JPS61194106A - Combustion method of gaseous co in furnace - Google Patents
Combustion method of gaseous co in furnaceInfo
- Publication number
- JPS61194106A JPS61194106A JP3245485A JP3245485A JPS61194106A JP S61194106 A JPS61194106 A JP S61194106A JP 3245485 A JP3245485 A JP 3245485A JP 3245485 A JP3245485 A JP 3245485A JP S61194106 A JPS61194106 A JP S61194106A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- furnace
- gaseous
- jet
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、転炉内での溶銑あるいは溶鋼の脱炭反応によ
って発生するCOガスを炉腹に設けた羽目から02ガス
ジェットを吹き込んで燃焼させる方法に関J’る。Detailed Description of the Invention (Industrial Field of Application) The present invention aims to burn CO gas generated by the decarburization reaction of hot metal or molten steel in a converter by injecting it with an 02 gas jet through a lining provided in the furnace belly. It concerns how to do so.
(従来の技術)
従来、転炉による製iV1時に利用できるスクラップ咀
は1回の4盟で20・〜30%(重量)が限度といわれ
ており、それ以上に多量のスクラップを装入した場合に
は、処理すべき/8洗中のSi、 Cの酸化燃焼熱だI
Jでは必要とする高温度を(7るのに不十分であって、
外部からの新たな熱源を設ける必要がある。なお、この
ようにスクラップ量を高める場合ばかりでなく、十分な
溶銑予備処理によってP、Siを著しく低下させた溶銑
を転炉で処理ずろ場合も、熱源となるSiが減少してい
るのに加え、溶銑温度も低下しており熱源不足の事情は
同様である。(Prior art) Conventionally, it is said that the maximum amount of scrap that can be used during iV1 production using a converter is 20-30% (by weight) of 4 pieces per batch, and if a larger amount of scrap is charged This is the heat of oxidation combustion of Si and C during cleaning.
J is insufficient to reach the required high temperature (7),
It is necessary to provide a new external heat source. Furthermore, not only when increasing the amount of scrap as described above, but also when hot metal whose P and Si content has been significantly reduced through sufficient hot metal pretreatment is processed in a converter, Si, which serves as a heat source, is reduced. The temperature of hot metal is also decreasing, and the situation of lack of heat sources is similar.
スクラップ使用比率が高まりつつある今日、また溶銑予
備処理が普及しつつある今日、このような転炉熱源の問
題は益々重要になってきている。Nowadays, as the proportion of scrap used is increasing and hot metal pretreatment is becoming widespread, the problem of converter heat sources is becoming more and more important.
さらに、スクラップに代えて鉄浴中の5元力を利用し、
合金成分を鉱石もしくは、半還元状で添加し、鉄浴の成
分、I!、1整を行う方法なども研究されており、転炉
内での熱源の必要性はますまず高まっている。Furthermore, instead of scrap, we use the five yuan forces in the iron bath,
Adding alloy components in ore or semi-reduced form, iron bath components, I! , and methods for performing 1-stage adjustment are also being researched, and the need for a heat source within the converter is increasing.
従来より、このような転炉におけろ熱源、つまり加熱1
段について、転炉での脱炭反応により生じたCOガスを
燃焼させ、その燃焼熱を利用することが提案されている
。Conventionally, in such a converter, the heat source, that is, the heating 1
Regarding the stage, it has been proposed to combust CO gas produced by a decarburization reaction in a converter and utilize the combustion heat.
ところで、従来重云かの中云倒によりン容湯のたまる位
置が変わり、該部分には、炉内燃焼用のO,ガスの羽目
は設けないのが常蟲であった。これは、0、ガスブロー
がソフトブローであるためであった。By the way, in the past, due to some serious confusion, the location where the hot water was stored changed, and it was a common practice that there was no space for oxygen and gas for combustion in the furnace. This was because the gas blow was a soft blow.
しかし、近年に至り、噴射角度、方向を限定することに
より、高速噴射を可能とし、転炉傾転時の?¥;湯面下
に羽目が位置しても2.溶湯が侵入しないガス噴射速度
が得られた。すなわち、溶湯面下の例えば底吹き羽りと
同様の羽目形態とするものであり、二次燃焼中は02ガ
スを吹き込み、炉頭・耘時は、溶鋼に悪影口をおよぼさ
ないガス、例えば計、CO2,02を吹込むのである。However, in recent years, by limiting the injection angle and direction, it has become possible to achieve high-speed injection. ¥; Even if the siding is located below the hot water surface, 2. A gas injection speed was achieved that did not allow molten metal to enter. In other words, the structure is similar to that of bottom blowing under the surface of the molten metal, and 02 gas is blown during secondary combustion, and at the top of the furnace and at the time of melting, a gas that does not adversely affect the molten steel is used. For example, a total of CO2.02 is injected.
かかる従来技術を背景に、特公昭53−35764号に
あっては、転炉内でCOガスを02ガス添加により燃焼
させてCO2ガスとするに際して、C0107、CO2
等の検出を行い、燃焼用02ガスの添加丑、方向等を制
御する方法が提案されている。Against this background, in Japanese Patent Publication No. 53-35764, when CO gas is combusted in a converter by adding 02 gas to produce CO2 gas, C0107, CO2
A method has been proposed in which the addition amount, direction, etc. of combustion gas are controlled by detecting the following.
これは07ガス噴射方向、量を変えることによって炉内
で発生するCOガスの不規則さに追従しようとする方法
である。しかし、高温炉内での発生ガス検出が極めて困
難であり、大型転炉などには適用がyiシ<、また羽口
数の増加に伴い制御は極めて複雑となり、実用性に乏し
い。This is a method that attempts to follow the irregularity of CO gas generated in the furnace by changing the direction and amount of 07 gas injection. However, it is extremely difficult to detect gas generated in a high-temperature furnace, making it difficult to apply to large converters, etc., and control becomes extremely complex as the number of tuyere increases, making it impractical.
特公昭5G−9249号には外部から供給する燃料を0
2ガスにより燃焼させつつ/8鋼内または外より内に向
かって吹き込んで溶鋼着熱を図る方法が開示されている
。この方法によれば、燃料消費が膨大となる一方、排ガ
ス中のCOガス(これは燃料ガスとなり得る)をそのま
ま放出しており、このCOガスの有する熱量を考えれば
エネルギーロスはかなり大きいものとなる。Tokuko Sho 5G-9249 has zero fuel supplied from outside.
A method of heating molten steel by blowing into /8 steel or from the outside to the inside while burning with two gases is disclosed. According to this method, fuel consumption is enormous, but the CO gas in the exhaust gas (which can be used as fuel gas) is released as is, and considering the amount of heat that this CO gas has, the energy loss is quite large. Become.
(発明が解決しようとする問題点)
従来より、COガス燃焼用の基本構造としては二(11
底吹き転炉にあって炉肩部あるいは炉頂部より炉中心の
浴面方向に向って配置された1〜2本の羽目から02ガ
スを吹きつける方式;(2)上吹き転炉にあってランス
の先端部から真下に向かって脱炭精錬用02ガスを吹き
つけるとともにそれよりもより水平方向に向けて別にC
Oガス燃焼用の02ガスを吹き出す方式の2つの方式が
ある。(Problems to be solved by the invention) Conventionally, there have been two (11) basic structures for CO gas combustion.
In a bottom-blown converter, 02 gas is blown from one or two blades placed from the furnace shoulder or top toward the bath surface in the center of the furnace; (2) In a top-blown converter, 02 gas for decarburization is sprayed directly downward from the tip of the lance, and a separate C gas is sprayed in a more horizontal direction.
There are two methods of blowing out 02 gas for O gas combustion.
しかしながら、かかる従来の方式では高々25%のCO
燃焼率である。すなわら、従来の吹き出し方式ではCO
ガス燃焼用02ガスジェットの本数が少なく炉腹断面に
対して02ガスジェットの覆う面積が多くとれず、発生
するCOガスの炉腹断面通過の高々約A位しかカバーし
ていないことになる。However, with such conventional methods, only 25% of CO
It is the combustion rate. In other words, with the conventional balloon method, CO
Since the number of 02 gas jets for gas combustion is small, the area covered by the 02 gas jets relative to the cross section of the furnace belly cannot be large, and the amount of CO gas that is generated that passes through the cross section of the furnace belly is covered only at about A position.
転炉内でのCOガス燃焼の重要な点は、炉腹を通過する
COガスの全てにO,ガスと接触する〜f−ヤンスを与
えることである。このためには炉腹断面全体を02ガス
かにうように炉腹側から吹き出す方法が好ましい。ラン
スからの吹き出しは炉腹レンガ損倶につながるためi−
7策でない。また、炉肩部から羽目を通って吹き出され
ても、その吹出しジェットが浴面に衝突するためせっか
<C0−CO2と燃焼したものが浴面で炭素と反応して
C+CO2−2COの吸熱反応を起こし燃焼が有効に生
かされないことになる。The key to CO gas combustion in a converter is to provide all of the CO gas passing through the furnace belly with ~f-yance in contact with the O, gas. For this purpose, it is preferable to blow out the 02 gas from the belly side so that the entire cross section of the belly is covered with 02 gas. Blowout from the lance can lead to damage to the furnace bricks, so i-
It's not 7 strategies. In addition, even if it is blown out from the furnace shoulder through the siding, the blown jet collides with the bath surface, so the combusted CO2 reacts with carbon on the bath surface, causing an endothermic reaction of C+CO2-2CO. This means that the ignited combustion will not be utilized effectively.
かくして、本発明の目的とするところは、転炉炉腹に設
けた羽口を利用して効率的なCOガスの燃焼を行なわせ
、上述の如き欠点のない方法を提供することである。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method that utilizes the tuyere provided in the converter belly to efficiently burn CO gas and does not have the above-mentioned drawbacks.
(問題点を解決するだめの手段)
すてに述べたように、従来は、上吹き02ガスジェット
の火点面積を多くしてCOガス燃焼量の増加を図ってい
るが、基本的に燃焼後のCO2ガスが浴面に衝突して再
びCO2+C−2COになるため、合計としての燃焼量
は小さく■度がある。(Failure to solve the problem) As mentioned above, in the past, attempts were made to increase the burning point area of the top-blown 02 gas jet to increase the amount of CO gas burned. The subsequent CO2 gas collides with the bath surface and becomes CO2+C-2CO again, so the total amount of combustion is small and only a few degrees.
そこで、本発明にあっては、
■COガス燃焼用の02ガスジ、Lソトの覆う面積Ao
2をCOの上昇面積Acoに対して広くとるごと;
■このためCOガス燃焼用o2ガスジエ’7トの吹き出
し方向は炉壁側から多数の羽目またはスリット状の羽目
から扇状に吹き出し、その吹き出し高さを浴面上一定範
囲の高さとして、燃焼熱の溶銑あるいはf6鋼への伝達
を図ること;
■吹き出しの方向はジェットが溶銑あるいは溶鋼の浴面
にih突しない範囲で水平面に対し±45°の内で上吹
きランス先端の下の位置から吹くこと、
によりその改善を図るものである。Therefore, in the present invention, ■ Area Ao covered by 02 gas di and L soto for CO gas combustion.
2 is set to be wider than the rising area Aco of CO; ■For this reason, the blowing direction of the O2 gas jet for CO gas combustion is blown out from the furnace wall side in a fan-like manner from a large number of slits or slit-like slats, and the blowing height is The height of the jet should be within a certain range above the bath surface in order to transfer the combustion heat to the hot metal or F6 steel; ■The direction of the blowout should be within ±45 degrees from the horizontal plane within the range where the jet does not collide with the bath surface of the hot metal or molten steel. The aim is to improve this by blowing from a position below the tip of the top-blowing lance within 30°.
ここに、本発明の要旨とするところは、転炉の炉腹に設
けた羽目から02ガスジェットを吹き出して、溶銑ある
いは溶鋼の脱炭反応によって発生ずるCOガスを燃焼さ
せる方法であって、■前記02ガスジェットの吹き出し
を上吹きランス先端と浴面との間に行うか、あるいは浴
面から浴深さの2倍の高さ以内に行い、かつ■前記02
ガスジェットの吹き出し方向を炉腹断面の炉中心にある
いは該炉中心の同心円の円周方向に向け、水平方向から
±45°、好ましくは±30’以内の角度とし、[3]
このようにして、吹き込まれた前記02ガスジェットが
覆う羽目位置での水平断面積が炉腹断面積の25%以上
、好ましくは40%以上を占めるようにすることを特徴
とする、炉内COガス燃焼方法である。Here, the gist of the present invention is a method for burning CO gas generated by the decarburization reaction of hot metal or molten steel by blowing out a 02 gas jet from a lining provided in the belly of a converter, The above 02 gas jet is blown between the top blowing lance tip and the bath surface, or within twice the bath depth from the bath surface, and
The blowing direction of the gas jet is directed toward the furnace center of the cross section of the furnace belly or toward the circumferential direction of a concentric circle around the furnace center, and the angle is within ±45°, preferably ±30′ from the horizontal direction, [3]
In this way, the horizontal cross-sectional area at the siding position covered by the injected 02 gas jet occupies 25% or more, preferably 40% or more of the furnace belly cross-sectional area. It is a gas combustion method.
上記「転炉」はLD転炉はもちろんのこと、上吹きと下
吹きを組合セた複合転炉さらにはローBop法として知
られるような底吹き転炉をも包含するものである。The above-mentioned "converter" includes not only the LD converter, but also a composite converter that combines top blowing and bottom blowing, and even a bottom blow converter known as the low-Bop process.
さらに、1つの好1.!!態様にあっては、炉内燃焼中
も、が傾転中も、極めて高温の雰囲気に、羽目がさらさ
れることになり、羽口部冷却のた必に、羽目構造を−J
管購造とし、炭化水素(CmHn)等の熱分解による吸
熱反応を起こす冷却用ガスをその二重前羽目の外管部よ
り噴出させ、羽「1保護を図ると共に、炉内においては
該分解ガスが内管より吹込まれた0□ガスにより燃焼し
、着熱効率を上げるように構成してもよい。同様にして
羽し]構造は二mスリット構造としてもよい。Furthermore, there is one advantage 1. ! ! In this case, the siding is exposed to an extremely high temperature atmosphere both during combustion in the furnace and during tilting, and the siding structure is exposed to -J in order to cool the tuyeres.
The cooling gas, which causes an endothermic reaction due to thermal decomposition of hydrocarbons (CmHn), etc., is ejected from the outer tube part of the double front panel to protect the blades and prevent the decomposition inside the furnace. The structure may be such that the gas is combusted by the 0□ gas blown in from the inner tube to increase the heat transfer efficiency.Similarly, the blade structure may be a 2m slit structure.
なお、羽目がt1′!管の場合、先端部はセラミックパ
イプとすることにより寿命延長を図ってもよい。In addition, the score is t1'! In the case of a tube, the tip may be made of a ceramic pipe to extend its life.
ところで、羽目より吹込まれる酸素ジェットは、通常マ
ツハl程度であり、この場合、ジェットの至達距離(L
)は、L−42dである。ただし、dは羽口直径である
。噴出速度が低い場合は、該係数を変える必要があるが
転炉1頃動時の羽目部溶鋼侵入防止のためには、ジェッ
ト速度はマツハ1以上が必要である。By the way, the oxygen jet that is blown in from the plane is usually about the size of Matsuha, and in this case, the reach distance of the jet (L
) is L-42d. However, d is the tuyere diameter. If the jetting speed is low, it is necessary to change the coefficient, but in order to prevent molten steel from entering the cuff when the converter 1 rotates, the jet speed needs to be 1 or higher.
すでに述べたように、転炉内においてCOガスを燃焼さ
せる目的は、例えばスクラップ装入量を多くした場合の
追加FA 5として利用するためであり、あるいは溶銑
予備処理を行って脱P、脱Si溶銑の補助熱源として利
用するためである。As already mentioned, the purpose of burning CO gas in the converter is to use it as additional FA5 when the amount of scrap charged is increased, or to pre-treat hot metal to remove P and Si. This is to use it as an auxiliary heat source for hot metal.
したがって、1つの面からは、本発明はCOガス燃焼を
伴ったスクラップ過剰装入転炉製鋼法であり、さらに他
の面からは脱P、脱Si溶銑の転炉製鋼法であり、鉄浴
を利用した合金成分等の還元製鋼法でもある。Therefore, from one aspect, the present invention is a converter steelmaking method with excessive scrap charging accompanied by CO gas combustion, and from another aspect, the present invention is a converter steelmaking method that removes P and Si from hot metal. It is also a reduction steel manufacturing method that utilizes alloy components, etc.
(作用) 添付図面に関連さセて本発明をさらに説明する。(effect) The invention will be further described in connection with the accompanying drawings.
第1図は、本発明に係る方法を実施する転炉構造を説明
する略式断面図であり、本発明によれば転炉10の炉腹
に設けられた複数の羽口11からは07ガスジエノトが
吹込まれており、その吹込み位置は例えば上吹き転炉の
場合には−L吹きランス先端と浴面との間に行う。底吹
き転炉の場合にコよ浴面から浴深さの2倍の高さ以内の
領域に行う。そして複合転炉の場合には基本的には上吹
き転炉の場合と同様である。FIG. 1 is a schematic sectional view illustrating a converter structure for carrying out the method according to the present invention. According to the present invention, 07 gas dienoto is emitted from a plurality of tuyeres 11 provided in the belly of the converter 10. For example, in the case of a top-blowing converter, the blowing position is between the tip of the -L blowing lance and the bath surface. In the case of a bottom-blown converter, this is carried out in an area within twice the bath depth from the bath surface. In the case of a combined converter, the process is basically the same as in the case of a top-blown converter.
このような領域に吹込まれる02ガスジェットは炉腹断
面の炉中心に向かっであるいはその炉中心の同心円の円
周方向に向けて吹込み、02ガスジェットが直接炉腹耐
レンガに衝突しないように方向を選ばなければならない
。これは02ガスジェノ1−がレンガに衝突して溶損を
促進するのを防くためである。The 02 gas jet blown into such an area is blown toward the center of the furnace cross section or toward the circumferential direction of the concentric circle around the center of the furnace, so that the 02 gas jet does not directly collide with the furnace bricks. must choose a direction. This is to prevent the 02 gas Geno 1- from colliding with the bricks and promoting melting damage.
第2し1(d)ないし第2図(dlはこのときのOtガ
スジェットの吹込みによってもたらされる転炉内ガスの
流れを模式的に示す図である。第2図(alは4個の羽
L1から炉中心に向かって02ガスジェ、トが吹込まれ
る場合、第2図(blは羽目としてスリット羽目を使っ
た場合の炉内ガス流れを示す。同じく第2図(C1は多
数の羽目から同じく吹込まれる場合のガス流れを示す。Figures 2-1(d) to 2 (dl are diagrams schematically showing the flow of gas in the converter brought about by the injection of the Ot gas jet at this time. When 02 gas jets are blown from the blade L1 toward the center of the furnace, Figure 2 (BL shows the gas flow in the furnace when slits are used as the blades. Similarly, Figure 2 (C1 shows the flow of gas in the furnace when slits are used as the blades). This shows the gas flow when the same gas is blown from.
一方、第2図(dlは同心円の円周方向に3個の羽目か
ら02ガスジェットを吹込乞場合を示す。On the other hand, FIG. 2 (dl shows the case where 02 gas jets are blown from three concentric circles in the circumferential direction.
COガスの燃焼効率を考えると円周方向に吹込む方式が
、特に多数の羽目から吹込む方式が好ましく、スリット
状羽目とするとより−Fジェ、トの;マう面積が増して
好ましい。Considering the combustion efficiency of the CO gas, a method of blowing in the circumferential direction, especially a method of blowing through a large number of holes, is preferable, and a slit-like hole is more preferable because the surface area of -F jet, and m is increased.
次に、羽目から吹込まれる02ガスジェ、トの方向は水
平面に対し±45°以内に制限するが、これは浴面に0
2ガスジエ、トが衝突するのを可及的に少なくするため
、また一旦生成したCOガスが再び浴面で浴中炭素と反
応するのを防止するためである。好ましくは水平面に対
し130°Cの範囲内の角度で吹込むが、これはソエノ
I・が炉内気流の影3を受りて曲っても、はぼ目的空間
内Cごととまるためである。Next, the direction of the 02 gas jet blown from the siding is limited to within ±45° with respect to the horizontal plane, but this is not 0° to the bath surface.
This is to reduce collisions between the two gases as much as possible, and to prevent CO gas once generated from reacting with carbon in the bath again on the bath surface. Preferably, the air is blown at an angle within the range of 130° C. with respect to the horizontal plane. This is because even if Soeno I is bent by the shadow 3 of the air flow in the furnace, it will remain in the target space C.
次に、本発明にあっては02かジェットの羽「■位置で
の水平断面積が炉腹I折面積の25%以上を占めるが、
これが25%未満ではCOガスの炉焼効率、つまり転炉
への熱供給が十分でないためであり、好ましくは40%
以上である。80%を越えるとほぼ100%、COガス
が燃焼される。Next, in the present invention, the horizontal cross-sectional area of the blade of the 02 jet at the position ``■'' occupies more than 25% of the area of the heart I fold.
If this is less than 25%, the furnace firing efficiency of CO gas, that is, the heat supply to the converter is insufficient, and preferably 40%.
That's all. When it exceeds 80%, almost 100% of the CO gas is burned.
次に実施例によって本発明をさらに説明する。Next, the present invention will be further explained by examples.
犬薇±
第1図に示す構造の15 Ton転炉(炉腹内径1.5
m>を使い、下記組成の溶銑を処理した。このとき炉腹
に等間隔に4個設けたスリット型羽目と、該スリット羽
目の聞に設けた補助二市管形式の羽目からほぼ水平方向
にこの転炉の炉中心の同し円に対し円周方向に02ガス
ジェット(マツハ1)を吹込んだ。15 Ton converter (furnace inner diameter: 1.5 mm) with the structure shown in Figure 1.
Hot metal of the following composition was treated using At this time, from the 4 slit-type slats provided at equal intervals on the furnace belly and the auxiliary two city pipe-type slats provided between the slits, a circle is drawn approximately horizontally to the same circle at the center of the converter. 02 gas jet (Matsuha 1) was blown in the circumferential direction.
羽目寸法は、スワン1〜型羽目が10mn+ X 10
0mm、補助羽口が直径15mmで、羽口冷却用として
、プロパンをそれぞれの羽ロジエノトの7%の量を吹き
出させた。The size of the siding is swan 1 ~ type siding 10mm + X 10
The diameter of the auxiliary tuyere was 15 mm, and propane was blown out in an amount of 7% of each vane for cooling the tuyere.
溶銑1組成 (重量%)
−C4刀 Si J’ S−
4,50゜30 0.45 0゜105 0゜
020?22 22
16 0.35 0.50 0.110
0.025前記羽目よりの吹出しを羽口1本づつ増し
ていったとき、炉頂部のガス組成を分析してCOガスの
燃焼効率を決定した。結果を前述の02ガスジェットの
水平断面積の全炉腹断面積−上吹き02ジ工ツト面積に
対する比に関連させてプ17ノトシてグラフ化した。Hot metal 1 composition (weight%) -C4 sword Si J' S-
4,50゜30 0.45 0゜105 0゜020?22 22 16 0.35 0.50 0.110
0.025 When the blowout from the tuyere was increased one by one, the gas composition at the top of the furnace was analyzed to determine the combustion efficiency of CO gas. The results were graphed in relation to the ratio of the horizontal cross-sectional area of the 02 gas jet to the total furnace belly cross-sectional area - top blowing 02 jet area.
第3図(alは、02ガスジェットの羽目位置での水平
断面積と炉腹断面積との比がCOガス燃焼効率に及ぼす
影ツを示すグラフである。上記比が25%位からCOガ
スの燃焼効率は上昇し、40%を越えると燃焼効率も5
0%を越え、70%でほぼ100%近い燃焼効率が得ら
れる。これはCOガスと0゜ガスジェットとの接触領域
が増大するに伴ってCOガス燃焼効率が向上することを
意味する。なお、第3図(blは丸型羽口より02ガス
ジy−’7トの吹込み速度がマツハ1のときの水平断面
積Δ、および仝面積Aの算出法を説明するものであり、
スリンI・羽目の場合はジェット角度が広がる。Figure 3 (al) is a graph showing the influence of the ratio of the horizontal cross-sectional area at the 02 gas jet line position to the belly cross-sectional area on the CO gas combustion efficiency. The combustion efficiency increases, and when it exceeds 40%, the combustion efficiency also decreases to 5.
Combustion efficiency exceeding 0% and almost 100% can be obtained at 70%. This means that the CO gas combustion efficiency improves as the contact area between the CO gas and the 0° gas jet increases. In addition, Fig. 3 (bl) explains the calculation method of the horizontal cross-sectional area Δ and the area A when the blowing speed of the 02 gas jet from the round tuyere is Matsuha 1,
In the case of Surin I/Hame, the jet angle widens.
(効果)
このように、本発明によれば、炉内脱炭反応により生し
たCOガスの燃焼効率は高まり、それに伴って炉内に十
分な熱量が供給されるのが分かる。(Effects) As described above, it can be seen that according to the present invention, the combustion efficiency of the CO gas generated by the in-furnace decarburization reaction is increased, and accordingly, a sufficient amount of heat is supplied to the inside of the furnace.
よって、本発明にあっては、スクラップ材の多電装入が
可能となるとともに脱P、脱Si溶銑の脱炭処理も可能
となるのである。Therefore, according to the present invention, it is possible to carry out multi-current charging of scrap materials, and it is also possible to perform decarburization treatment of molten pig iron without P and Si.
第1図は、本発明を実施する転炉を略式で示す断面図;
第2図ta+ないし第2図(diは、O,ガスジr−7
1・の吹込めの様子を示す略式説明図;および第3図(
alおよび第3図(blは、COガスの燃焼効率を示す
グラフである。
出願人 住人金属工業は式会社
代理人 弁理士 広 瀬 章 −
葬、1図Fig. 1 is a sectional view schematically showing a converter in which the present invention is implemented; Fig. 2 ta+ to Fig. 2 (di is O, gas dir-7
A schematic explanatory diagram showing the state of injection in 1.; and Fig. 3 (
al and Figure 3 (bl is a graph showing the combustion efficiency of CO gas. Applicant: Sumitomo Kinzoku Kogyo is a representative company and patent attorney: Akira Hirose - Sou, Figure 1)
Claims (1)
出して、溶銑あるいは溶鋼の脱炭反応によって発生ずる
COガスを燃焼させる方法であって、[1]前記O_2
ガスジェットの吹き出しを上吹きランス先端と浴面との
間に行うか、あるいは浴面から浴深さの2倍の高さ以内
に行い、かつ[2]前記O_2ガスジェットの吹き出し
方向を炉腹断面の炉中心にあるいは該炉中心の同心円の
円周方向に向け、水平方向から±45°以内の角度とし
、[3]このようにして、吹き込まれた前記O_2ガス
ジェットの羽口位置での水平断面積が炉腹断面積の25
%以上を占めるようにすることを特徴とする、炉内CO
ガス燃焼方法。[1] A method of blowing out an O_2 gas jet from a tuyere provided in the belly of a converter to burn CO gas generated by the decarburization reaction of hot metal or molten steel,
The gas jet is blown out between the tip of the top blowing lance and the bath surface, or within twice the bath depth from the bath surface, and [2] The blowing direction of the O_2 gas jet is directed toward the furnace belly. Direct the cross section toward the furnace center or toward the circumferential direction of the concentric circle around the furnace center, at an angle within ±45° from the horizontal direction, [3] In this way, the O_2 gas jet injected at the tuyere position The horizontal cross-sectional area is 25 of the furnace belly cross-sectional area.
% or more, the in-furnace CO
Gas combustion method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3245485A JPS61194106A (en) | 1985-02-20 | 1985-02-20 | Combustion method of gaseous co in furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3245485A JPS61194106A (en) | 1985-02-20 | 1985-02-20 | Combustion method of gaseous co in furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61194106A true JPS61194106A (en) | 1986-08-28 |
Family
ID=12359414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3245485A Pending JPS61194106A (en) | 1985-02-20 | 1985-02-20 | Combustion method of gaseous co in furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61194106A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212617A (en) * | 2001-01-11 | 2002-07-31 | Nippon Steel Corp | Hot metal desiliconization method |
EP3757234A1 (en) * | 2019-06-24 | 2020-12-30 | SMS Group GmbH | Converter and method for fresh molten metal |
-
1985
- 1985-02-20 JP JP3245485A patent/JPS61194106A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212617A (en) * | 2001-01-11 | 2002-07-31 | Nippon Steel Corp | Hot metal desiliconization method |
EP3757234A1 (en) * | 2019-06-24 | 2020-12-30 | SMS Group GmbH | Converter and method for fresh molten metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2198901C (en) | Method and apparatus for electric steelmaking | |
US5843368A (en) | Apparatus for electric steelmaking | |
CN101120210A (en) | Multifuncion injector and relative combustion process for metallurgical treatment in an electric arc furnace | |
WO1999010544A8 (en) | Direct iron and steelmaking | |
CN109628689A (en) | High hot metal ratio electric furnace method for supplying oxygen | |
JPS61213312A (en) | Water cooled lance | |
JP5037290B2 (en) | Hot metal dephosphorization method | |
JP2007239082A (en) | Method for oxidizing and refining molten metal and top blowing lance for refining | |
JPS61194106A (en) | Combustion method of gaseous co in furnace | |
JP2006328432A (en) | Converter blowing method and top blowing lance for converter blowing | |
JP2011202236A (en) | Top-blowing lance for converter, and method for operating converter | |
JP6515335B2 (en) | Converter melting method of iron containing materials | |
JP3577959B2 (en) | Oxygen blowing lance | |
EP0871785B1 (en) | Method and apparatus for after-burning the combustible components of the atmosphere in metallurgical smelting vessels | |
JP2003268434A (en) | Gas top blowing lance and method for refining molten iron using the same | |
JPH0432124B2 (en) | ||
CN118547128A (en) | Oven control process of bottom oxygen blowing bottom powder injection converter | |
JPH07103428A (en) | Oxygen burner | |
JP2001279310A (en) | Operating method of iron bath type smelting reduction furnace | |
JP2001032011A (en) | Top blowing lance for blowing molten metal | |
US5916512A (en) | Method and apparatus for after-burning the combustible components of the atmosphere in metallurgical smelting vessels | |
JP2025018411A (en) | Decarburization and refining method | |
SU726176A1 (en) | Metallic bath blasting tuyere | |
JPH0449166Y2 (en) | ||
JP3373011B2 (en) | How to use a converter lance |