat resistance.

手続補正書(自発) 昭和60年11月12日 昭和60年特許願第033554号 2、発明の名称 半導体用り−Yフレーム材の製造方法 3、補正をする者 事件との関係  特許出願人 住所 神戸市中央区脇浜町1丁目3番18号名称 (1
19)  株式会社 神戸製鋼所代表者   牧  冬
 彦 4、代理人 住所 東京都江東区南砂2丁目2番15号藤和束陽町コ
ープ901号 6、補正の対象 (1)明細書の発明の詳細な説明の欄 7、補正の内容 (1)明細書第3頁2行〜3行の[リードフレーム材自
体]を「リードフレーム材」と補正する。
Procedural amendment (voluntary) November 12, 1985 Patent application No. 033554 2, Title of invention: For semiconductor use - Method for manufacturing Y frame material 3, Relationship with the case by the person making the amendment Address of the patent applicant 1-3-18 Wakihama-cho, Chuo-ku, Kobe Name (1)
19) Kobe Steel Co., Ltd. Representative: Fuyuhiko Maki 4, Agent Address: 901-6, Fujiwazukayo-cho Co-op, 2-2-15 Minamisuna, Koto-ku, Tokyo, Subject of Amendment (1) Details of the invention in the specification Explanation column 7, Contents of correction (1) [Lead frame material itself] in lines 2 and 3 on page 3 of the specification is corrected to "lead frame material."

(2)明細書第3頁15行の「めっされた錫」を「めっ
きされた錫」と補正する。
(2) "Plated tin" on page 3, line 15 of the specification is corrected to "plated tin."

(3)明細書第5頁7行の「・・・に寄与する・・」を
[・・・を付与する・・]と補正する。
(3) In page 5, line 7 of the specification, "contributes to..." is amended to "gives...".

(4)明細書第5頁20行の[・・・めっき錫・・」を
[・・・めっきされた錫・・]と補正する。
(4) In page 5, line 20 of the specification, [...plated tin...] is corrected to [...plated tin...].

(5)明細書第7頁20〜同第8頁1行の「・・・60
0℃以下・・」を[・・・600℃以上・・」と補正す
る。
(5) "...60" from page 7, line 20 to page 8, line 1 of the specification
0℃ or less...'' is corrected to ``600℃ or more...''.

Claims (1)

【特許請求の範囲】 Ni1.0〜3.5wt%、Si0.2〜0.9wt%
、Mn0.02〜1.0wt%、Zn0.1〜5.0w
t%、Mg0.001〜0.01wt% を含有し、さらに、 Cr、Ti、Zrのうちから選んだ1種または2種以上
0.001〜0.01wt% を含有し、残部実質的にCuからなる銅合金の鋳塊を熱
間圧延後、600℃以上の温度から5℃/秒以上の速度
で冷却した後、30%以上の冷間加工を施してから30
0〜600℃の温度で1〜10時間の焼鈍を行なうとい
う工程を2回以上繰り返し行なった後、調質仕上圧延を
行ない、次いで、300〜600℃の温度で5〜60秒
の短時間焼鈍を行なうことを特徴とする半導体用リード
フレーム材の製造方法。
[Claims] Ni 1.0 to 3.5 wt%, Si 0.2 to 0.9 wt%
, Mn0.02-1.0wt%, Zn0.1-5.0w
t%, Mg0.001-0.01wt%, and further contains 0.001-0.01wt% of one or more selected from Cr, Ti, and Zr, and the remainder is substantially Cu. After hot-rolling a copper alloy ingot consisting of
After repeating the process of annealing for 1 to 10 hours at a temperature of 0 to 600°C twice or more, heat-finish rolling is performed, and then short-time annealing for 5 to 60 seconds at a temperature of 300 to 600°C. A method for manufacturing a lead frame material for semiconductors, characterized by performing the following steps.
JP3355485A 1985-02-21 1985-02-21 Production of lead frame material for semiconductor Granted JPS61194158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355485A JPS61194158A (en) 1985-02-21 1985-02-21 Production of lead frame material for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355485A JPS61194158A (en) 1985-02-21 1985-02-21 Production of lead frame material for semiconductor

Publications (2)

Publication Number Publication Date
JPS61194158A true JPS61194158A (en) 1986-08-28
JPS6366891B2 JPS6366891B2 (en) 1988-12-22

Family

ID=12389770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355485A Granted JPS61194158A (en) 1985-02-21 1985-02-21 Production of lead frame material for semiconductor

Country Status (1)

Country Link
JP (1) JPS61194158A (en)

Also Published As

Publication number Publication date
JPS6366891B2 (en) 1988-12-22

Similar Documents

Publication Publication Date Title
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
KR900004109B1 (en) Leadframe materials for semiconductors, copper alloys for terminals and connectors, and manufacturing methods thereof
JPS6039139A (en) Softening resistant copper alloy with high conductivity
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPH01272733A (en) Cu alloy lead frame material for semiconductor devices
JP2516622B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPS6231059B2 (en)
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS61272339A (en) Lead material for electronic parts excelled in repeated bendability and its production
JPH0788549B2 (en) Copper alloy for semiconductor equipment and its manufacturing method
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JPS6231060B2 (en)
JP2733117B2 (en) Copper alloy for electronic parts and method for producing the same
JPH09316569A (en) Copper alloy for lead frame and its production
JPH034612B2 (en)
JPS63266054A (en) Manufacture of high-strength copper-base alloy
JPH0525568A (en) Easy-to-work high strength copper alloy and its production
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPS61194158A (en) Production of lead frame material for semiconductor
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term